1
|
MacLean A, Legendre F, Appanna VD. The tricarboxylic acid (TCA) cycle: a malleable metabolic network to counter cellular stress. Crit Rev Biochem Mol Biol 2023; 58:81-97. [PMID: 37125817 DOI: 10.1080/10409238.2023.2201945] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.
Collapse
Affiliation(s)
- Alex MacLean
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| | - Felix Legendre
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| | - Vasu D Appanna
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| |
Collapse
|
2
|
Sartori DR, Miñán AG, Gonzalez MC, Fernández Lorenzo de Mele MA. Different Impact of Suspended Al 2O 3 Nanoparticles on Microbial Communities: Formation of 2D-Networks (Without Humic Acids) or 3D-Colonies (With Humic Acids). MICROBIAL ECOLOGY 2023; 85:137-145. [PMID: 35066616 DOI: 10.1007/s00248-022-01961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The use of metal-based and, particularly, Al2O3 nanoparticles (Al2O3-NP) for diverse purposes is exponentially growing. However, the growth of such promissory market is not accompanied by a parallel extensive investigation related to the impact of this pollution on groundwater and biological systems. Pseudomonas species, ubiquitous, environmentally critical microbes, frequently respond to stress conditions with diverse strategies that generally include extracellular polymeric substances (EPS) formation. The aim of this study is to report that changes in the aqueous environment, particularly, the addition of Al2O3-NP without and with humic acids, induce different adaptive strategies of Pseudomonas aeruginosa early biofilms. To this purpose, early biofilms were incubated in diluted culture media without (control) and with Al2O3-NP, and with humic acids (HA-control, HA-Al2O3-NP) for 24 h. 3D colonies with EPS strings and isolated bacteria in their surroundings were detected in the control biofilms. Unlikely, an unusual adaptive behaviour was developed in the presence of Al2O3-NP. Bacteria opt to disassemble the 3D arrangements and to implement a 2D network promoting morphological and size changes of bacterial cells (small coccoid shapes). Remarkably, this strategy allows their temporarily non-EPS-depending survival without decreasing the number of cells. This behaviour was not observed with ZnO-NP, HA-Al2O3-NP, or HA-ZnO-NP. Physicochemical analysis revealed that HA were adsorbed on Al2O3-NP and promoted the Al(III) ions complexation. This supports the hypothesis that the reduction of toxicity of Al ions and the 3D colony formation in the presence of HA-Al2O3-NP is promoted by the complexation of the metal ions with HA components.
Collapse
Affiliation(s)
- Damián Rodríguez Sartori
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), C.C. 16 Suc. 4, 1900, La Plata, Argentina
| | - Alejandro G Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), C.C. 16 Suc. 4, 1900, La Plata, Argentina
| | - Mónica C Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), C.C. 16 Suc. 4, 1900, La Plata, Argentina
| | - Mónica A Fernández Lorenzo de Mele
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), C.C. 16 Suc. 4, 1900, La Plata, Argentina.
- Facultad de Ingeniería, UNLP, 1900, La Plata, Argentina.
| |
Collapse
|
3
|
Cheng Z, Shi C, Gao X, Wang X, Kan G. Biochemical and Metabolomic Responses of Antarctic Bacterium Planococcus sp. O5 Induced by Copper Ion. TOXICS 2022; 10:toxics10060302. [PMID: 35736910 PMCID: PMC9230899 DOI: 10.3390/toxics10060302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023]
Abstract
Heavy metal pollution in the Antarctic has gone beyond our imagination. Copper toxicity is a selective pressure on Planococcus sp. O5. We observed relatively broad tolerance in the polar bacterium. The heavy metal resistance pattern is Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+. In the study, we combined biochemical and metabolomics approaches to investigate the Cu2+ adaptation mechanisms of the Antarctic bacterium. Biochemical analysis revealed that copper treatment elevated the activity of antioxidants and enzymes, maintaining the bacterial redox state balance and normal cell division and growth. Metabolomics analysis demonstrated that fatty acids, amino acids, and carbohydrates played dominant roles in copper stress adaptation. The findings suggested that the adaptive mechanisms of strain O5 to copper stress included protein synthesis and repair, accumulation of organic permeable substances, up-regulation of energy metabolism, and the formation of fatty acids.
