1
|
Chi Y, Song C, Jia Q, Zhang R, Sun F, Li Z, Jia Y, An X, Wang Z, Li J. A metal coordination polymer nanoparticle synergistically re-establishes acidosis and enhances chemodynamic therapy for Glioblastoma. Acta Biomater 2025; 192:290-301. [PMID: 39608659 DOI: 10.1016/j.actbio.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Chemodynamic therapy (CDT) has become increasingly important as a tumor treatment strategy, which relies on intracellular acid and hydrogen peroxide to kill tumor cells by generating hydroxyl radicals (·OH) through Fenton/Fenton-like reactions. However, the weakly alkaline intracellular environment considerably caused by the efflux of lactate and H+ from glioblastoma cells is not conducive to CDT performance. Intracellular acidification induced by inhibiting the transmembrane monocarboxylate transporter 4 (MCT4) can enhance the therapeutic efficacy of CDT. Existing approaches suffer from insufficient MCT4 inhibition, involve complex drug synthesis, and have many unsatisfactory side effects. METHODS In this study, we constructed an anti-tumor nanoparticle formed by self-assembly driven by the coordination interaction of Fe3+ and α-cyano-4-hydroxycinnamate (CHC) to avoid safety issues posed by excessive modification. Fe-CHC nanoparticles were designed to decrease intracellular pH through inhibition of MCT4, which transports lactate/H+ to the extracellular space. The resulting intracellular accumulation of lactate and H+ led to fatal acidosis and promoted ·OH generated by Fenton/Fenton-like reactions with the presence of the Fe3+, thus enhancing CDT-induced tumor cell death. RESULTS In vitro and in vivo results revealed that Fe-CHC exerted a significant synergistic anti-tumor effect by re-establishing acidosis and enhancing CDT in glioblastoma. Furthermore, the decreased H+outside the cells caused by the inhibition of lactate/H+ efflux hindered extracellular matrix degradation, thereby inhibiting tumor metastasis. CONCLUSION Fe-CHC is an effective anti-cancer agent against glioblastoma. This study provides valuable insights for developing acid-modulating anti-tumor nanoparticles, as well as enriching and optimizing the application of CDT in tumor therapy. STATEMENT OF SIGNIFICANCE Our study pioneers the Fe-CHC nanoparticle, a metal-coordination polymer that targets MCT4 in glioblastoma cells to restore intracellular acidity and synergize with Fe3+ to boost chemodynamic therapy (CDT). Unlike other studies, Fe3+ and CHC work together to maximize the therapeutic potential and safety of Fe-CHC with minimal complexity. This innovative approach not only increased the production of reactive oxygen species within tumor cells, but also hindered tumor metastasis. Our work has important scientific implications for tumor microenvironment regulation and the application of CDT, and will provide a promising pathway for the treatment of aggressive cancers and attract a wide audience through its scientific implications.
Collapse
Affiliation(s)
- Yajing Chi
- School of Medicine, Nankai University, Tianjin, 300071, China; Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China
| | - Chaoqi Song
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China; Guangzhou Institute of Technology, Xidian University, Guangzhou, GuangDong, 510000, China.
| | - Ruili Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China
| | - Fang Sun
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China
| | - Zheng Li
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China
| | - Yuanyuan Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China
| | - Xian An
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, 100071, China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China.
| | - Jianxiong Li
- School of Medicine, Nankai University, Tianjin, 300071, China; Department of Radiotherapy, Chinese PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
2
|
Liu Y, Feng Z, Zhang P, Chen H, Zhu S, Wang X. Advances in the study of aerobic glycolytic effects in resistance to radiotherapy in malignant tumors. PeerJ 2023; 11:e14930. [PMID: 36811010 PMCID: PMC9939019 DOI: 10.7717/peerj.14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Aerobic glycolysis is a metabolic mode of tumor cells different from normal cells that plays an important role in tumor proliferation and distant metastasis. Radiotherapy has now become a routine and effective treatment for many malignancies, however, resistance to radiotherapy remains a major challenge in the treatment of malignant tumors. Recent studies have found that the abnormal activity of the aerobic glycolysis process in tumor cells is most likely involved in regulating chemoresistance and radiation therapy resistance in malignant tumors. However, research on the functions and mechanisms of aerobic glycolysis in the molecular mechanisms of resistance to radiotherapy in malignant tumors is still in its early stages. This review collects recent studies on the effects of aerobic glycolysis and radiation therapy resistance in malignant tumors, to further understand the progress in this area. This research may more effectively guide the clinical development of more powerful treatment plans for radiation therapy resistant subtypes of cancer patients, and take an important step to improve the disease control rate of radiation therapy resistant subtypes of cancer patients.
