1
|
Akter S, Rahman MA, Ashrafudoulla M, Ha SD. Biofilm formation and analysis of EPS architecture comprising polysaccharides and lipids by Pseudomonas aeruginosa and Escherichia coli on food processing surfaces. Food Res Int 2025; 209:116274. [PMID: 40253144 DOI: 10.1016/j.foodres.2025.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Biofilms are silent but formidable threats in seafood processing, where Pseudomonas aeruginosa and Escherichia coli can quickly transform contact surfaces into reservoirs of contamination. This study explores the dynamic biofilm formation on aluminum, silicone rubber, stainless steel, and polyethylene terephthalate over 24 and 72 h. Quantitative assays including Colony Forming Unit (CFU), Crystal Violet (CV), 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) revealed a significant increase in biofilm density, particularly on aluminum and silicone rubber. Fourier-Transform Infrared Spectroscopy (FTIR) and 1H Nuclear Magnetic Resonance (NMR) analyses showed that biofilm EPS exhibits an evolving amphiphilic nature, with stable polysaccharides and increasing lipid content enhancing resilience. Confocal Laser Scanning Microscopy (CLSM), and Field Emission Scanning Electron Microscopy (FE-SEM) captured the shift from early attachment to mature, dense biofilms. These findings underscore the crucial impact of surface material on biofilm growth and the pressing need for tailored cleaning protocols to curb contamination risks in food processing environments.
Collapse
Affiliation(s)
- Shirin Akter
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.; Department of Fisheries and Marine Bioscience, Gopalganj Science and Technology University, Gopalganj, Bangladesh
| | - Md Ashikur Rahman
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.; Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh
| | - Md Ashrafudoulla
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Sang-Do Ha
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea..
| |
Collapse
|
2
|
Abstract
Soil microbes are considered the second genome of plants. Understanding the distribution and network of aluminum (Al)-tolerant microorganisms is helpful to alleviate Al toxicity to plants in acidic soils. Here, we examined soluble Al3+ and bacterial communities carrying Al resistance genes in paddy soils with a soil pH range of 3.6 to 8.7. In the acidic soil with pH <5.1, the content of Al3+ increased significantly. There were abundant and diverse Al-tolerant microorganisms in acidic soils, including Clostridium, Bacillus, Paenibacillus, Desulfitobacterium, and Desulfosporosinus, etc. Moreover, compared with neutral and alkaline soils, the network structure of Al-tolerant microorganisms was more complex. The potential roles of major Al-tolerant microbial taxa on each other in the ecological network were identified by a directed network along 0.01 pH steps. The influential taxa in the network had a broader niche and contained more antioxidant functional genes to resist Al stress, indicating their survival advantage over the sensitive taxa. Our study is the first to explore the distribution of Al-tolerant microorganisms in continental paddies and reveal their potential associations mediated by pH, which provides a basis for further utilization of microbial resources in acidic agricultural soils. IMPORTANCE Aluminum (Al) toxicity is the primary limiting factor of crop production in acidic soils with pH <5.0. Numerous studies have focused on the mechanism of Al toxicity and tolerance in plants; however, the effects of Al toxicity on soil microorganisms and their tolerance remain less studied. This study investigated the distribution and association patterns of Al-tolerant microorganisms across continental paddy fields with a soil pH range of 3.6 to 8.7. The results showed that soil pH filters exchangeable Al3+ content, diversity, and potential associations of Al-tolerant microbial community. The influential taxa in community network play an important role in Al tolerance and have potential applications in mitigating Al toxicity and promoting crop growth in acidic soils.
Collapse
|
3
|
Manganese-Oxidizing Antarctic Bacteria (Mn-Oxb) Release Reactive Oxygen Species (ROS) as Secondary Mn(II) Oxidation Mechanisms to Avoid Toxicity. BIOLOGY 2021; 10:biology10101004. [PMID: 34681103 PMCID: PMC8533519 DOI: 10.3390/biology10101004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Manganese (Mn) oxidation is performed through oxidative Mn-oxidizing bacteria (MnOxb) as the main bio-weathering mechanism for Mn(III/IV) deposits during soil formation. However, with an increase in temperature, the respiration rate also increases, producing Reactive Oxygen Species (ROS) as by-products, which are harmful to microbial cells. We hypothesize that bacterial ROS oxidize Mn(II) to Mn(III/IV) as a secondary non-enzymatic temperature-dependent mechanism for cell protection. Fourteen MnOxb were isolated from Antarctic soils under the global warming effect, and peroxidase (PO) activity, ROS, and Mn(III/IV) production were evaluated for 120 h of incubation at 4 °C, 15 °C, and 30 °C. ROS contributions to Mn oxidation were evaluated in Arthrobacter oxydans under antioxidant (Trolox) and ROS-stimulated (menadione) conditions. The Mn(III/IV) concentration increased with temperature and positively correlated with ROS production. ROS scavenging with Trolox depleted the Mn oxidation, and ROS-stimulant increased the Mn precipitation in A. oxydans. Increasing the Mn(II) concentration caused a reduction in the membrane potential and bacterial viability, which resulted in Mn precipitation on the bacteria surface. In conclusion, bacterial ROS production serves as a complementary non-enzymatic temperature-dependent mechanism for Mn(II) oxidation as a response in warming environments.
