1
|
Georgoulis A, Louka M, Mylonas S, Stavros P, Nounesis G, Vorgias CE. Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity. Extremophiles 2020; 24:293-306. [PMID: 31980943 DOI: 10.1007/s00792-020-01154-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Maria Louka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Stratos Mylonas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Philemon Stavros
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - George Nounesis
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece.
| |
Collapse
|
2
|
Hocher A, Rojec M, Swadling JB, Esin A, Warnecke T. The DNA-binding protein HTa from Thermoplasma acidophilum is an archaeal histone analog. eLife 2019; 8:52542. [PMID: 31710291 PMCID: PMC6877293 DOI: 10.7554/elife.52542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Histones are a principal constituent of chromatin in eukaryotes and fundamental to our understanding of eukaryotic gene regulation. In archaea, histones are widespread but not universal: several lineages have lost histone genes. What prompted or facilitated these losses and how archaea without histones organize their chromatin remains largely unknown. Here, we elucidate primary chromatin architecture in an archaeon without histones, Thermoplasma acidophilum, which harbors a HU family protein (HTa) that protects part of the genome from micrococcal nuclease digestion. Charting HTa-based chromatin architecture in vitro, in vivo and in an HTa-expressing E. coli strain, we present evidence that HTa is an archaeal histone analog. HTa preferentially binds to GC-rich sequences, exhibits invariant positioning throughout the growth cycle, and shows archaeal histone-like oligomerization behavior. Our results suggest that HTa, a DNA-binding protein of bacterial origin, has converged onto an architectural role filled by histones in other archaea.
Collapse
Affiliation(s)
- Antoine Hocher
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Maria Rojec
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Jacob B Swadling
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Alexander Esin
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
3
|
Loth K, Largillière J, Coste F, Culard F, Landon C, Castaing B, Delmas AF, Paquet F. New protein-DNA complexes in archaea: a small monomeric protein induces a sharp V-turn DNA structure. Sci Rep 2019; 9:14253. [PMID: 31582767 PMCID: PMC6776556 DOI: 10.1038/s41598-019-50211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
MC1, a monomeric nucleoid-associated protein (NAP), is structurally unrelated to other DNA-binding proteins. The protein participates in the genome organization of several Euryarchaea species through an atypical compaction mechanism. It is also involved in DNA transcription and cellular division through unknown mechanisms. We determined the 3D solution structure of a new DNA-protein complex formed by MC1 and a strongly distorted 15 base pairs DNA. While the protein just needs to adapt its conformation slightly, the DNA undergoes a dramatic curvature (the first two bend angles of 55° and 70°, respectively) and an impressive torsional stress (dihedral angle of 106°) due to several kinks upon binding of MC1 to its concave side. Thus, it adopts a V-turn structure. For longer DNAs, MC1 stabilizes multiple V-turn conformations in a flexible and dynamic manner. The existence of such V-turn conformations of the MC1-DNA complexes leads us to propose two binding modes of the protein, as a bender (primary binding mode) and as a wrapper (secondary binding mode). Moreover, it opens up new opportunities for studying and understanding the repair, replication and transcription molecular machineries of Archaea.
Collapse
Affiliation(s)
- Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France. .,UFR Collegium Sciences et Techniques, Université d'Orléans, rue de Chartres, 45100, Orléans, France.
| | - Justine Largillière
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Franck Coste
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Céline Landon
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Agnès F Delmas
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France.