Collapse
|
3
|
Abstract
Significance: Cancer-associated tissue-specific lactic acidosis stimulates and mediates tumor invasion and metastasis and is druggable. Rarely, malignancy causes systemic lactic acidosis, the role of which is poorly understood. Recent Advances: The understanding of the role of lactate has shifted dramatically since its discovery. Long recognized as only a waste product, lactate has become known as an alternative metabolism substrate and a secreted nutrient that is exchanged between the tumor and the microenvironment. Tissue-specific lactic acidosis is targeted to improve the host body's anticancer defense and serves as a tool that allows the targeting of anticancer compounds. Systemic lactic acidosis is associated with poor survival. In patients with solid cancer, systemic lactic acidosis is associated with an extremely poor prognosis, as revealed by the analysis of 57 published cases in this study. Although it is considered a pathology worth treating, targeting systemic lactic acidosis in patients with solid cancer is usually inefficient. Critical Issues: Research gaps include simple questions, such as the unknown nuclear pH of the cancer cells and its effects on chemotherapy outcomes, pH sensitivity of glycosylation in cancer cells, in vivo mechanisms of response to acidosis in the absence of lactate, and overinterpretation of in vitro results that were obtained by using cells that were not preadapted to acidic environments. Future Directions: Numerous metabolism-targeting anticancer compounds induce lactatemia, lactic acidosis, or other types of acidosis. Their potential to induce acidic environments is largely overlooked, although the acidosis might contribute to a substantial portion of the observed clinical effects. Antioxid. Redox Signal. 37, 1130-1152.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Duan Q, Zhang S, Wang Y, Lu D, Sun Y, Wu Y. Proton-coupled monocarboxylate transporters in cancer: From metabolic crosstalk, immunosuppression and anti-apoptosis to clinical applications. Front Cell Dev Biol 2022; 10:1069555. [PMID: 36506099 PMCID: PMC9727313 DOI: 10.3389/fcell.2022.1069555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
The Warburg effect is known as the hyperactive glycolysis that provides the energy needed for rapid growth and proliferation in most tumor cells even under the condition of sufficient oxygen. This metabolic pattern can lead to a large accumulation of lactic acid and intracellular acidification, which can affect the growth of tumor cells and lead to cell death. Proton-coupled monocarboxylate transporters (MCTs) belong to the SLC16A gene family, which consists of 14 members. MCT1-4 promotes the passive transport of monocarboxylate (e.g., lactate, pyruvate, and ketone bodies) and proton transport across membranes. MCT1-4-mediated lactate shuttling between glycolytic tumor cells or cancer-associated fibroblasts and oxidative tumor cells plays an important role in the metabolic reprogramming of energy, lipids, and amino acids and maintains the survival of tumor cells. In addition, MCT-mediated lactate signaling can promote tumor angiogenesis, immune suppression and multidrug resistance, migration and metastasis, and ferroptosis resistance and autophagy, which is conducive to the development of tumor cells and avoid death. Although there are certain challenges, the study of targeted drugs against these transporters shows great promise and may form new anticancer treatment options.
Collapse
Affiliation(s)
- Qixin Duan
- Department of Urology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, Fujian, China,Department of Urology, Nanyang Central Hospital, Nanyang, China
| | - Shuang Zhang
- Department of Nursing, Nanyang Central Hospital, Nanyang, China
| | - Yang Wang
- Department of Urology, Nanyang Central Hospital, Nanyang, China
| | - Dongming Lu
- Department of Urology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Yingming Sun
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, Fujian, China,*Correspondence: Yongyang Wu, ; Yingming Sun,
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, Fujian, China,*Correspondence: Yongyang Wu, ; Yingming Sun,
| |
Collapse
|
5
|
Lin J, Liu G, Chen L, Kwok HF, Lin Y. Targeting lactate-related cell cycle activities for cancer therapy. Semin Cancer Biol 2022; 86:1231-1243. [PMID: 36328311 DOI: 10.1016/j.semcancer.2022.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Lactate has long been considered as a metabolic by-product of aerobic glycolysis for cancer. However, more and more studies have shown that lactate can regulate cancer progression via multiple mechanisms such as cell cycle regulation, immune suppression, energy metabolism and so on. A recent discovery of lactylation attracted a lot of attention and is already a hot topic in the cancer field. In this review, we summarized the latest functions of lactate and its underlying mechanisms in cancer. We also included our analysis of protein lactylation in different rat organs and compared them with other published lactylation data. The unresolved challenges in this field were discussed, and the potential application of these new discoveries of lactate-related cell cycle activities for cancer target therapy was speculated.