Collapse
|
4
|
MacLean A, Legendre F, Tharmalingam S, Appanna VD. Phosphate stress triggers the conversion of glycerol into l-carnitine in Pseudomonas fluorescens. Microbiol Res 2021; 253:126865. [PMID: 34562839 DOI: 10.1016/j.micres.2021.126865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022]
Abstract
Glycerol, a by-product of the biofuel industry is transformed into l-carnitine when the soil microbe Pseudomonas fluorescens is cultured in a phosphate-limited mineral medium (LP). Although the biomass yield was similar to that recorded in phosphate-sufficient cultures (HP), the rate of growth was slower. Phosphate was completely consumed in the LP cultures while in the HP media, approximately 35 % of the initial phosphate was detected at stationary phase of growth. The enhanced production of α-ketoglutarate (KG) in HP cultures supplemented with manganese was recently reported (Alhasawi et al., 2017). l-carnitine appeared to be a prominent metabolite in the spent fluid while the soluble cellular-free extract was characterized with peaks attributable to lysine, γ-butyrobetaine (GB), acetate and succinate in the LP cultures. Upon incubation with glycerol and NH4Cl, the resting cells readily secreted l-carnitine and revealed the presence of such precursors like GB, lysine and methionine involved in the synthesis of this trimethylated moiety. Functional proteomic studies of select enzymes participating in tricarboxylic acid cycle (TCA), oxidative phosphorylation (OP), glyoxylate cycle and l-carnitine synthesis revealed a major metabolic reconfiguration evoked by phosphate stress. While isocitrate dehydrogenase-NAD+ dependent (ICDH-NAD+) and Complex I were markedly diminished, the activities of γ-butyrobetaine aldehyde dehydrogenase (GBADH) and l-carnitine dehydrogenase (CDH) were enhanced. Real-time quantitative polymerase chain reaction (RT-qPCR) analyses pointed to an increase in transcripts of the enzymes γ-butyrobetaine dioxygenase (bbox1), S-adenosylmethionine synthase (metK) and l-carnitine dehydrogenase (lcdH). The l-carnitine/γ-butyrobetaine antiporter (caiT) was enhanced more than 400-fold in the LP cultures compared to the HP controls. This metabolic reprogramming modulated by phosphate deprivation may provide an effective technology to transform glycerol, an industrial waste into valuable l-carnitine.
Collapse
Affiliation(s)
- A MacLean
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - F Legendre
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - S Tharmalingam
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada; Northern Ontario School of Medicine, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - V D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada.
| |
Collapse
|
5
|
Legendre F, MacLean A, Appanna VP, Appanna VD. Biochemical pathways to α-ketoglutarate, a multi-faceted metabolite. World J Microbiol Biotechnol 2020; 36:123. [PMID: 32686016 DOI: 10.1007/s11274-020-02900-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022]
Abstract
α-Ketoglutarate (AKG) also known as 2-oxoglutarate is an essential metabolite in virtually all organisms as it participates in a variety of biological processes including anti-oxidative defence, energy production, signalling modules, and genetic modification. This keto-acid also possesses immense commercial value as it is utilized as a nutritional supplement, a therapeutic agent, and a precursor to a variety of value-added products such as ethylene and heterocyclic compounds. Hence, the generation of KG in a sustainable and environmentally-neutral manner is a major ongoing research endeavour. In this mini-review, the enzymatic systems and the metabolic networks mediating the synthesis of AKG will be described. The importance of such enzymes as isocitrate dehydrogenase (ICDH), glutamate dehydrogenase (GDH), succinate semialdehyde dehydrogenase (SSADH) and transaminases that directly contribute to the formation of KG will be emphasized. The efficacy of microbial systems in providing an effective platform to generate this moiety and the molecular strategies involving genetic manipulation, abiotic stress and nutrient supplementation that result in the optimal production of AKG will be evaluated. Microbial systems and their components acting via the metabolic networks and the resident enzymes are well poised to provide effective biotechnological tools that can supply renewable AKG globally.
