2
|
Li B, Huang LG, Yang YF, Chen YY, Zhou XJ, Liu ZQ, Zheng YG. Metabolic engineering and pathway construction for O-acetyl-L-homoserine production in Escherichia coli. 3 Biotech 2023; 13:173. [PMID: 37188286 PMCID: PMC10170018 DOI: 10.1007/s13205-023-03564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
O-Acetyl-L-homoserine (OAH) is a potentially important platform metabolic intermediate for the production of homoserine lactone, methionine, 1,4-butanediol and 1,3-propanediol which have giant market value. Currently, multiple strategies have been adopted to explore sustainable production of OAH. However, the production of OAH by consuming cheap bio-based feedstocks with Escherichia coli as the chassis is still in its infancy. Construction of high yield OAH-producing strains is of great significance in industry. In this study, we introduced an exogenous metA from Bacillus cereus (metXbc) and engineered an OAH-producing strain by combinatorial metabolic engineering. Initially, exogenous metXs/metA were screened and used to reconstruct an initial biosynthesis pathway of OAH in E. coli. Subsequently, the disruption of degradation and competitive pathways combined with optimal expression of metXbc were carried out, accumulating 5.47 g/L OAH. Meanwhile, the homoserine pool was enriched by overexpressing metL with producing 7.42 g/L OAH. Lastly, the carbon flux of central carbon metabolism was redistributed to balance the metabolic flux of homoserine and acetyl coenzyme A (acetyl-CoA) in OAH biosynthesis with accumulating 8.29 g/L OAH. The engineered strain produced 24.33 g/L OAH with a yield of 0.23 g/g glucose in fed-batch fermentation. By these strategies, the key nodes for OAH synthesis were clarified and corresponding strategies were proposed. This study would lay a foundation for OAH bioproduction. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03564-5.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Liang-Gang Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yu-Feng Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yuan-Yuan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Xiao-Jie Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
3
|
Sharma S, Jayasinghe YP, Mishra NK, Orimoloye MO, Wong TY, Dalluge JJ, Ronning DR, Aldrich CC. Structural and Functional Characterization of Mycobacterium tuberculosis Homoserine Transacetylase. ACS Infect Dis 2023; 9:540-553. [PMID: 36753622 DOI: 10.1021/acsinfecdis.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) lacking functional homoserine transacetylase (HTA) is compromised in methionine biosynthesis, protein synthesis, and in the activity of multiple essential S-adenosyl-l-methionine-dependent enzymes. Additionally, deficient mutants are further disarmed by the toxic accumulation of lysine due to a redirection of the metabolic flux toward the lysine biosynthetic pathway. Studies with deletion mutants and crystallographic studies of the apoenzyme have, respectively, validated Mtb HTA as an essential enzyme and revealed a ligandable binding site. Seeking a mechanistic characterization of this enzyme, we report crucial structural details and comprehensive functional characterization of Mtb HTA. Crystallographic and mass spectral observation of the acetylated HTA intermediate and initial velocity studies were consistent with a ping-pong kinetic mechanism. Wild-type HTA and its site-directed mutants were kinetically characterized with a panel of natural and alternative substrates to understand substrate specificity and identify critical residues for catalysis. Titration experiments using fluorescence quenching showed that both substrates─acetyl-CoA and l-homoserine─engage in a strong and weak binding interaction with HTA. Additionally, substrate inhibition by acetyl-CoA and product inhibition by CoA and O-acetyl-l-homoserine were proposed to form the basis of a feedback regulation mechanism. By furnishing key mechanistic and structural information, these studies provide a foundation for structure-based design efforts around this attractive Mtb target.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yahani P Jayasinghe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Neeraj Kumar Mishra
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tsung-Yun Wong
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph J Dalluge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Brewster JL, Pachl P, McKellar JLO, Selmer M, Squire CJ, Patrick WM. Structures and kinetics of Thermotoga maritima MetY reveal new insights into the predominant sulfurylation enzyme of bacterial methionine biosynthesis. J Biol Chem 2021; 296:100797. [PMID: 34019879 PMCID: PMC8191291 DOI: 10.1016/j.jbc.2021.100797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree. In this pathway, most bacteria use an O-acetylhomoserine aminocarboxypropyltransferase (MetY) to catalyze the formation of homocysteine from O-acetylhomoserine and bisulfide. Despite the widespread distribution of MetY, this pyridoxal 5'-phosphate-dependent enzyme remains comparatively understudied. To address this knowledge gap, we have characterized the MetY from Thermotoga maritima (TmMetY). At its optimal temperature of 70 °C, TmMetY has a turnover number (apparent kcat = 900 s-1) that is 10- to 700-fold higher than the three other MetY enzymes for which data are available. We also present crystal structures of TmMetY in the internal aldimine form and, fortuitously, with a β,γ-unsaturated ketimine reaction intermediate. This intermediate is identical to that found in the catalytic cycle of cystathionine γ-synthase (MetB), which is a homologous enzyme from the trans-sulfurylation pathway. By comparing the TmMetY and MetB structures, we have identified Arg270 as a critical determinant of specificity. It helps to wall off the active site of TmMetY, disfavoring the binding of the first MetB substrate, O-succinylhomoserine. It also ensures a strict specificity for bisulfide as the second substrate of MetY by occluding the larger MetB substrate, cysteine. Overall, this work illuminates the subtle structural mechanisms by which homologous pyridoxal 5'-phosphate-dependent enzymes can effect different catalytic, and therefore metabolic, outcomes.
Collapse
Affiliation(s)
- Jodi L Brewster
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Wayne M Patrick
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
7
|
Bastard K, Perret A, Mariage A, Bessonnet T, Pinet-Turpault A, Petit JL, Darii E, Bazire P, Vergne-Vaxelaire C, Brewee C, Debard A, Pellouin V, Besnard-Gonnet M, Artiguenave F, Médigue C, Vallenet D, Danchin A, Zaparucha A, Weissenbach J, Salanoubat M, de Berardinis V. Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nat Chem Biol 2017; 13:858-866. [PMID: 28581482 DOI: 10.1038/nchembio.2397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
Abstract
Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.
Collapse
Affiliation(s)
- Karine Bastard
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Alain Perret
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Aline Mariage
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Thomas Bessonnet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Agnès Pinet-Turpault
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Jean-Louis Petit
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Ekaterina Darii
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Pascal Bazire
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Carine Vergne-Vaxelaire
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Clémence Brewee
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Adrien Debard
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Virginie Pellouin
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Marielle Besnard-Gonnet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | | | - Claudine Médigue
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - David Vallenet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Antoine Danchin
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Anne Zaparucha
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Jean Weissenbach
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Marcel Salanoubat
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Véronique de Berardinis
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| |
Collapse
|