| |
Collapse
|
4
|
Han H, Yang J, Chen W, Li Q, Yang Y, Li Q. A comprehensive review on histone-mediated transfection for gene therapy. Biotechnol Adv 2018; 37:132-144. [PMID: 30472306 DOI: 10.1016/j.biotechadv.2018.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023]
Abstract
Histone has been considered to be an effective carrier in non-viral gene delivery due to its unique properties such as efficient DNA binding ability, direct translocation to cytoplasm and favorable nuclear localization ability. Meanwhile, the rapid development of genetic engineering techniques could facilitate the construction of multifunctional fusion proteins based on histone molecules to further improve the transfection efficiency. Remarkably, histone has been demonstrated to achieve gene transfection in a synergistic manner with cationic polymers, affording to a significant improvement of transfection efficiency. In the review, we highlighted the recent developments and future trends in gene delivery mediated by histones or histone-based fusion proteins/peptides. This review also discussed the mechanism of histone-mediated gene transfection and provided an outlook for future therapeutic opportunities in the viewpoint of transfection efficacy and biosafety.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Timofeev VI, Altukhov DA, Talyzina AA, Agapova YK, Vlaskina AV, Korzhenevskiy DA, Kleymenov SY, Bocharov EV, Rakitina TV. Structural plasticity and thermal stability of the histone-like protein from Spiroplasma melliferum are due to phenylalanine insertions into the conservative scaffold. J Biomol Struct Dyn 2017; 36:4392-4404. [PMID: 29283021 DOI: 10.1080/07391102.2017.1417162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The histone-like (HU) protein is one of the major nucleoid-associated proteins of the bacterial nucleoid, which shares high sequence and structural similarity with IHF but differs from the latter in DNA-specificity. Here, we perform an analysis of structural-dynamic properties of HU protein from Spiroplasma melliferum and compare its behavior in solution to that of another mycoplasmal HU from Mycoplasma gallisepticum. The high-resolution heteronuclear NMR spectroscopy was coupled with molecular-dynamics study and comparative analysis of thermal denaturation of both mycoplasmal HU proteins. We suggest that stacking interactions in two aromatic clusters in the HUSpm dimeric interface determine not only high thermal stability of the protein, but also its structural plasticity experimentally observed as slow conformational exchange. One of these two centers of stacking interactions is highly conserved among the known HU and IHF proteins. Second aromatic core described recently in IHFs and IHF-like proteins is considered as a discriminating feature of IHFs. We performed an electromobility shift assay to confirm high affinities of HUSpm to both normal and distorted dsDNA, which are the characteristics of HU protein. MD simulations of HUSpm with alanine mutations of the residues forming the non-conserved aromatic cluster demonstrate its role in dimer stabilization, as both partial and complete distortion of the cluster enhances local flexibility of HUSpm.
Collapse
Affiliation(s)
- Vladimir I Timofeev
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,b Federal Scientific Research Center 'Crystallography and Photonics' RAS , Leninskii pr., 59, Moscow 119333 , Russian Federation
| | - Dmitry A Altukhov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna A Talyzina
- c Moscow Institute of Physics and Technology , Institutskiy per., 9, Dolgoprudny, Moscow Region 141700 , Russian Federation
| | - Yulia K Agapova
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna V Vlaskina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Dmitry A Korzhenevskiy
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Sergey Yu Kleymenov
- d Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Leninsky Prospekt. 33, bld. 2, Moscow 119071 , Russian Federation.,e Russian Academy of Sciences, Koltzov Institute of Developmental Biology , ul. Vavilova, 26, Moscow 119334 , Russian Federation
| | - Eduard V Bocharov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,f Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| | - Tatiana V Rakitina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,f Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| |
Collapse
|
6
|
Burroughs AM, Kaur G, Zhang D, Aravind L. Novel clades of the HU/IHF superfamily point to unexpected roles in the eukaryotic centrosome, chromosome partitioning, and biologic conflicts. Cell Cycle 2017; 16:1093-1103. [PMID: 28441108 PMCID: PMC5499826 DOI: 10.1080/15384101.2017.1315494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The HU superfamily of proteins, with a unique DNA-binding mode, has been extensively studied as the primary chromosome-packaging protein of the bacterial superkingdom. Representatives also play a role in DNA-structuring during recombination events and in eukaryotic organellar genome maintenance. However, beyond these well-studied roles, little is understood of the functional diversification of this large superfamily. Using sensitive sequence and structure analysis methods we identify multiple novel clades of the HU superfamily. We present evidence that a novel eukaryotic clade prototyped by the human CCDC81 protein acquired roles beyond DNA-binding, likely in protein-protein interaction in centrosome organization and as a potential cargo-binding protein in conjunction with Dynein-VII. We also show that these eukaryotic versions were acquired via an early lateral transfer from bacteroidetes, where we predict a role in chromosome partition. This likely happened before the last eukaryotic common ancestor, pointing to potential endosymbiont contributions beyond that of the mitochondrial progenitor. Further, we show that the dramatic lineage-specific expansion of this domain in the bacteroidetes lineage primarily is linked to a functional shift related to potential recognition and preemption of genome invasive entities such as mobile elements. Remarkably, the CCDC81 clade has undergone a similar massive lineage-specific expansion within the archosaurian lineage in birds, suggesting a possible use of the HU superfamily in a similar capacity in recognition of non-self molecules even in this case.