1
|
De Luca G, Barakat M, Verméglio A, Achouak W, Heulin T. The Bacterial Genus Ramlibacter: Betaproteobacteria Capable of Surviving in Oligotrophic Environments Thanks to Several Shared Genetic Adaptation Traits. Environ Microbiol 2025; 27:e70059. [PMID: 39987915 PMCID: PMC11847603 DOI: 10.1111/1462-2920.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/25/2025]
Abstract
Ramlibacter tataouinensis, the type species of the genus Ramlibacter, is renowned for its ability to thrive in hot, arid and nutrient-poor desert soils. To investigate whether its adaptive properties are shared across all 20 currently described Ramlibacter species found in diverse terrestrial and aquatic habitats worldwide, we conducted a comprehensive analysis of 16S rRNA sequences and genomic information available from the literature. Our study encompassed approximately 40 deposited genomes, allowing us to propose a genomic phylogeny that aligns with the 16S rRNA phylogeny. Our findings reveal several conserved features across the genus Ramlibacter. This includes the presence of light sensors, environmental sensing networks, organic carbon and phosphate acquisition systems and the ability to store carbon and energy in the form of polyhydroxyalkanoate or polyphosphate granules. These shared traits rationalise the widespread distribution of Ramlibacter in oligotrophic terrestrial and aquatic environments. They also explain the genus' ability to withstand desiccation, endure extended periods of starvation, and survive in nutrient-depleted conditions. Notably, certain adaptive features are further enhanced in several species by their pleiomorphism and ability to form cysts. Overall, our study not only highlights the ecological adaptations of Ramlibacter species but also extends our understanding of microbial ecology in oligotrophic environments.
Collapse
Affiliation(s)
- Gilles De Luca
- Aix Marseille UnivCEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE)Saint‐Paul‐Lez‐DuranceFrance
| | - Mohamed Barakat
- Aix Marseille UnivCEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE)Saint‐Paul‐Lez‐DuranceFrance
| | - André Verméglio
- Aix Marseille UnivCEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE)Saint‐Paul‐Lez‐DuranceFrance
| | - Wafa Achouak
- Aix Marseille UnivCEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE)Saint‐Paul‐Lez‐DuranceFrance
| | - Thierry Heulin
- Aix Marseille UnivCEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE)Saint‐Paul‐Lez‐DuranceFrance
| |
Collapse
|
2
|
Yu F, Luo W, Xie W, Li Y, Liu Y, Ye X, Peng T, Wang H, Huang T, Hu Z. The effects of long-term hexabromocyclododecanes contamination on microbial communities in the microcosms. CHEMOSPHERE 2023; 325:138412. [PMID: 36925001 DOI: 10.1016/j.chemosphere.2023.138412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of microbial community to the long-term contamination of hexabromocyclododecanes (HBCDs) has not been well studied. Our previous study found that the HBCDs contamination in the microcosms constructed of sediments from two different mangrove forests in 8 months resulted in serious acidification (pH2-3). This study reanalyzed previous sequencing data and compared them with data after 20 months to investigate the adaptive properties of microbial communities in the stress of HBCDs and acidification. It hypothesized that the reassembly was based on the fitness of taxa. The results indicated that eukaryotes and fungi might have better adaptive capacity to these deteriorated habitats. Eukaryotic taxa Eufallia and Syncystis, and fungal taxa Wickerhamomyces were only detected after 20 months of contamination. Moreover, eukaryotic taxa Caloneis and Nitzschia, and fungal taxa Talaromyces were dominant in most of microbial communities (14.467-95.941%). The functional compositions were sediment-dependent and more divergent than community reassemblies. Network and co-occurrence analysis suggested that acidophiles such as Acidisoma and Acidiphilium were gaining more positive relations in the long-term stress. The acidophilic taxa and genes involved in resistance to the acidification and toxicity of HBCDs were enriched, for example, bacteria Acidisoma and Acidiphilium, archaea Thermogymnomonas, and eukaryotes Nitzschia, and genes kdpC, odc1, polA, gst, and sod-2. These genes involved in oxidative stress response, energy metabolism, DNA damage repair, potassium transportation, and decarboxylation. It suggested that the microbial communities might cope with the stress from HBCDs and acidification via multiple pathways. The present research shed light on the evolution of microbial communities under the long-term stress of HBCDs contamination and acidification.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China.