Collapse
Affiliation(s)
- F Legendre
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - A MacLean
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - V P Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - V D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
6
|
MacLean A, Bley AM, Appanna VP, Appanna VD. Metabolic manipulation by Pseudomonas fluorescens: a powerful stratagem against oxidative and metal stress. J Med Microbiol 2020; 69:339-346. [PMID: 31961786 DOI: 10.1099/jmm.0.001139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metabolism is the foundation of all living organisms and is at the core of numerous if not all biological processes. The ability of an organism to modulate its metabolism is a central characteristic needed to proliferate, to be dormant and to survive any assault. Pseudomonas fluorescens is bestowed with a uniquely versatile metabolic framework that enables the microbe to adapt to a wide range of conditions including disparate nutrients and toxins. In this mini-review we elaborate on the various metabolic reconfigurations evoked by this microbial system to combat reactive oxygen/nitrogen species and metal stress. The fine-tuning of the NADH/NADPH homeostasis coupled with the production of α-keto-acids and ATP allows for the maintenance of a reductive intracellular milieu. The metabolic networks propelling the synthesis of metabolites like oxalate and aspartate are critical to keep toxic metals at bay. The biochemical processes resulting from these defensive mechanisms provide molecular clues to thwart infectious microbes and reveal elegant pathways to generate value-added products.
Collapse
Affiliation(s)
- Alex MacLean
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Anondo Michel Bley
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Varun P Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Vasu D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| |
Collapse
|
7
|
Alhasawi AA, Thomas SC, Tharmalingam S, Legendre F, Appanna VD. Isocitrate Lyase and Succinate Semialdehyde Dehydrogenase Mediate the Synthesis of α-Ketoglutarate in Pseudomonas fluorescens. Front Microbiol 2019; 10:1929. [PMID: 31507554 PMCID: PMC6716453 DOI: 10.3389/fmicb.2019.01929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023] Open
Abstract
Glycerol is an important by-product of the biodiesel industry and its transformation into value-added products like keto acids is being actively pursued in order to improve the efficacy of this renewable energy sector. Here, we report that the enhanced production of α-ketoglutarate (KG) effected by Pseudomonas fluorescens in a mineral medium supplemented with manganese (Mn) is propelled by the increased activities of succinate semialdehyde dehydrogenase (SSADH), γ-aminobutyric acid aminotransaminase (GABAT), and isocitrate lyase (ICL). The latter generates glyoxylate and succinate two key metabolites involved in this process. Fumarate reductase (FRD) also aids in augmenting the pool of succinate, a precursor of succinate semialdehyde (SSA). The latter is then carboxylated to KG with the assistance of α-ketoglutarate decarboxylase (KDC). These enzymes work in tandem to ensure copious secretion of the keto acid. When incubated with glycerol in the presence of bicarbonate (HCO3−), cell-free extracts readily produce KG with a metabolite fingerprint attributed to glutamate, γ-aminobutyric acid (GABA), succinate and succinate semialdehyde. Further targeted metabolomic and functional proteomic studies with high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and gel electrophoresis techniques provided molecular insights into this KG-generating machinery. Real-time quantitative polymerase chain reaction (RT-qPCR) analyses revealed the transcripts responsible for ICL and SSADH were elevated in the Mn-supplemented cultures. This hitherto unreported metabolic network where ICL and SSADH orchestrate the enhanced production of KG from glycerol, provides an elegant means of converting an industrial waste into a keto acid with wide-ranging application in the medical, cosmetic, and chemical sectors.