Collapse
|
4
|
Metabolic adaptation and NADPH homeostasis evoked by a sulfur-deficient environment in Pseudomonas fluorescens. Antonie van Leeuwenhoek 2019; 113:605-616. [PMID: 31828449 DOI: 10.1007/s10482-019-01372-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
Abstract
Sulfur is essential for all living organisms due to its ability to mediate a variety of enzymatic reactions, signalling networks, and redox processes. The interplay between sulfhydryl group (SH) and disulfide bond (S-S) is central to the maintenance of intracellular oxidative balance. Although most aerobic organisms succumb to sulfur starvation, the nutritionally versatile soil microbe Pseudomonas fluorescens elaborates an intricate metabolic reprogramming in order to adapt to this challenge. When cultured in a sulfur-deficient medium with glutamine as the sole carbon and nitrogen source, the microbe reconfigures its metabolism aimed at the enhanced synthesis of NADPH, an antioxidant and the limited production of NADH, a pro-oxidant. While oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle, metabolic modules known to generate reactive oxygen species are impeded, the activities NADPH-producing enzymes such as malic enzyme, and glutamate dehydrogenase (GDH) NADP-dependent are increased. The α-ketoglutarate (KG) generated from glutamine rapidly enters the TCA cycle via α-ketoglutarate dehydrogenase (KGDH), an enzyme that was prominent in the control cultures. In the S-deficient media, the severely impeded KGDH coupled with the increased activity of the reversible isocitrate dehydrogenase (ICDH) that fixes KG into isocitrate in the presence of NADH and HCO3- ensures a constant supply of this critical tricarboxylic acid. The up-regulation of ICDH-NADP dependent in the soluble fraction of the cells obtained from the S-deficient media results in enhanced NADPH synthesis, a reaction aided by the concomitant increase in NAD kinase activity. The latter converts NAD into NADP in the presence of ATP. Taken together, the data point to a metabolic network involving isocitrate, α-KG, and ICDH that converts NADH into NADPH in P. fluorescens subjected to a S-deprived environment.
Collapse
|
5
|
Fe-S Clusters Emerging as Targets of Therapeutic Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3647657. [PMID: 29445445 PMCID: PMC5763138 DOI: 10.1155/2017/3647657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/11/2023]
Abstract
Fe-S centers exhibit strong electronic plasticity, which is of importance for insuring fine redox tuning of protein biological properties. In accordance, Fe-S clusters are also highly sensitive to oxidation and can be very easily altered in vivo by different drugs, either directly or indirectly due to catabolic by-products, such as nitric oxide species (NOS) or reactive oxygen species (ROS). In case of metal ions, Fe-S cluster alteration might be the result of metal liganding to the coordinating sulfur atoms, as suggested for copper. Several drugs presented through this review are either capable of direct interaction with Fe-S clusters or of secondary Fe-S clusters alteration following ROS or NOS production. Reactions leading to Fe-S cluster disruption are also reported. Due to the recent interest and progress in Fe-S biology, it is very likely that an increasing number of drugs already used in clinics will emerge as molecules interfering with Fe-S centers in the near future. Targeting Fe-S centers could also become a promising strategy for drug development.
Collapse
|
6
|
Booth SC, Weljie AM, Turner RJ. Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Front Microbiol 2015; 6:827. [PMID: 26347721 PMCID: PMC4538868 DOI: 10.3389/fmicb.2015.00827] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
Co-contamination of metals and organic pollutants is a global problem as metals interfere with the metabolism of complex organics by bacteria. Based on a prior observation that metal tolerance was altered by the sole carbon source being used for growth, we sought to understand how metal toxicity specifically affects bacteria using an organic pollutant as their sole carbon source. To this end metabolomics was used to compare cultures of Pseudomonas pseudoalcaligenes KF707 grown on either biphenyl (Bp) or succinate (Sc) as the sole carbon source in the presence of either aluminum (Al) or copper (Cu). Using multivariate statistical analysis it was found that the metals caused perturbations to more cellular processes in the cultures grown on Bp than those grown on Sc. Al induced many changes that were indicative of increased oxidative stress as metabolites involved in DNA damage and protection, the Krebs cycle and anti-oxidant production were altered. Cu also caused metabolic changes that were indicative of similar stress, as well as appearing to disrupt other key enzymes such as fumarase. Additionally, both metals caused the accumulation of Bp degradation intermediates indicating that they interfered with Bp metabolism. Together these results provide a basic understanding of how metal toxicity specifically affects bacteria at a biochemical level during the degradation of an organic pollutant and implicate the catabolism of this carbon source as a major factor that exacerbates metal toxicity.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Aalim M Weljie
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada ; Department of Systems Pharmacology and Translational Therapeutics, Smilow Centre for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada ; Biofilm Research Group, University of Calgary, Calgary AB, Canada
| |
Collapse
|
7
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
8
|
Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP. Extremophilic micro-algae and their potential contribution in biotechnology. BIORESOURCE TECHNOLOGY 2015; 184:363-372. [PMID: 25443670 DOI: 10.1016/j.biortech.2014.11.040] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 05/18/2023]
Abstract
Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized.
Collapse
Affiliation(s)
- Prachi Varshney
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia; IIT Bombay Monash Research Academy, CSE Building, 2nd Floor, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Paulina Mikulic
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Avigad Vonshak
- Jacob Blaustein Institutes for Desert Research, Ben Gurion University, Sede Boqer Campus, 84990, Israel
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
9
|
Guo L, Cutright TJ. Effect of citric acid and bacteria on metal uptake in reeds grown in a synthetic acid mine drainage solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 150:235-242. [PMID: 25514538 DOI: 10.1016/j.jenvman.2014.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/17/2014] [Accepted: 11/23/2014] [Indexed: 06/04/2023]
Abstract
The effect of citric acid (CA), rhizosphere acidophilic heterotrophs and/or Fe(II) oxidizing bacteria (Fe(II)OB) on plaque formation and metal accumulation in Phragmites australis L. (common reed) from acid mine drainage (AMD) solution were investigated. Reeds were grown in different hydroponic solutions that contained AMD, CA and/or rhizosphere bacteria for three months. Triplicate experiments were conducted for each experimental condition. Fe(II)OB enhanced the formation of Fe plaque which decreased Fe and Mn uptake in reeds, while it had no significant influence on Al accumulation. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque and increased Fe and Mn accumulation in reeds. Acidophilic heterotrophs consumed CA and made the environment more suitable for the growth of Fe(II)OB. Reeds are a good candidate for phytoextraction while CA is a useful chelator to enhance metal uptake in plants. More research may be needed to investigate the influence of CA on microbial community. Further investigations are required to study the effect of CA on phytoremediation of AMD contaminated fields.