Collapse
Affiliation(s)
- Jia Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China
| | - Geng Liu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Lidian Chen
- Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China.
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China; Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China.
| |
Collapse
|
6
|
Heinrich T, Sala-Hojman A, Ferretti R, Petersson C, Minguzzi S, Gondela A, Ramaswamy S, Bartosik A, Czauderna F, Crowley L, Wahra P, Schilke H, Böpple P, Dudek Ł, Leś M, Niedziejko P, Olech K, Pawlik H, Włoszczak Ł, Zuchowicz K, Suarez Alvarez JR, Martyka J, Sitek E, Mikulski M, Szczęśniak J, Jäckel S, Krier M, Król M, Wegener A, Gałęzowski M, Nowak M, Becker F, Herhaus C. Discovery of 5-{2-[5-Chloro-2-(5-ethoxyquinoline-8-sulfonamido)phenyl]ethynyl}-4-methoxypyridine-2-carboxylic Acid, a Highly Selective in Vivo Useable Chemical Probe to Dissect MCT4 Biology. J Med Chem 2021; 64:11904-11933. [PMID: 34382802 DOI: 10.1021/acs.jmedchem.1c00448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit 9a), identified by a cellular screening in MDA-MB-231, is described. Direct target interaction of the optimized compound 18n with the cytosolic domain of MCT4 was shown after solubilization of the GFP-tagged transporter by fluorescence cross-correlation spectroscopy and microscopic studies. In vitro treatment with 18n resulted in lactate efflux inhibition and reduction of cellular viability in MCT4 high expressing cells. Moreover, pharmacokinetic properties of 18n allowed assessment of lactate modulation and antitumor activity in a mouse tumor model. Thus, 18n represents a valuable tool for investigating selective MCT4 inhibition and its effect on tumor biology.
Collapse
Affiliation(s)
- Timo Heinrich
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ada Sala-Hojman
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Roberta Ferretti
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Carl Petersson
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stefano Minguzzi
- Intana, Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Martinsried, Germany
| | | | - Shivapriya Ramaswamy
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Anna Bartosik
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Frank Czauderna
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Lindsey Crowley
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Pamela Wahra
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Heike Schilke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Pia Böpple
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Łukasz Dudek
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Marcin Leś
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | | | - Kamila Olech
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Henryk Pawlik
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | | | | | | | | | - Ewa Sitek
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | | | | | - Sven Jäckel
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Mireille Krier
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Marcin Król
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Ansgar Wegener
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Mateusz Nowak
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Frank Becker
- Intana, Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Martinsried, Germany
| | - Christian Herhaus
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
7
|
Liu KX, Everdell E, Pal S, Haas-Kogan DA, Milligan MG. Harnessing Lactate Metabolism for Radiosensitization. Front Oncol 2021; 11:672339. [PMID: 34367959 PMCID: PMC8343095 DOI: 10.3389/fonc.2021.672339] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer cells rewire their metabolism to promote cell proliferation, invasion, and metastasis. Alterations in the lactate pathway have been characterized in diverse cancers, correlate with outcomes, and lead to many downstream effects, including decreasing oxidative stress, promoting an immunosuppressive tumor microenvironment, lipid synthesis, and building chemo- or radio-resistance. Radiotherapy is a key modality of treatment for many cancers and approximately 50% of patients with cancer will receive radiation for cure or palliation; thus, overcoming radio-resistance is important for improving outcomes. Growing research suggests that important molecular controls of the lactate pathway may serve as novel therapeutic targets and in particular, radiosensitizers. In this mini-review, we will provide an overview of lactate metabolism in cancer, discuss three important contributors to lactate metabolism (lactate dehydrogenase, monocarboxylate transporters, and mitochondrial pyruvate carrier), and present data that inhibition of these three pathways can lead to radiosensitization. Future research is needed to further understand critical regulators of lactate metabolism and explore clinical safety and efficacy of inhibitors of lactate dehydrogenase, monocarboxylate transporters, and mitochondrial pyruvate carrier alone and in combination with radiation.
Collapse
Affiliation(s)
- Kevin X Liu
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Sharmistha Pal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael G Milligan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|