Collapse
Affiliation(s)
- Azhar A Alhasawi
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Sean C Thomas
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Sujeethar Tharmalingam
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada.,Department of Biology, Laurentian University, Sudbury, ON, Canada.,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.,Northern Ontario School of Medicine, Laurentian University, Sudbury, ON, Canada
| | - Felix Legendre
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Vasu D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
8
|
Barra PJ, Viscardi S, Jorquera MA, Duran PA, Valentine AJ, de la Luz Mora M. Understanding the Strategies to Overcome Phosphorus-Deficiency and Aluminum-Toxicity by Ryegrass Endophytic and Rhizosphere Phosphobacteria. Front Microbiol 2018; 9:1155. [PMID: 29910787 PMCID: PMC5992465 DOI: 10.3389/fmicb.2018.01155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022] Open
Abstract
Phosphobacteria, secreting organic acids and phosphatases, usually favor plant performance in acidic soils by increasing phosphorus (P) availability and aluminum (Al) complexing. However, it is not well-known how P-deficiency and Al-toxicity affect the phosphobacteria physiology. Since P and Al problems often co-occur in acidic soils, we have therefore proposed the evaluation of the single and combined effects of P-deficiency and Al-toxicity on growth, organic acids secretion, malate dehydrogenase (mdh) gene expression, and phosphatase activity of five Al-tolerant phosphobacteria previously isolated from ryegrass. These phosphobacteria were identified as Klebsiella sp. RC3, Stenotrophomona sp. RC5, Klebsiella sp. RCJ4, Serratia sp. RCJ6, and Enterobacter sp. RJAL6. The strains were cultivated in mineral media modified to obtain (i) high P in absence of Al–toxicity, (ii) high P in presence of Al–toxicity, (iii) low P in absence of Al–toxicity, and (iv) low P in presence of Al–toxicity. High and low P were obtained by adding KH2PO4 at final concentration of 1.4 and 0.05 mM, respectively. To avoid Al precipitation, AlCl3 × 6H2O was previously complexed to citric acid (sole carbon source) in concentrations of 10 mM. The secreted organic acids were identified and quantified by HPLC, relative mdh gene expression was determined by qRT-PCR and phosphatase activity was colorimetrically determined using p-nitrophenyl phosphate as substrate. Our results revealed that although a higher secretion of all organic acids was achieved under P–deficiency, the patterns of organic acids secretion were variable and dependent on treatment and strain. The organic acid secretion is exacerbated when Al was added into media, particularly in the form of malic and citric acid. The mdh gene expression was significantly up–regulated by the strains RC3, RC5, and RCJ6 under P–deficiency and Al–toxicity. In general, Al–tolerant phosphobacteria under P deficiency increased both acid and alkaline phosphatase activity with respect to the control, which was deepened when Al was present. The knowledge of this bacterial behavior in vitro is important to understand and predict the behavior of phosphobacteria in vivo. This knowledge is essential to generate smart and efficient biofertilizers, based in Al–tolerant phosphobacteria which could be expansively used in acidic soils.
Collapse
Affiliation(s)
- Patricio J Barra
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Sharon Viscardi
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.,Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Milko A Jorquera
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Paola A Duran
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Alexander J Valentine
- Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
9
|
Polyphasic characterization of bacteria obtained from upland rice cultivated in Cerrado soil. Braz J Microbiol 2017; 49:20-28. [PMID: 28838812 PMCID: PMC5790645 DOI: 10.1016/j.bjm.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/14/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
This work aimed to characterize 20 isolates obtained from upland rice plants, based on phenotypic (morphology, enzymatic activity, inorganic phosphate solubilization, carbon source use, antagonism), genotypic assays (16S rRNA sequencing) and plant growth promotion. Results showed a great morphological, metabolic and genetic variability among bacterial isolates. All isolates showed positive activity for catalase and protease enzymes and, 90% of the isolates showed positive activity for amylase, catalase and, nitrogenase. All isolates were able to metabolize sucrose and malic acid in contrast with mannitol, which was metabolized only by one isolate. For the other carbon sources, we observed a great variability in its use by the isolates. Most isolates showed antibiosis against Rhizoctonia solani (75%) and Sclerotinia sclerotiorum (55%) and, 50% of them showed antibiosis against both pathogens. Six isolates showed simultaneous ability of antibiosis, inorganic phosphate solubilization and protease activity. Based on phylogenetic analysis of the 16S rRNA gene all the isolates belong to Bacillus genus. Under greenhouse conditions, two isolates (S4 and S22) improved to about 24%, 25%, 30% and 31% the Total N, leaf area, shoot dry weight and root dry weight, respectively, of rice plants, indicating that they should be tested for this ability under field conditions.