Collapse
Affiliation(s)
- Lin Guo
- Department of Biological & Environmental Sciences, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA.
| | - Teresa J Cutright
- Auburn Science and Engineering Center (ASEC) 215, Department of Civil Engineering, The University of Akron, OH 44325-3905, USA.
| |
Collapse
|
10
|
Contini MDC, Millen N, González M, Benmelej A, Fabro A, Mahieu S. Orchiectomy attenuates oxidative stress induced by aluminum in rats. Toxicol Ind Health 2015; 32:1515-1526. [PMID: 25647811 DOI: 10.1177/0748233714566876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this work was to study whether the increase in antioxidant defenses associated with orchiectomy may account for the reduced susceptibility to aluminum (Al) in male kidney and also to examine whether the reduced antioxidant defenses are associated with androgen levels in orchiectomized (ORX) rats treated with testosterone propionate (TP). Rats were divided into nine groups, namely, intact males (without treatment, treated with sodium lactate, and treated with Al), sham males, ORX males (without treatment, treated with sodium lactate, treated with TP, treated with Al, and treated with TP and Al). Al groups were chronically treated with aluminum lactate for 12 weeks (0.575 mg Al/100 g of body weight, intraperitoneally, three times per week). We reported that ORX rats treated with Al had significantly less lipid peroxidation and an increased level of reduced glutathione (GSH) and GSH/oxidized glutathione ratio in the kidney when compared with intact and TP-treated ORX rats. The activity of superoxide dismutase, catalase, and glutathione peroxidase in ORX rats was much greater than in intact or TP-administered ORX rats. Castration reduced the glomerular alterations caused by Al as well as the number of necrotic tubular cells and nuclear abnormalities. However, we observed a slight alteration in brush border, dilation of proximal tubules, mononuclear infiltrates, and interstitial fibrosis. Castrated males treated with TP showed that this intervention cancels the protective effect of the ORX. This finding suggests that androgens contribute to the development of renal alterations and proteinuria in rats treated with Al. Our results showed that ORX rats are protected against the induction of oxidative stress by Al, but the morphological damage to the kidney tissue induced by the cation was only reduced. Male intact rats treated with Al had more severe glomerulosclerosis, tubular damage, and proteinuria than ORX rats.
Collapse
Affiliation(s)
- María Del Carmen Contini
- Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Néstor Millen
- Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Marcela González
- Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Adriana Benmelej
- Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Ana Fabro
- Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Stella Mahieu
- Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
11
|
Alhasawi A, Auger C, Appanna VP, Chahma M, Appanna VD. Zinc toxicity and ATP production in Pseudomonas fluorescens. J Appl Microbiol 2014; 117:65-73. [PMID: 24629129 DOI: 10.1111/jam.12497] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/28/2014] [Accepted: 03/08/2014] [Indexed: 01/15/2023]
Abstract
AIMS To identify the molecular networks in Pseudomonas fluorescens that convey resistance to toxic concentrations of Zn, a common pollutant and hazard to biological systems. METHODS AND RESULTS Pseudomonas fluorescens strain ATCC 13525 was cultured in growth medium with millimolar concentrations of Zn. Enzymatic activities and metabolite levels were monitored with the aid of in-gel activity assays and high-performance liquid chromatography, respectively. As oxidative phosphorylation was rendered ineffective, the assimilation of citric acid mediated sequentially by citrate lyase (CL), phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK) appeared to play a key role in ATP synthesis via substrate-level phosphorylation (SLP). Enzymes generating the antioxidant, reduced nicotinamide adenine dinucleotide phosphate (NADPH) were enhanced, while metabolic modules mediating the formation of the pro-oxidant, reduced nicotinamide adenine dinucleotide (NADH) were downregulated. CONCLUSIONS Pseudomonas fluorescens reengineers its metabolic networks to generate ATP via SLP, a stratagem that allows the microbe to compensate for an ineffective electron transport chain provoked by excess Zn. SIGNIFICANCE AND IMPACT OF THE STUDY The molecular insights described here are critical in devising strategies to bioremediate Zn-polluted environments.
Collapse
Affiliation(s)
- A Alhasawi
- Department Chemistry & Biochemistry, Laurentian University, Sudbury, ON, Canada
| | | | | | | | | |
Collapse
|
12
|
Obruca S, Snajdar O, Svoboda Z, Marova I. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J Microbiol Biotechnol 2013; 29:2417-28. [PMID: 23801326 DOI: 10.1007/s11274-013-1410-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/17/2013] [Indexed: 11/29/2022]
Abstract
Using random chemical mutagenesis we obtained the mutant of Cupriavidus necator H16 which was capable of improved (about 35 %) production of poly(3-hydroxybuytrate) (PHB) compared to the wild-type strain. The mutant exhibited significantly enhanced specific activities of enzymes involved in oxidative stress response such as malic enzyme, NADP-dependent isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase. Probably, due to the activation of these enzymes, we also observed an increase of NADPH/NADP⁺ ratio. It is likely that as a side effect of the increase of NADPH/NADP⁺ ratio the activity of PHB biosynthetic pathway was enhanced, which supported the accumulation of PHB. Furthermore, the mutant was also able to incorporate propionate into copolymer poly(3-hydroxybuytyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] more efficiently than the wild-type strain (Y3HV/prec = 0.17 and 0.29 for the wild-type strain and the mutant, respectively)). We assume that it may be caused by lower availability of oxaloacetate for the utilization of propionyl-CoA in 2-methylcitrate cycle due to increased action of malic enzyme. Therefore, propionyl-CoA was incorporated into copolymer rather than transformed to pyruvate via 2-methylcitrate cycle. Thus, the mutant was capable of the utilization of waste frying oils and the production of P(3HB-co-3HV) with better yields and improved content of 3HV resulting in better mechanical properties of copolymer than the wild-type strain. The results of this work may be used for the development of innovative fermentation strategies for the production of PHA and also it might help to define novel targets for the genetic manipulations of PHA producing bacteria.