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Prosenkov A, Cagnon C, Gallego JLR, Pelaez AI. The microbiome of a brownfield highly polluted with mercury and arsenic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121305. [PMID: 36804142 DOI: 10.1016/j.envpol.2023.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Abandoned brownfields represent a challenge for their recovery. To apply sustainable remediation technologies, such as bioremediation or phytoremediation, indigenous microorganisms are essential agents since they are adapted to the ecology of the soil. Better understanding of microbial communities inhabiting those soils, identification of microorganisms that drive detoxification process and recognising their needs and interactions will significantly improve the outcome of the remediation. With this in mind we have carried out a detailed metagenomic analysis to explore the taxonomic and functional diversity of the prokaryotic and eukaryotic microbial communities in soils, several mineralogically distinct types of pyrometallurgic waste, and groundwater sediments of a former mercury mining and metallurgy site which harbour very high levels of arsenic and mercury pollution. Prokaryotic and eukaryotic communities were identified, which turned out to be more diverse in the surrounding contaminated soils compared to the pyrometallurgic waste. The highest diversity loss was observed in two environments most contaminated with mercury and arsenic (stupp, a solid mercury condenser residue and arsenic-rich soot from arsenic condensers). Interestingly, microbial communities in the stupp were dominated by an overwhelming majority of archaea of the phylum Crenarchaeota, while Ascomycota and Basidiomycota fungi comprised the fungal communities of both stump and soot, results that show the impressive ability of these previously unreported microorganisms to colonize these extreme brownfield environments. Functional predictions for mercury and arsenic resistance/detoxification genes show their increase in environments with higher levels of pollution. Our work establishes the bases to design sustainable remediation methods and, equally important, to study in depth the genetic and functional mechanisms that enable the subsistence of microbial populations in these extremely selective environments.
Collapse
Affiliation(s)
- Alexander Prosenkov
- Area of Microbiology, Department of Functional Biology, Environmental Biogeochemistry and Raw Materials Group and IUBA, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - José Luis R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Asturias, Spain
| | - Ana Isabel Pelaez
- Area of Microbiology, Department of Functional Biology, Environmental Biogeochemistry and Raw Materials Group and IUBA, University of Oviedo, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
4
|
Moreira VA, Cravo-Laureau C, Borges de Carvalho AC, Baldy A, Bidone ED, Sabadini-Santos E, Duran R. Microbial community metabolic alterations and resistance to metals and antibiotics driven by chronic exposition to multiple pollutants in a highly impacted tropical coastal bay. CHEMOSPHERE 2022; 307:135928. [PMID: 35944693 DOI: 10.1016/j.chemosphere.2022.135928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/23/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities from Sepetiba Bay (SB, Rio de Janeiro, Brazil), characterized by 16S rRNA gene (V4-V5 region) sequencing analysis, were found to be correlated with the metallic contamination factor and the Quality Ratio (QR) index. Consistently, the predicted function of microbial communities, obtained with Tax4Fun2, showed that the functional patterns in SB internal sector under the highest anthropogenic pressure were different from that observed in the external sector with the lowest contamination level. Signal transduction, cellular community, membrane transport, and energy metabolism were among the KEGG pathways favored by metallic contamination in the SB internal sector, while lipid metabolism, transcription, and translation were among the pathways favored in the SB external sector. Noteworthy, the relative proportions of KEGG pathways and genes associated with metallic homeostasis showed significant differences according to the SB sectors, consistently with the ecological risk classification (QR index) of sediments. The functional prediction approach is an economically viable alternative and presents an overview of the main pathways/genes favored in the SB microbiota exposed to long-term pollution. In contrast, the microgAMBI, ecological status index based on bacterial community composition, was not consistent with the metallic contamination of SB, suggesting that this index requires improvements to be applied in tropical areas. Our study also revealed a strong correlation between metal resistance genes (MRG) and antibiotic resistance genes (ARG), indicating that MRG and ARG are co-selected by the metallic contamination prevailing in SB.