Collapse
|
10
|
Aldarini N, Alhasawi AA, Thomas SC, Appanna VD. The role of glutamine synthetase in energy production and glutamine metabolism during oxidative stress. Antonie van Leeuwenhoek 2017; 110:629-639. [PMID: 28097538 DOI: 10.1007/s10482-017-0829-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022]
Abstract
Oxidative stress is known to severely impede aerobic adenosine triphosphate (ATP) synthesis. However, the metabolically-versatile Pseudomonas fluorescens survives this challenge by invoking alternative ATP-generating networks. When grown in a medium with glutamine as the sole organic nutrient in the presence of H2O2, the microbe utilizes glutamine synthetase (GS) to modulate its energy budget. The activity of this enzyme that mediates the release of energy stored in glutamine was sharply increased in the stressed cells compared to the controls. The enhanced activities of such enzymes as acetate kinase, adenylate kinase and nucleotide diphosphate kinase ensured the efficacy of this ATP producing-machine by transferring the high energy phosphate. The elevated amounts of phosphoenol pyruvate carboxylase and pyruvate orthophosphate dikinase recorded in the H2O2 exposed cells provided another route to ATP independent of the reduction of O2. This is the first demonstration of a metabolic pathway involving GS dedicated to ATP synthesis. The phospho-transfer network that is pivotal to the survival of the microorganism under oxidative stress may reveal therapeutic targets against infectious microbes reliant on glutamine for their proliferation.
Collapse
Affiliation(s)
- Nohaiah Aldarini
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Azhar A Alhasawi
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Sean C Thomas
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Vasu D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
11
|
Alhasawi A, Faculty of Science and Engineering, Laurentian University, Sudbury, ON, Canada, D. Appanna V. Enhanced extracellular chitinase production in <em>Pseudomonas fluorescens</em>: biotechnological implications. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.3.366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Hu ZM, Zhao XQ, Bao XM, Wang C, Wang W, Zheng L, Lan P, Shen RF. A potential contribution of the less negatively charged cell wall to the high aluminum tolerance of Rhodotorula taiwanensis RS1. Yeast 2016; 33:575-586. [PMID: 27497064 DOI: 10.1002/yea.3182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 07/24/2016] [Accepted: 07/30/2016] [Indexed: 11/09/2022] Open
Abstract
Rhodotorula taiwanensis RS1 (Rt) is a high-aluminum (Al)-tolerant yeast that can survive Al at concentrations up to 200 mM. In this study, we compared Rt with an Al-sensitive congeneric strain, R. mucilaginosa AKU 4812 (Rm) and Al sensitive mutant 1 (alsm1) of Rt, to explore the Al tolerance mechanisms of Rt. The growth of Rm was completely inhibited by 1 mM Al, but that of Rt was not inhibited until Al concentration was more than 70 mM. The growth of alsm1 was inhibited much more by 70 mM and 100 mM Al than that of Rt. Compared with Rm cells, Rt cells accumulated less Al in the cell wall and cytoplasm. A time-course analysis showed that Al was absorbed by Rm cells much more rapidly than by Rt cells when exposed to the same Al concentration. Meanwhile, the Al content of alsm1 was higher than that of Rt. Although the cell wall of Rt was thicker than that of alsm1 and Rm under control and 0.1 mM Al, that of Rt was thinner than that of alsm1 under 70 mM Al despite that their cell walls were thickened. The alcian blue adsorption was lower and cell wall zeta-potential was higher in Rt and alsm1 than in Rm, indicating a less negative charge of cell wall of Rt and alsm1 than that of Rm. Taken together, the less negatively charged cell wall of Rt may restrict the adsorption of cationic Al in cells, potentially contributing to its high Al tolerance. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhen Min Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xue Min Bao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
13
|
Thomas SC, Alhasawi A, Auger C, Omri A, Appanna VD. The role of formate in combatting oxidative stress. Antonie van Leeuwenhoek 2015; 109:263-71. [PMID: 26626058 DOI: 10.1007/s10482-015-0629-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/28/2015] [Indexed: 01/14/2023]
Abstract
The interaction of keto-acids with reactive oxygen species (ROS) is known to produce the corresponding carboxylic acid with the concomitant formation of CO2. Formate is liberated when the keto-acid glyoxylate neutralizes ROS. Here we report on how formate is involved in combating oxidative stress in the nutritionally-versatile Pseudomonas fluorescens. When the microbe was subjected to hydrogen peroxide (H2O2), the levels of formate were 8 and two-fold higher in the spent fluid and the soluble cell-free extracts obtained in the stressed cultures compared to the controls respectively. Formate was subsequently utilized as a reducing force to generate NADPH and succinate. The former is mediated by formate dehydrogenase (FDH-NADP), whose activity was enhanced in the stressed cells. Fumarate reductase that catalyzes the conversion of fumarate into succinate was also markedly increased in the stressed cells. These enzymes were modulated by H2O2. While the stressed whole cells produced copious amounts of formate in the presence of glycine, the cell-free extracts synthesized ATP and succinate from formate. Although the exact role of formate in anti-oxidative defence has to await further investigation, the data in this report suggest that this carboxylic acid may be a potent reductive force against oxidative stress.