Collapse
Affiliation(s)
- Stanislav Obruca
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic,
| | | | | | | |
Collapse
|
13
|
Physiological and transcriptional analysis of the effects of aluminum stress on Cryptococcus humicola. World J Microbiol Biotechnol 2012; 28:2319-29. [DOI: 10.1007/s11274-012-1039-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 03/07/2012] [Indexed: 11/27/2022]
|
14
|
Contini MDC, Millen N, González M, Mahieu S. Melatonin prevents oxidative stress in ovariectomized rats treated with aluminium. Biol Trace Elem Res 2011; 144:924-43. [PMID: 21537923 DOI: 10.1007/s12011-011-9060-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/08/2011] [Indexed: 12/14/2022]
Abstract
This study is designed to determine the simultaneous effect of aluminium (Al) and melatonin (Mel) treatment in intact and ovariectomized (Ovx) female rats on oxidative stress and their inter-organ relationship in the kidney and liver. Al-treated rats received an intra-peritoneal injection of solution of aluminium lactate (0.575 mg Al/100 g of body weight, three times a week), during 12 weeks. Mel groups received intra-peritoneal injections of melatonin at a dose of 10 mg/kg/day, 5 days/week, during 12 weeks. The results of this study showed that Al treatment in female rats modifies homeostasis of glutathione and the antioxidant capacity of the rat liver and kidney. The alteration of glutathione homeostasis and oxidative status was not associated with an increased lipid peroxidation in both organs with the exception of the increase observed in the liver of Ovx rats. Al also induced modifications in the activity of some enzymes related to the glutathione cycle: GSH-Px in the liver and kidney and glutathione reductase only in the kidney. Al exposure decreased CAT activity in both the kidney and liver of intact and Ovx groups. The administration of Mel in the intact and castrated females treated with Al seems to reduce oxidative changes in the liver and kidney of intact and Ovx rats.
Collapse
Affiliation(s)
- María del Carmen Contini
- Laboratorio de Investigaciones Fisiológicas Experimentales. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo. CC 242, 3000, Santa Fe, Argentina.
| | | | | | | |
Collapse
|
15
|
Ramírez-Benítez JE, Muñoz-Sánchez JA, Becerril-Chi KM, Miranda-Ham MDL, Castro-Concha LA, Hernández-Sotomayor ST. Aluminum induces changes in oxidative burst scavenging enzymes in Coffea arabica L. suspension cells with differential Al tolerance. J Inorg Biochem 2011; 105:1523-8. [DOI: 10.1016/j.jinorgbio.2011.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/30/2011] [Accepted: 09/22/2011] [Indexed: 12/24/2022]
|
16
|
Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H, Turner RJ, Weljie AM. Differences in metabolism between the biofilm and planktonic response to metal stress. J Proteome Res 2011; 10:3190-9. [PMID: 21561166 DOI: 10.1021/pr2002353] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bacterial biofilms are known to withstand the effects of toxic metals better than planktonic cultures of the same species. This phenomenon has been attributed to many features of the sessile lifestyle not present in free-swimming populations, but the contribution of intracellular metabolism has not been previously examined. Here, we use a combined GC-MS and (1)H NMR metabolomic approach to quantify whole-cell metabolism in biofilm and planktonic cultures of the multimetal resistant bacterium Pseudomonas fluorescens exposed to copper ions. Metabolic changes in response to metal exposure were found to be significantly different in biofilms compared to planktonic cultures. Planktonic metabolism indicated an oxidative stress response that was characterized by changes to the TCA cycle, glycolysis, pyruvate and nicotinate and niacotinamide metabolism. Similar metabolic changes were not observed in biofilms, which were instead dominated by shifts in exopolysaccharide related metabolism suggesting that metal stress in biofilms induces a protective response rather than the reactive changes observed for the planktonic cells. From these results, we conclude that differential metabolic shifts play a role in biofilm-specific multimetal resistance and tolerance. An altered metabolic response to metal toxicity represents a novel addition to a growing list of biofilm-specific mechanisms to resist environmental stress.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Collins RM, Afzal M, Ward DA, Prescott MC, Sait SM, Rees HH, Tomsett AB. Differential proteomic analysis of Arabidopsis thaliana genotypes exhibiting resistance or susceptibility to the insect herbivore, Plutella xylostella. PLoS One 2010; 5:e10103. [PMID: 20386709 PMCID: PMC2851655 DOI: 10.1371/journal.pone.0010103] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 03/12/2010] [Indexed: 01/14/2023] Open
Abstract
A proteomic study was conducted to investigate physiological factors affecting feeding behaviour by larvae of the insect, Plutella xylostella, on herbivore-susceptible and herbivore-resistant Arabidopsis thaliana. The leaves of 162 recombinant inbred lines (Rils) were screened to detect genotypes upon which Plutella larvae fed least (P. xylostella-resistant) or most (P. xylostella-susceptible). 2D-PAGE revealed significant differences in the proteomes between the identified resistant and susceptible Rils. The proteomic results, together with detection of increased production of hydrogen peroxide in resistant Rils, suggest a correlation between P. xylostella resistance and the production of increased levels of reactive oxygen species (ROS), in particular H2O2, and that this was expressed prior to herbivory. Many of the proteins that were more abundant in the Plutella-resistant Rils are known in other biological systems to be involved in limiting ROS damage. Such proteins included carbonic anhydrases, malate dehydrogenases, glutathione S-transferases, isocitrate dehydrogenase-like protein (R1), and lipoamide dehydrogenase. In addition, patterns of germin-like protein 3 isoforms could also be indicative of higher levels of reactive oxygen species in the resistant Rils. Consistent with the occurrence of greater oxidative stress in the resistant Rils is the observation of greater abundance in susceptible Rils of polypeptides of the photosynthetic oxygen-evolving complex, which are known to be damaged under oxidative stress. The combined results suggest that enhanced production of ROS may be a major pre-existing mechanism of Plutella resistance in Arabidopsis, but definitive corroboration of this requires much further work.