Collapse
Affiliation(s)
- Vanessa Almeida Moreira
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Angelo Cezar Borges de Carvalho
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Alice Baldy
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Edison Dausacker Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
5
|
Genomic analysis of heavy metal-resistant Halobacterium salinarum isolated from Sfax solar saltern sediments. Extremophiles 2022; 26:25. [PMID: 35842547 PMCID: PMC9288257 DOI: 10.1007/s00792-022-01273-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023]
Abstract
The draft genome sequences of five archaeal strains, isolated from Sfax solar saltern sediments and affiliated with Halobacterium salinarum, were analyzed in order to reveal their adaptive strategies to live in hypersaline environments polluted with heavy metals. The genomes of the strains (named AS1, AS2, AS8, AS11, and AS19) are found to contain 2,060,688; 2,467,461; 2,236,624; 2,432,692; and 2,428,727 bp respectively, with a G + C content of 65.5, 66.0, 67.0, and 66.2%. The majority of these genes (43.69–55.65%) are annotated as hypothetical proteins. Growth under osmotic stress is possible by genes coding for potassium uptake, sodium efflux, and kinases, as well as stress proteins, DNA repair systems, and proteasomal components. These strains harbor many genes responsible for metal transport/resistance, such as: copper-translocating P-type ATPases, ABC transporter, and cobalt-zinc-cadmium resistance protein. In addition, detoxification enzymes and secondary metabolites are also identified. The results show strain AS1, as compared to the other strains, is more adapted to heavy metals and may be used in the bioremediation of multi-metal contaminated environments. This study highlights the presence of several commercially valuable bioproducts (carotenoids, retinal proteins, exopolysaccharide, stress proteins, squalene, and siderophores) and enzymes (protease, sulfatase, phosphatase, phosphoesterase, and chitinase) that can be used in many industrial applications.
Collapse
|
6
|
Li L, Liu Z, Zhang M, Meng D, Liu X, Wang P, Li X, Jiang Z, Zhong S, Jiang C, Yin H. Insights into the Metabolism and Evolution of the Genus Acidiphilium, a Typical Acidophile in Acid Mine Drainage. mSystems 2020; 5:e00867-20. [PMID: 33203689 PMCID: PMC7677001 DOI: 10.1128/msystems.00867-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Here, we report three new Acidiphilium genomes, reclassified existing Acidiphilium species, and performed the first comparative genomic analysis on Acidiphilium in an attempt to address the metabolic potential, ecological functions, and evolutionary history of the genus Acidiphilium In the genomes of Acidiphilium, we found an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic expansion, including genes conferring photosynthesis (puf, puh), CO2 assimilation (rbc), capacity for methane metabolism (mmo, mdh, frm), nitrogen source utilization (nar, cyn, hmp), sulfur compound utilization (sox, psr, sqr), and multiple metal and osmotic stress resistance capacities (czc, cop, ect). Additionally, the predicted donors of horizontal gene transfer were present in a cooccurrence network of Acidiphilium Genome-scale positive selection analysis revealed that 15 genes contained adaptive mutations, most of which were multifunctional and played critical roles in the survival of extreme conditions. We proposed that Acidiphilium originated in mild conditions and adapted to extreme environments such as acidic mineral sites after the acquisition of many essential functions.IMPORTANCE Extremophiles, organisms that thrive in extreme environments, are key models for research on biological adaption. They can provide hints for the origin and evolution of life, as well as improve the understanding of biogeochemical cycling of elements. Extremely acidophilic bacteria such as Acidiphilium are widespread in acid mine drainage (AMD) systems, but the metabolic potential, ecological functions, and evolutionary history of this genus are still ambiguous. Here, we sequenced the genomes of three new Acidiphilium strains and performed comparative genomic analysis on this extremely acidophilic bacterial genus. We found in the genomes of Acidiphilium an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic ability expansion, as indicated by phylogenetic reconstruction and gene context comparison. This study has advanced our understanding of microbial evolution and biogeochemical cycling in extreme niches.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuiping Zhong