Collapse
Affiliation(s)
- Sean C Thomas
- Faculty of Science, Engineering and Architecture, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Azhar Alhasawi
- Faculty of Science, Engineering and Architecture, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Christopher Auger
- Faculty of Science, Engineering and Architecture, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Abdelwahab Omri
- Faculty of Science, Engineering and Architecture, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Vasu D Appanna
- Faculty of Science, Engineering and Architecture, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
14
|
Abd El-Moneim D, Contreras R, Silva-Navas J, Gallego FJ, Figueiras AM, Benito C. On the consequences of aluminium stress in rye: repression of two mitochondrial malate dehydrogenase mRNAs. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:123-33. [PMID: 24946232 DOI: 10.1111/plb.12219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/29/2014] [Indexed: 05/23/2023]
Abstract
Plants have developed several external and internal aluminium (Al) tolerance mechanisms. The external mechanism best characterised is the exudation of organic acids induced by Al. Rye (Secale cereale L.), one of the most Al-tolerant cereal crops, secretes both citrate and malate from its roots in response to Al. However, the role of malate dehydrogenase (MDH) genes in Al-induced stress has not been studied in rye. We have isolated the ScMDH1 and ScMDH2 genes, encoding two different mitochondrial MDH isozymes, in three Al-tolerant rye cultivars (Ailés, Imperial and Petkus) and one sensitive inbred rye line (Riodeva). These genes, which have seven exons and six introns, were located on the 1R (ScMDH1) and 3RL (ScMDH2) chromosomes. Exon 1 of ScMDH1 and exon 7 of ScMDH2 were the most variable among the different ryes. The hypothetical proteins encoded by these genes were classified as putative mitochondrial MDH isoforms. The phylogenetic relationships obtained using both cDNA and protein sequences indicated that the ScMDH1 and ScMDH2 proteins are orthologous to mitochondrial MDH1 and MDH2 proteins of different Poaceae species. The expression studies of the ScMDH1 and ScMDH2 genes indicate that it is more intense in roots than in leaves. Moreover, the amount of their corresponding mRNAs in roots from plants treated and not treated with Al was higher in the tolerant cultivar Petkus than in the sensitive inbred line Riodeva. In addition, ScMDH1 and ScMDH2 mRNA levels decreased in response to Al stress (repressive behaviour) in the roots of both the tolerant Petkus and the sensitive line Riodeva.
