1
|
Kielbassa AM, Summer S, Frank W, Lynch E, Batzer JS. Equivalence study of the resin-dentine interface of internal tunnel restorations when using an enamel infiltrant resin with ethanol-wet dentine bonding. Sci Rep 2024; 14:12444. [PMID: 38816512 PMCID: PMC11139992 DOI: 10.1038/s41598-024-63289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
This preregistered ex vivo investigation examined the dentinal hybrid layer formation of a resinous infiltrant (Icon), with reference to both thickness (HLT) and homogeneity when combined with modified tunnel preparation (occlusal cavity only) and internal/external caries infiltration. The adhesives Syntac and Scotchbond MP were used as controls (Groups 1 and 3) or in combination with Icon (Groups 2 and 4). A split-tooth design using healthy third molars from 20 donors resulted in 20 prepared dentine cavities per experimental group. The cavity surfaces (n = 80) were etched (37% H3PO4), rinsed, and air-dried. Rewetting with ethanol was followed by application of the respective primers. After labeling with fluorescent dyes, either Syntac Adhesive/Heliobond or Scotchbond MP Adhesive was used alone or supplemented with Icon. HLT, as evaluated by scanning electron microscopy, did not significantly differ (P > 0.05), and confocal laser scanning microscopy revealed homogeneously mixed/polymerized resin-dentine interdiffusion zones in all groups. Icon can be successfully integrated into an ethanol-wet dentine bonding strategy, and will result in compact and homogeneous hybrid layers of comparable thickness considered equivalent to the non-Icon controls, thus allowing for preservation of the tooth's marginal ridge and interdental space in the case of internal/external infiltration of proximal caries.
Collapse
Affiliation(s)
- Andrej M Kielbassa
- Centre for Operative Dentistry, Periodontology, and Endodontology, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University (DPU), Steiner Landstraße 124, 3500, Krems an der Donau, Austria.
| | - Sabrina Summer
- Department for Biomedical Research, Centre of Experimental Medicine, University for Continuing Education Krems, Krems an der Donau, Austria
| | - Wilhelm Frank
- Centre for Health Sciences, Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University (DPU), Krems an der Donau, Austria
| | - Edward Lynch
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Julia-Susanne Batzer
- Centre for Operative Dentistry, Periodontology, and Endodontology, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University (DPU), Steiner Landstraße 124, 3500, Krems an der Donau, Austria
| |
Collapse
|
2
|
Roberts WE, Mangum JE, Schneider PM. Pathophysiology of Demineralization, Part II: Enamel White Spots, Cavitated Caries, and Bone Infection. Curr Osteoporos Rep 2022; 20:106-119. [PMID: 35156182 PMCID: PMC8930953 DOI: 10.1007/s11914-022-00723-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Compare noninfectious (part I) to infectious (part II) demineralization of bones and teeth. Evaluate similarities and differences in the expression of hard tissue degradation for the two most common chronic demineralization diseases: osteoporosis and dental caries. RECENT FINDINGS The physiology of demineralization is similar for the sterile skeleton compared to the septic dentition. Superimposing the pathologic variable of infection reveals a unique pathophysiology for dental caries. Mineralized tissues are compromised by microdamage, demineralization, and infection. Osseous tissues remodel (turnover) to maintain structural integrity, but the heavily loaded dentition does not turnover so it is ultimately at risk of collapse. A carious tooth is a potential vector for periapical infection that may be life-threatening. Insipient caries is initiated as a subsurface decalcification in enamel that is not detectable until a depth of ~400μm when it becomes visible as a white spot. Reliable detection and remineralization of invisible caries would advance cost-effective wellness worldwide.
Collapse
Affiliation(s)
- W. Eugene Roberts
- American Board of Orthodontics, Indiana University & Purdue University at Indianapolis, 8260 Skipjack Drive, Indianapolis, IN 46236 USA
| | - Jonathan E. Mangum
- Translational Proteomics Laboratory, Department of Biochemistry and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Corner Grattan Street and Royal Parade, Melbourne, Victoria 3010 Australia
| | - Paul M. Schneider
- American Board of Orthodontics, Melbourne Dental School, University of Melbourne, 720 Swanston St, Melbourne, Victoria 3010 Australia
| |
Collapse
|
3
|
Matuda AGN, Silveira MPM, de Andrade GS, Piva AMDOD, Tribst JPM, Borges ALS, Testarelli L, Mosca G, Ausiello P. Computer Aided Design Modelling and Finite Element Analysis of Premolar Proximal Cavities Restored with Resin Composites. MATERIALS 2021; 14:ma14092366. [PMID: 34062936 PMCID: PMC8125402 DOI: 10.3390/ma14092366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022]
Abstract
This study evaluated the stress distribution in five different class II cavities of premolar models restored with conventional or bulk-fill flowable composite by means of finite element analysis (FEA) under shrinkage and occlusal loading. An upper validated premolar model was imported in the software, and five class II cavities with different occlusal extensions and dimensions were prepared: horizontal cavity on the mesial surface (horizontal slot), mesio-occlusal cavity, mesial cavity (vertical slot), tunnel type cavity and direct access cavity. The models were restored with conventional or bulk-fill flowable resin composite. The tested materials were considered as homogeneous, linear, and isotropic. The Maximum Principal Stress criteria was chosen to evaluate the tensile stress results. The lowest shrinkage stress value was observed in the direct access cavity restored with bulk-fill flowable resin composite (36.12 MPa). The same cavity, restored with conventional composite showed a score of 36.14 MPa. The horizontal slot cavity with bulk-fill flowable showed a score of 46.71 MPa. The mesio-occlusal cavity with bulk-fill flowable had a score of 53.10 MPa, while with conventional composite this was 55.35 MPa. Higher shrinkage stress was found in the vertical slot cavity with conventional resin 56.14 MPa, followed by the same cavity with bulk-fill flowable 56.08 MPa. Results indicated that the use of bulk-fill flowable composite resin more significantly decreased the polymerization shrinkage stress magnitude. The larger the cavity and the volume of material necessary to restore the tooth, the greater the residual stress on enamel and dentin tissue.
Collapse
Affiliation(s)
- Amanda Guedes Nogueira Matuda
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP 12245-000, Brazil; (A.G.N.M.); (M.P.M.S.); (G.S.d.A.); (A.M.d.O.D.P.); (A.L.S.B.)
| | - Marcos Paulo Motta Silveira
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP 12245-000, Brazil; (A.G.N.M.); (M.P.M.S.); (G.S.d.A.); (A.M.d.O.D.P.); (A.L.S.B.)
| | - Guilherme Schmitt de Andrade
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP 12245-000, Brazil; (A.G.N.M.); (M.P.M.S.); (G.S.d.A.); (A.M.d.O.D.P.); (A.L.S.B.)
| | - Amanda Maria de Oliveira Dal Piva
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP 12245-000, Brazil; (A.G.N.M.); (M.P.M.S.); (G.S.d.A.); (A.M.d.O.D.P.); (A.L.S.B.)
| | | | - Alexandre Luiz Souto Borges
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP 12245-000, Brazil; (A.G.N.M.); (M.P.M.S.); (G.S.d.A.); (A.M.d.O.D.P.); (A.L.S.B.)
| | - Luca Testarelli
- Department of Oral and Maxillo Facial Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Gabriella Mosca
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, School of Dentistry, University of Naples Federico II, 80138 Naples, Italy;
| | - Pietro Ausiello
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, School of Dentistry, University of Naples Federico II, 80138 Naples, Italy;
- Correspondence:
| |
Collapse
|