Collapse
Affiliation(s)
- Richard M Collins
- School of Biological Sciences, The University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
18
|
Singh R, Lemire J, Mailloux RJ, Chénier D, Hamel R, Appanna VD. An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens. PLoS One 2009; 4:e7344. [PMID: 19809498 PMCID: PMC2752808 DOI: 10.1371/journal.pone.0007344] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/11/2009] [Indexed: 01/05/2023] Open
Abstract
Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO(2)-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O(2)-limited conditions.
Collapse
Affiliation(s)
- Ranji Singh
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Ryan J. Mailloux
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Daniel Chénier
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Robert Hamel
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Vasu D. Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Van Nostrand JD, Arthur JM, Kilpatrick LE, Neely BA, Bertsch PM, Morris PJ. Changes in protein expression in Burkholderia vietnamiensis PR1 301 at pH 5 and 7 with and without nickel. MICROBIOLOGY-SGM 2009; 154:3813-3824. [PMID: 19047749 DOI: 10.1099/mic.0.2008/017178-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia vietnamiensis PR1(301) (PR1) exhibits pH-dependent nickel (Ni) tolerance, with lower Ni toxicity observed at pH 5 than at pH 7. The Ni tolerance mechanism in PR1 is currently unknown, and traditional mechanisms of Ni resistance do not appear to be present. Therefore, 2D gel electrophoresis was used to examine changes in protein expression in PR1 with and without Ni (3.4 mM) at pH 5 and 7. Proteins with both a statistically significant and at least a twofold difference in expression level between conditions (pH, Ni) were selected and identified using MALDI-TOF-MS or LC-MS. Results showed increased expression of proteins involved in cell shape and membrane composition at pH 5 compared with pH 7. Scanning electron microscopy indicated elongated cells at pH 5 and 6 compared with pH 7 in the absence of Ni. Fatty acid methyl ester analysis showed a statistically significant difference in the percentages of long- and short-chain fatty acids at pH 5 and 7. These findings suggest that changes in membrane structure and function may be involved in the ability of PR1 to grow at higher concentrations of Ni at pH 5 than at pH 7.
Collapse
Affiliation(s)
- Joy D Van Nostrand
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Fort Johnson Rd, Charleston, SC 29412, USA
| | - John M Arthur
- Department of Medicine, Medical University of South Carolina, PO Box 250623, Charleston, SC 29425, USA
| | - Lisa E Kilpatrick
- NIST, Hollings Marine Laboratory, 331 Fort Johnson Rd, Charleston, SC 29412, USA
| | - Benjamin A Neely
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Fort Johnson Rd, Charleston, SC 29412, USA
| | - Paul M Bertsch
- University of Kentucky, Department of Plant and Soil Sciences, 1405 Veterans Drive, Lexington, KY 40546, USA.,Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Fort Johnson Rd, Charleston, SC 29412, USA
| | - Pamela J Morris
- National Ocean Service, Hollings Marine Laboratory, 331 Fort Johnson Rd, Charleston, SC 29412, USA.,Department of Cell Biology and Anatomy, Medical University of South Carolina, PO 173 Ashley Avenue, Charleston, SC 29425, USA.,Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Fort Johnson Rd, Charleston, SC 29412, USA
| |
Collapse
|
20
|
Kim J, Jeon CO, Park W. Dual regulation of zwf-1 by both 2-keto-3-deoxy-6-phosphogluconate and oxidative stress in Pseudomonas putida. MICROBIOLOGY-SGM 2009; 154:3905-3916. [PMID: 19047757 DOI: 10.1099/mic.0.2008/020362-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Northern blot analysis and a GFP-based reporter assay showed that zwf-1, which encodes glucose-6-phosphate dehydrogenase, was highly induced when Pseudomonas putida KT2440 was cultured in minimal medium containing glucose or gluconate. However, zwf-1 expression was not detected in the presence of pyruvate or succinate. The use of a knockout mutant of HexR, a putative transcription regulator, resulted in constitutively high expression of zwf-1, regardless of the carbon source. An electrophoretic mobility shift assay showed that HexR protein binds to the zwf-1 promoter region and that HexR binding is inhibited by 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite the presence of gluconate, the edd mutant (non-KDPG producer) was not able to induce the zwf-1 gene. The eda mutant (KDPG overproducer) featured a constitutively high level of zwf-1 expression. Interestingly, zwf-1 was also highly expressed in the presence of oxidative stress-inducing reagents. The level of zwf-1 induction in wild-type cells undergoing oxidative stress did not differ significantly from that observed with the hexR mutant under normal conditions. Interestingly, the hexR mutant was more tolerant of oxidative stress than the wild-type. Expression of zwf-1 was induced by oxidative stress in the edd mutant. Thus, KDPG, a real inducer of zwf-1 gene expression, was not necessary for oxidative-stress induction. In vitro binding of HexR to its cognate promoter region was diminished by menadione and cumene hydroperoxide. The data suggested that HexR might be a dual-sensing regulator of zwf-1 induction that is able to respond to both KDPG and oxidative stress.