Collapse
Affiliation(s)
- D Abd El-Moneim
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
15
|
A. Lemire J, A. Demeter M, George I, Ceri H, J. Turner R. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.4.387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Wang C, Wang CY, Zhao XQ, Chen RF, Lan P, Shen RF. Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1969-75. [DOI: 10.1016/j.bbapap.2013.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 11/25/2022]
|
17
|
Li K, Pidatala RR, Ramakrishna W. Mutational, proteomic and metabolomic analysis of a plant growth promoting copper-resistant Pseudomonas spp. FEMS Microbiol Lett 2012; 335:140-8. [PMID: 22845850 DOI: 10.1111/j.1574-6968.2012.02646.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/14/2012] [Accepted: 07/25/2012] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas sp. TLC6-6.5-4 is a multiple metal resistant plant growth-promoting bacteria isolated from copper-contaminated lake sediments. In this study, a comprehensive analysis of genes involved in copper resistance was performed by generating a library of transposon (Tn5) mutants. Two copper-sensitive mutants with significant reduction in copper resistance were identified: CSM1, a mutant disrupted in trpA gene (tryptophan synthase alpha subunit), and CSM2, a mutant disrupted in clpA gene (ATP-dependent Clp protease). Proteomic and metabolomic analyses were performed to identify biochemical and molecular mechanisms involved in copper resistance using CSM2 due to its lower minimum inhibitory concentration compared with CSM1 and the wild type. Proteomic analysis revealed that disruption of Clp protease gene up-regulated molecular chaperones and down-regulated the expression of enzymes related to tRNA modification, whereas metabolomic analysis showed that amino acid and oligosaccharide transporters that are part of ATP-binding cassette (ABC) transporters pathways were down-regulated. Further, copper stress altered metabolic pathways including the tricarboxylic acid cycle, protein absorption and glyoxylate metabolism.
Collapse
Affiliation(s)
- Kefeng Li
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | | | | |
Collapse
|
18
|
Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H, Turner RJ, Weljie AM. Differences in metabolism between the biofilm and planktonic response to metal stress. J Proteome Res 2011; 10:3190-9. [PMID: 21561166 DOI: 10.1021/pr2002353] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bacterial biofilms are known to withstand the effects of toxic metals better than planktonic cultures of the same species. This phenomenon has been attributed to many features of the sessile lifestyle not present in free-swimming populations, but the contribution of intracellular metabolism has not been previously examined. Here, we use a combined GC-MS and (1)H NMR metabolomic approach to quantify whole-cell metabolism in biofilm and planktonic cultures of the multimetal resistant bacterium Pseudomonas fluorescens exposed to copper ions. Metabolic changes in response to metal exposure were found to be significantly different in biofilms compared to planktonic cultures. Planktonic metabolism indicated an oxidative stress response that was characterized by changes to the TCA cycle, glycolysis, pyruvate and nicotinate and niacotinamide metabolism. Similar metabolic changes were not observed in biofilms, which were instead dominated by shifts in exopolysaccharide related metabolism suggesting that metal stress in biofilms induces a protective response rather than the reactive changes observed for the planktonic cells. From these results, we conclude that differential metabolic shifts play a role in biofilm-specific multimetal resistance and tolerance. An altered metabolic response to metal toxicity represents a novel addition to a growing list of biofilm-specific mechanisms to resist environmental stress.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Metabolic networks to combat oxidative stress in Pseudomonas fluorescens. Antonie van Leeuwenhoek 2010; 99:433-42. [PMID: 21153706 DOI: 10.1007/s10482-010-9538-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/26/2010] [Indexed: 12/21/2022]
Abstract
Oxidative stress is an unavoidable peril that aerobic organisms have to confront. Thus, it is not surprising that intricate strategies are deployed in an effort to fend the dangers associated with living in an O(2) environment. In the classical models of anti-oxidative defense mechanisms, a variety of stratagems including the reactive oxygen species (ROS) scavenging systems, the NADPH-generating enzymes and the DNA repair machineries are highlighted. However, it is becoming increasingly clear that metabolism may be intimately involved in anti-oxidative defence. Recent data show that metabolic reprogramming plays a pivotal role in the survival of organisms exposed to oxidative stress. Here, we describe how Pseudomonas fluorescens, the metabolically-versatile soil microbe, manipulates its metabolic networks in an effort to counter oxidative stress. An intricate link between metabolism and anti-oxidative defense is presented. P. fluorescens reconfigures its metabolic processes in an effort to satisfy its need for NADPH during oxidative insult. Seemingly, disparate metabolic modules appear to partner together to concomitantly fine-tune the levels of the anti-oxidant NADPH and the pro-oxidant NADH. Central to this shift in the metabolic production of the pyridine nucleotides is the increase in NAD kinase with the concomitant decrease in NADP phosphatase. The tricarboxylic acid cycle is tweaked in an effort to limit the formation of NADH. This metabolic redox-balancing act appears to afford a potent tool against oxidative challenge and may be a more widespread ROS-combating tactic than hitherto recognized.