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - Gurmeet Kaur
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - Dapeng Zhang
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - L Aravind
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
7
|
Structural basis of the high thermal stability of the histone-like HU protein from the mollicute Spiroplasma melliferum KC3. Sci Rep 2016; 6:36366. [PMID: 27808161 PMCID: PMC5093408 DOI: 10.1038/srep36366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023] Open
Abstract
The three-dimensional structure of the histone-like HU protein from the mycoplasma Spiroplasma melliferum KC3 (HUSpm) was determined at 1.4 Å resolution, and the thermal stability of the protein was evaluated by differential scanning calorimetry. A detailed analysis revealed that the three-dimensional structure of the HUSpm dimer is similar to that of its bacterial homologues but is characterized by stronger hydrophobic interactions at the dimer interface. This HUSpm dimer interface lacks salt bridges but is stabilized by a larger number of hydrogen bonds. According to the DSC data, HUSpm has a high denaturation temperature, comparable to that of HU proteins from thermophilic bacteria. To elucidate the structural basis of HUSpm thermal stability, we identified amino acid residues potentially responsible for this property and modified them by site-directed mutagenesis. A comparative analysis of the melting curves of mutant and wild-type HUSpm revealed the motifs that play a key role in protein thermal stability: non-conserved phenylalanine residues in the hydrophobic core, an additional hydrophobic loop at the N-terminal region of the protein, the absence of the internal cavity present at the dimer interface of some HU proteins, and the presence of additional hydrogen bonds between the monomers that are missing in homologous proteins.
Collapse
|
8
|
HU histone-like DNA-binding protein from Thermus thermophilus: structural and evolutionary analyses. Extremophiles 2016; 20:695-709. [DOI: 10.1007/s00792-016-0859-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
|
9
|
Boyko K, Gorbacheva M, Rakitina T, Korzhenevskiy D, Vanyushkina A, Kamashev D, Lipkin A, Popov V. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of the histone-like HU protein from Spiroplasma melliferum KC3. Acta Crystallogr F Struct Biol Commun 2015; 71:24-7. [PMID: 25615963 PMCID: PMC4304742 DOI: 10.1107/s2053230x14025333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
HU proteins belong to the nucleoid-associated proteins (NAPs) that are involved in vital processes such as DNA compaction and reparation, gene transcription etc. No data are available on the structures of HU proteins from mycoplasmas. To this end, the HU protein from the parasitic mycoplasma Spiroplasma melliferum KC3 was cloned, overexpressed in Escherichia coli and purified to homogeneity. Prismatic crystals of the protein were obtained by the vapour-diffusion technique at 4°C. The crystals diffracted to 1.36 Å resolution (the best resolution ever obtained for a HU protein). The diffraction data were indexed in space group C2 and the structure of the protein was solved by the molecular-replacement method with one monomer per asymmetric unit.
Collapse
Affiliation(s)
- Konstantin Boyko
- Laboratory of Enzyme Engineering, A. N. Bach Institute of Biochemistry, RAS, Leninsky Prospekt 33/2, Moscow 119071, Russian Federation
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| | - Marina Gorbacheva
- Laboratory of Enzyme Engineering, A. N. Bach Institute of Biochemistry, RAS, Leninsky Prospekt 33/2, Moscow 119071, Russian Federation
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| | - Tatiana Rakitina
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
- Laboratory of Hormonal Regulation Proteins, Institute of Bioorganic Chemistry, RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - Dmitry Korzhenevskiy
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| | - Anna Vanyushkina
- SRI of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation
| | - Dmitry Kamashev
- SRI of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation
| | - Alexey Lipkin
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| | - Vladimir Popov
- Laboratory of Enzyme Engineering, A. N. Bach Institute of Biochemistry, RAS, Leninsky Prospekt 33/2, Moscow 119071, Russian Federation
- The Protein Factory, NBICS Center, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| |
Collapse
|
10
|
Prohaska SJ, Stadler PF, Krakauer DC. Innovation in gene regulation: The case of chromatin computation. J Theor Biol 2010; 265:27-44. [DOI: 10.1016/j.jtbi.2010.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/06/2010] [Indexed: 11/17/2022]
|