Collapse
Affiliation(s)
- Juhyun Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga, Seoul, Republic of South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Republic of South Korea
| | - Woojun Park
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, Republic of Korea.,Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga, Seoul, Republic of South Korea
| |
Collapse
|
21
|
Houde M, Diallo AO. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 2008; 9:400. [PMID: 18752686 PMCID: PMC2551624 DOI: 10.1186/1471-2164-9-400] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/27/2008] [Indexed: 11/26/2022] Open
Abstract
Background Aluminum is considered the most limiting factor for plant productivity in acidic soils, which cover large areas of the world's potential arable lands. The inhibition of root growth is recognized as the primary effect of Al toxicity. To identify genes associated with Al stress and tolerance, transcriptome analyses of four different wheat lines (2 Al-tolerant and 2 Al sensitive) that differ in their response to Al were performed. Results Microarray expression profiling revealed that 83 candidate genes are associated with Al stress and 25 are associated with tolerance. The stress-associated genes include important enzymes such as pyruvate dehydrogenase, alternative oxidase, and galactonolactone oxidase, ABC transporter and ascorbate oxido-reducatase. The Al tolerance-associated genes include the ALMT-1 malate transporter, glutathione S-transferase, germin/oxalate oxidase, fructose 1,6-bisphosphatase, cysteine-rich proteins, cytochrome P450 monooxygenase, cellulose synthase, zinc finger transcription factor, disease resistance response protein and F-box containing domain protein. Conclusion In this survey, we identified stress- and tolerance-associated genes that may be involved in the detoxification of Al and reactive oxygen species. Alternative pathways could help maintain the supply of important metabolites (H2O2, ascorbate, NADH, and phosphate) needed for Al tolerance and root growth. The Al tolerance-associated genes may be key factors that regulate these pathways.
Collapse
Affiliation(s)
- Mario Houde
- Centre TOXEN, Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada.
| | | |
Collapse
|
22
|
Lemire J, Kumar P, Mailloux R, Cossar K, Appanna VD. Metabolic adaptation and oxaloacetate homeostasis inP. fluorescensexposed to aluminum toxicity. J Basic Microbiol 2008; 48:252-9. [DOI: 10.1002/jobm.200800007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Involvement of fumarase C and NADH oxidase in metabolic adaptation of Pseudomonas fluorescens cells evoked by aluminum and gallium toxicity. Appl Environ Microbiol 2008; 74:3977-84. [PMID: 18469122 DOI: 10.1128/aem.02702-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Iron (Fe) is a critical element in all aerobic organisms as it participates in a variety of metabolic networks. In this study, aluminum (Al) and gallium (Ga), two Fe mimetics, severely impeded the ability of the soil microbe Pseudomonas fluorescens to perform oxidative phosphorylation. This was achieved by disrupting the activity and expression of complexes I, II, and IV. These toxic metals also inactivated aconitase (ACN) and fumarase A (FUM A), two tricarboxylic acid cycle enzymes dependent on Fe for their catalytic activity, while FUM C, an Fe-independent enzyme, displayed an increase in activity and expression under these stressed situations. Furthermore, in the Al- and Ga-exposed cells, the activity and expression of an H(2)O-forming NADH oxidase were markedly increased. The incubation of the Al- and Ga-challenged cells in an Fe-containing medium led to the recovery of the affected enzymatic activities. Taken together, these data provide novel insights into how environmental pollutants such as Al and Ga interfere with cellular Fe metabolism and also illustrate the ability of Pseudomonas fluorescens to modulate metabolic networks to combat this situation.
Collapse
|
24
|
A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity. Extremophiles 2008; 12:451-9. [DOI: 10.1007/s00792-008-0150-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
25
|
Tripathi S, Somashekar BS, Mahdi AA, Gupta A, Mahdi F, Hasan M, Roy R, Khetrapal CL. Aluminum-mediated metabolic changes in rat serum and urine: A proton nuclear magnetic resonance study. J Biochem Mol Toxicol 2008; 22:119-27. [DOI: 10.1002/jbt.20219] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Mailloux R, Lemire J, Appanna V. Aluminum-induced mitochondrial dysfunction leads to lipid accumulation in human hepatocytes: a link to obesity. Cell Physiol Biochem 2007; 20:627-38. [PMID: 17762189 DOI: 10.1159/000107546] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2007] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial dysfunction is the cause of a variety of pathologies associated with high energy-requiring tissues like the brain and muscles. Here we show that aluminum (Al) perturbs oxidative-ATP production in human hepatocytes (HepG2 cells). This Al-induced mitochondrial dysfunction promotes enhanced lipogenesis and the accumulation of the very low density lipoprotein (VLDL). Al-stressed HepG2 cells secreted more cholesterol, lipids and proteins than control cells. The level of apolipoprotein B-100 (ApoB-100) was markedly increased in the culture medium of the cells exposed to Al. (13)C-NMR and HPLC studies revealed a metabolic profile favouring lipid production and lowered ATP synthesis in Al-treated cells. Electrophoretic and immunoblot analyses pointed to increased activities and expression of lipogenic enzymes such as glycerol 3-phosphate dehydrogenase (G3PDH), acetyl CoA carboxylase (ACC) and ATP-citrate lyase (CL) in the hepatocytes exposed to Al, and a sharp diminution of enzymes mediating oxidative phosphorylation. D-Fructose elicited the maximal secretion of VLDL in the Al-challenged cells. These results suggest that the Al-evoked metabolic shift favours the accumulation of lipids at the expense of oxidative energy production in hepatocytes.