Collapse
|
20
|
Buch AD, Archana G, Kumar GN. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. MICROBIOLOGY-SGM 2009; 155:2620-2629. [PMID: 19443543 DOI: 10.1099/mic.0.028878-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Citric acid secretion by fluorescent pseudomonads has a distinct significance in microbial phosphate solubilization. The role of citrate synthase in citric acid biosynthesis and glucose catabolism in pseudomonads was investigated by overexpressing the Escherichia coli citrate synthase (gltA) gene in Pseudomonas fluorescens ATCC 13525. The resultant approximately 2-fold increase in citrate synthase activity in the gltA-overexpressing strain Pf(pAB7) enhanced the intracellular and extracellular citric acid yields during the stationary phase, by about 2- and 26-fold, respectively, as compared to the control, without affecting the growth rate, glucose depletion rate or biomass yield. Decreased glucose consumption was paralleled by increased gluconic acid production due to an increase in glucose dehydrogenase activity. While the extracellular acetic acid yield increased in Pf(pAB7), pyruvic acid secretion decreased, correlating with an increase in pyruvate carboxylase activity and suggesting an increased demand for the anabolic precursor oxaloacetate. Activities of two other key enzymes, glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase, remained unaltered, and the contribution of phosphoenolpyruvate carboxylase and isocitrate lyase to glucose catabolism was negligible. Strain Pf(pAB7) demonstrated an enhanced phosphate-solubilizing ability compared to the control. Co-expression of the Synechococcus elongatus PCC 6301 phosphoenolpyruvate carboxylase and E. coli gltA genes in P. fluorescens ATCC 13525, so as to supplement oxaloacetate for citrate biosynthesis, neither significantly affected citrate biosynthesis nor caused any change in the other physiological and biochemical parameters measured, despite approximately 1.3- and 5-fold increases in citrate synthase and phosphoenolpyruvate carboxylase activities, respectively. Thus, our results demonstrate that citrate synthase is rate-limiting in enhancing citrate biosynthesis in P. fluorescens ATCC 13525. Significantly low extracellular citrate levels as compared to the intracellular levels in Pf(pAB7) suggested a probable limitation of efficient citrate transport.
Collapse
Affiliation(s)
- Aditi D Buch
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, India
| | - G Archana
- Department of Microbiology and Biotechnology Center, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, India
| | - G Naresh Kumar
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, India
| |
Collapse
|
21
|
Alpha-ketoglutarate dehydrogenase and glutamate dehydrogenase work in tandem to modulate the antioxidant alpha-ketoglutarate during oxidative stress in Pseudomonas fluorescens. J Bacteriol 2009; 191:3804-10. [PMID: 19376872 DOI: 10.1128/jb.00046-09] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alpha-ketoglutarate (KG) is a crucial metabolite in all living organisms, as it participates in a variety of biochemical processes. We have previously shown that this keto acid is an antioxidant and plays a key role in the detoxification of reactive oxygen species (ROS). In an effort to further confirm this intriguing phenomenon, Pseudomonas fluorescens was exposed to menadione-containing media, with various amino acids as the sources of nitrogen. Here, we demonstrate that KG dehydrogenase (KGDH) and NAD-dependent glutamate dehydrogenase (GDH) work in tandem to modulate KG homeostasis. While KGDH was sharply decreased in cells challenged with menadione, GDH was markedly increased in cultures containing arginine (Arg), glutamate (Glu), and proline (Pro). When ammonium (NH(4)) was utilized as the nitrogen source, both KGDH and GDH levels were diminished. These enzymatic profiles were reversed when control cells were incubated in menadione media. (13)C nuclear magnetic resonance and high-performance liquid chromatography studies revealed how KG was utilized to eliminate ROS with the concomitant formation of succinate. The accumulation of KG in the menadione-treated cells was dependent on the redox status of the lipoic acid residue in KGDH. Indeed, the treatment of cellular extracts from the menadione-exposed cells with dithiothreitol, a reducing agent, partially restored the activity of KGDH. Taken together, these data reveal that KG is pivotal to the antioxidative defense strategy of P. fluorescens and also point to the ROS-sensing role for KGDH.
Collapse
|