1
|
Cammarata-Scalisi F, Willoughby CE, El-Feghaly JR, Tadich AC, Castillo MA, Alkhatib S, Elsherif MAE, El-Ghandour RK, Coletta R, Morabito A, Callea M. Main genetic entities associated with tooth agenesis. Clin Oral Investig 2024; 29:9. [PMID: 39658693 DOI: 10.1007/s00784-024-05941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/14/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Tooth agenesis refers to the absence of one or more of the deciduous or permanent teeth. Tooth agenesis results from a series of disrupted reciprocal ectodermal mesenchymal interactions taking place during the early stages of tooth development. METHODS A narrative literature review was performed to describe the main genetic syndromes associated with tooth agenesis. RESULTS AND CONCLUSIONS The etiology of congenital tooth agenesis is multifactorial and include genetic, epigenetic, and environmental influences. Syndromes associated with chromosomal alterations, ectodermal dysplasia, Axenfeld-Rieger syndrome, oral-facial cleft syndromes, and syndromes with cancer predisposition are among the main entities presenting with tooth agenesis. CLINICAL RELEVANCE Tooth agenesis disorders can affect the masticatory function and cause disfigurement leading to physiological and psychological complications. Early recognition of these entities is crucial to guide the management of the patient and to provide families with the appropriate genetic counseling.
Collapse
Affiliation(s)
| | - Colin E Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland
| | - Jinia R El-Feghaly
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | - Riccardo Coletta
- School of Health and Society, University of Salford, Salford, UK
- Department of Neurosciences, Psychology Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Paediatric Surgery, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Antonino Morabito
- School of Health and Society, University of Salford, Salford, UK
- Department of Neurosciences, Psychology Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Paediatric Surgery, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Michele Callea
- Postgraduate in Oral Surgery, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Liu Y, Sun J, Zhang C, Wu Y, Ma S, Li X, Wu X, Gao Q. Compound heterozygous WNT10A missense variations exacerbated the tooth agenesis caused by hypohidrotic ectodermal dysplasia. BMC Oral Health 2024; 24:136. [PMID: 38280992 PMCID: PMC10822191 DOI: 10.1186/s12903-024-03888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND The aim of this study was to analyse the differences in the phenotypes of missing teeth between a pair of brothers with hypohidrotic ectodermal dysplasia (HED) and to investigate the underlying mechanism by comparing the mutated gene loci between the brothers with whole-exome sequencing. METHODS The clinical data of the patients and their mother were collected, and genomic DNA was extracted from peripheral blood samples. By Whole-exome sequencing filtered for a minor allele frequency (MAF) ≤0.05 non-synonymous single-nucleotide variations and insertions/deletions variations in genes previously associated with tooth agenesis, and variations considered as potentially pathogenic were assessed by SIFT, Polyphen-2, CADD and ACMG. Sanger sequencing was performed to detect gene variations. The secondary and tertiary structures of the mutated proteins were predicted by PsiPred 4.0 and AlphaFold 2. RESULTS Both brothers were clinically diagnosed with HED, but the younger brother had more teeth than the elder brother. An EDA variation (c.878 T > G) was identified in both brothers. Additionally, compound heterozygous variations of WNT10A (c.511C > T and c.637G > A) were identified in the elder brother. Digenic variations in EDA (c.878 T > G) and WNT10A (c.511C > T and c.637G > A) in the same patient have not been reported previously. The secondary structure of the variant WNT10A protein showed changes in the number and position of α-helices and β-folds compared to the wild-type protein. The tertiary structure of the WNT10A variant and molecular simulation docking showed that the site and direction where WNT10A binds to FZD5 was changed. CONCLUSIONS Compound heterozygous WNT10A missense variations may exacerbate the number of missing teeth in HED caused by EDA variation.
Collapse
Affiliation(s)
- Yiting Liu
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jing Sun
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Caiqi Zhang
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yi Wu
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Siyuan Ma
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xuechun Li
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoshan Wu
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China.
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
| | - Qingping Gao
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China.
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|