Collapse
Affiliation(s)
- Ryan Mailloux
- Department of Chemistry and Biochemistry, Laurentian University, Ontario, Canada
| | | | | |
Collapse
|
27
|
Mailloux RJ, Bériault R, Lemire J, Singh R, Chénier DR, Hamel RD, Appanna VD. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One 2007; 2:e690. [PMID: 17668068 PMCID: PMC1930152 DOI: 10.1371/journal.pone.0000690] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 06/22/2007] [Indexed: 01/08/2023] Open
Abstract
The tricarboxylic acid (TCA) cycle is an essential metabolic network in all oxidative organisms and provides precursors for anabolic processes and reducing factors (NADH and FADH2) that drive the generation of energy. Here, we show that this metabolic network is also an integral part of the oxidative defence machinery in living organisms and α-ketoglutarate (KG) is a key participant in the detoxification of reactive oxygen species (ROS). Its utilization as an anti-oxidant can effectively diminish ROS and curtail the formation of NADH, a situation that further impedes the release of ROS via oxidative phosphorylation. Thus, the increased production of KG mediated by NADP-dependent isocitrate dehydrogenase (NADP-ICDH) and its decreased utilization via the TCA cycle confer a unique strategy to modulate the cellular redox environment. Activities of α-ketoglutarate dehydrogenase (KGDH), NAD-dependent isocitrate dehydrogenase (NAD-ICDH), and succinate dehydrogenase (SDH) were sharply diminished in the cellular systems exposed to conditions conducive to oxidative stress. These findings uncover an intricate link between TCA cycle and ROS homeostasis and may help explain the ineffective TCA cycle that characterizes various pathological conditions and ageing.
Collapse
Affiliation(s)
- Ryan J. Mailloux
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Robin Bériault
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Ranji Singh
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Daniel R. Chénier
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Robert D. Hamel
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Vasu D. Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 2007; 189:6665-75. [PMID: 17573472 PMCID: PMC2045160 DOI: 10.1128/jb.00555-07] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The fate of all aerobic organisms is dependent on the varying intracellular concentrations of NADH and NADPH. The former is the primary ingredient that fuels ATP production via oxidative phosphorylation, while the latter helps maintain the reductive environment necessary for this process and other cellular activities. In this study we demonstrate a metabolic network promoting NADPH production and limiting NADH synthesis as a consequence of an oxidative insult. The activity and expression of glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-isocitrate dehydrogenase, the main generators of NADPH, were markedly increased during oxidative challenge. On the other hand, numerous tricarboxylic acid cycle enzymes that supply the bulk of intracellular NADH were significantly downregulated. These metabolic pathways were further modulated by NAD(+) kinase (NADK) and NADP(+) phosphatase (NADPase), enzymes known to regulate the levels of NAD(+) and NADP(+). While in menadione-challenged cells, the former enzyme was upregulated, the phosphatase activity was markedly increased in control cells. Thus, NADK and NADPase play a pivotal role in controlling the cross talk between metabolic networks that produce NADH and NADPH and are integral components of the mechanism involved in fending off oxidative stress.
Collapse
Affiliation(s)
- Ranji Singh
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | | | | | | |
Collapse
|
29
|
Mailloux RJ, Hamel R, Appanna VD. Aluminum toxicity elicits a dysfunctional TCA cycle and succinate accumulation in hepatocytes. J Biochem Mol Toxicol 2007; 20:198-208. [PMID: 16906525 DOI: 10.1002/jbt.20137] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aluminum (Al), a known environmental toxicant, has been linked to a variety of pathological conditions such as dialysis dementia, osteomalacia, Alzheimer's disease, and Parkinson's disease. However, its precise role in the pathogenesis of these disorders is not fully understood. Using hepatocytes as a model system, we have probed the impact of this trivalent metal on the aerobic energy-generating machinery. Here we show that Al-exposed hepatocytes were characterized by lipid and protein oxidation and a dysfunctional tricarboxylic acid (TCA) cycle. BN-PAGE, SDS-PAGE, and Western blot analyses revealed a marked decrease in activity and expression of succinate dehydrogenase (SDH), alpha-ketoglutarate dehydrogenase (KGDH), isocitrate dehydrogenase-NAD+ (IDH), fumarase (FUM), aconitase (ACN), and cytochrome c oxidase (Cyt C Ox). 13C-NMR and HPLC studies further confirmed the disparate metabolism operative in control and Al-stressed cells and provided evidence for the accumulation of succinate in the latter cultures. In conclusion, these results suggest that Al toxicity promotes a dysfunctional TCA cycle and impedes ATP production, events that may contribute to various Al-induced abnormalities.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada, P3E 2C6
| | | | | |
Collapse
|
30
|
Tuneva J, Chittur S, Boldyrev AA, Birman I, Carpenter DO. Cerebellar Granule Cell Death Induced by Aluminum. Neurotox Res 2006; 9:297-304. [PMID: 16782589 DOI: 10.1007/bf03033320] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using flow cytometry of acutely isolated cerebellar granule cell neurons, we have determined the effects of Al (III) on viability, membrane potential, intracellular calcium concentration and generation of reactive oxygen species (ROS). Al (III) killed granule cells in a time- and concentration-dependent fashion when monitored by use of the DNA-binding dye, propidium iodide. The threshold concentration was about 50 micromolar, and cell death at 100 micromolar was apparent after 30 min exposure and increased over time. Cell death was accompanied by cell swelling and a decrease in membrane potential, and was not dependent on external calcium concentration. While exposure to Al (III) was accompanied by an increase in ROS and an elevation of intracellular calcium concentration, calcium chelators and ROS scavengers did not reduce cell death. The action of Al (III) was not accompanied by activation of caspase-3 or an increase in annexin-V binding, both indicators of apoptosis. In the presence of intracellular O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetraacetic acid (BAPTA) and absence of extracellular calcium there was still a fluo-3 signal, which likely reflects an accumulation of intracellular Al (III). These observations suggest that the cell death is subsequent to intracellular accumulation of Al (III) and subsequent perturbation of cellular metabolism.
Collapse
Affiliation(s)
- Jelena Tuneva
- Institute for Health and the Environment, University at Albany, SUNY, Rensselaer, NY 12144, USA
| | | | | | | | | |
Collapse
|
31
|
Mailloux RJ, Singh R, Appanna VD. In-gel activity staining of oxidized nicotinamide adenine dinucleotide kinase by blue native polyacrylamide gel electrophoresis. Anal Biochem 2006; 359:210-5. [PMID: 17083911 DOI: 10.1016/j.ab.2006.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 09/21/2006] [Accepted: 09/22/2006] [Indexed: 10/24/2022]
Abstract
Oxidized nicotinamide adenine dinucleotide (NAD(+)) kinase (NADK, E.C. 2.7.1.23) plays an instrumental role in cellular metabolism. Here we report on a blue native polyacrylamide gel electrophoretic technique that allows the facile detection of this enzyme. The product, oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)), formed following the reaction of NADK with NAD(+) and adenosine 5'-triphosphate was detected with the aid of glucose-6-phosphate dehydrogenase or NADP(+)-isocitrate dehydrogenase, iodonitrotetrazolium chloride, and phenazine methosulfate. The bands at the respective activity sites were excised and subjected to native and denaturing two-dimensional electrophoresis for the determination of protein levels. Hence this novel electrophoretic method allows the easy detection of NADK, a critical enzyme involved in pyridine homeostasis. Furthermore, this technique allowed the monitoring of the activity and expression of this kinase in various biological systems.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada P3E 2C6
| | | | | |
Collapse
|
32
|
Bériault R, Hamel R, Chenier D, Mailloux RJ, Joly H, Appanna VD. The overexpression of NADPH-producing enzymes counters the oxidative stress evoked by gallium, an iron mimetic. Biometals 2006; 20:165-76. [PMID: 16900398 DOI: 10.1007/s10534-006-9024-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Gallium (Ga), an iron (Fe) mimetic promoted an oxidative environment and elicited an antioxidative response in Pseudomonas fluorescens. Ga-stressed P. fluorescens was characterized by higher amounts of oxidized lipids and proteins compared to control cells. The oxidative environment provoked by Ga was nullified by increased synthesis of NADPH. The activity and expression glucose 6-phosphate dehydrogenase (G6PDH) and isocitrate dehydrogenase-NADP (ICDH) were stimulated in Ga-cultures. The induction of isoenzymes of these dehydrogenases was also evident in the Ga-stressed cells. Although superoxide dismutase (SOD) activity was significantly enhanced in Ga-stressed cultures, catalase activity experienced a marked diminution. Fe metabolism appeared to be severely impeded by Ga toxicity. This is the first demonstration of the oxidative stress evoked by Ga to be neutralized by a reductive environment generated via the overexpression of NADPH-producing enzymes.
Collapse
Affiliation(s)
- R Bériault
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Mailloux RJ, Appanna VD. Aluminum toxicity triggers the nuclear translocation of HIF-1alpha and promotes anaerobiosis in hepatocytes. Toxicol In Vitro 2006; 21:16-24. [PMID: 16979867 DOI: 10.1016/j.tiv.2006.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/13/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
Although aluminum (Al) is known to be toxic, the exact molecular events that enable this trivalent metal to be involved in various diseases have not been fully delineated. In this report, we show that Al promotes the translocation of the HIF-1alpha (hypoxia inducible factor) to the nucleus and activates the anaerobic metabolism of D-glucose. Al-exposed hepatocytes (HepG2 cells) showed a marked increase in HIF-1alpha that was associated with nuclear extracts. D-Glucose consumption in these Al-stressed cells was rapid as more GLUT-1 transporter was expressed. Furthermore, these Al-treated HepG2 cells were characterized with enhanced activities of such metabolic enzymes as hexokinase (HK), pyruvate kinase (PK), lactate dehydrogenase (LDH) and glucose 6-phosphate dehydrogenase (G6PDH). (13)C- NMR studies pointed to a metabolic profile in Al-stressed cells that favored enhanced glycolysis. HPLC analyses confirmed increased glycolytic ATP production in Al-exposed hepatocytes. These findings reveal the ability of Al to create a hypoxic environment that promotes the translocation of HIF-1alpha to the nucleus and stimulates the anaerobic metabolism of D-glucose.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ont., Canada P3E 2C6
| | | |
Collapse
|
34
|
Krause F. Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 2006; 27:2759-81. [PMID: 16817166 DOI: 10.1002/elps.200600049] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is an essential and challenging task to unravel protein-protein interactions in their actual in vivo context. Native gel systems provide a separation platform allowing the analysis of protein complexes on a rather proteome-wide scale in a single experiment. This review focus on blue-native (BN)-PAGE as the most versatile and successful gel-based approach to separate soluble and membrane protein complexes of intricate protein mixtures derived from all biological sources. BN-PAGE is a charge-shift method with a running pH of 7.5 relying on the gentle binding of anionic CBB dye to all membrane and many soluble protein complexes, leading to separation of protein species essentially according to their size and superior resolution than other fractionation techniques can offer. The closely related colorless-native (CN)-PAGE, whose applicability is restricted to protein species with intrinsic negative net charge, proved to provide an especially mild separation capable of preserving weak protein-protein interactions better than BN-PAGE. The essential conditions determining the success of detecting protein-protein interactions are the sample preparations, e.g. the efficiency/mildness of the detergent solubilization of membrane protein complexes. A broad overview about the achievements of BN- and CN-PAGE studies to elucidate protein-protein interactions in organelles and prokaryotes is presented, e.g. the mitochondrial protein import machinery and oxidative phosphorylation supercomplexes. In many cases, solubilization with digitonin was demonstrated to facilitate an efficient and particularly gentle extraction of membrane protein complexes prone to dissociation by treatment with other detergents. In general, analyses of protein interactomes should be carried out by both BN- and CN-PAGE.
Collapse
Affiliation(s)
- Frank Krause
- Department of Chemistry, Physical Biochemistry, Darmstadt University of Technology, Germany.
| |
Collapse
|