- College of Zijin Mining, Fuzhou University, Fuzhou, China
- National Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Shanghang, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
7
|
Argudo M, Gich F, Bonet B, Espinosa C, Gutiérrez M, Guasch H. Responses of resident (DNA) and active (RNA) microbial communities in fluvial biofilms under different polluted scenarios. CHEMOSPHERE 2020; 242:125108. [PMID: 31669992 DOI: 10.1016/j.chemosphere.2019.125108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Pollution from human activities is a major threat to the ecological integrity of fluvial ecosystems. Microbial communities are the most abundant organisms in biofilms, and are key indicators of various pollutants. We investigated the effects some human stressors (nutrients and heavy metals) have on the structure and activity of microbial communities in seven sampling sites located in the Ter River basin (NE Spain). Water and biofilm samples were collected in order to characterize physicochemical and biofilm parameters. The 16S rRNA gene was analysed out from DNA and RNA extracts to obtain α and β diversity. Principal coordinates analyses (PCoA) of the operational taxonomic units (OTUs) in the resident microbial community revealed that nutrients and conductivity were the main driving forces behind the diversity and composition. The effects of mining have had mainly seen on the taxonomic composition of the active microbial community, but also at the OTUs level. Remarkably, metal-impacted communities were very active, which would indicate a close link with the stress faced, that is probably related to the stimulation of detoxification.
Collapse
Affiliation(s)
- María Argudo
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain; Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a La Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - Frederic Gich
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain
| | - Berta Bonet
- School of Geography, Earth and Environmental Sciences (GEES), University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Carmen Espinosa
- BETA Tech Center. TECNIO Network, U Science Tech, University of Vic - Central University of Catalonia, de La Laura 13, 08500, Vic, Spain; Centre d'Estudis dels Rius Mediterranis, Museu Industrial del Ter. Passeig del Ter, 2, 08560, Manlleu, Spain
| | - Marina Gutiérrez
- Department of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara, Italy
| | - Helena Guasch
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain; Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a La Cala Sant Francesc 14, 17300, Blanes, Girona, Spain.
| |
Collapse
|
8
|
Jasso-Chávez R, Lira-Silva E, González-Sánchez K, Larios-Serrato V, Mendoza-Monzoy DL, Pérez-Villatoro F, Morett E, Vega-Segura A, Torres-Márquez ME, Zepeda-Rodríguez A, Moreno-Sánchez R. Marine Archaeon Methanosarcina acetivorans Enhances Polyphosphate Metabolism Under Persistent Cadmium Stress. Front Microbiol 2019; 10:2432. [PMID: 31708902 PMCID: PMC6821655 DOI: 10.3389/fmicb.2019.02432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/09/2019] [Indexed: 12/04/2022] Open
Abstract
Phosphate metabolism was studied to determine whether polyphosphate (polyP) pools play a role in the enhanced resistance against Cd2+ and metal-removal capacity of Cd2+-preadapted (CdPA) Methanosarcina acetivorans. Polyphosphate kinase (PPK), exopolyphosphatase (PPX) and phosphate transporter transcript levels and their activities increased in CdPA cells compared to control (Cnt) cells. K+ inhibited recombinant Ma-PPK and activated Ma-PPX, whereas divalent cations activated both enzymes. Metal-binding polyP and thiol-containing molecule contents, Cd2+-removal, and biofilm synthesis were significantly higher in CdPA cells >Cnt cells plus a single addition of Cd2+>Cnt cells. Also, CdPA cells showed a higher number of cadmium, sulfur, and phosphorus enriched-acidocalcisomes than control cells. Biochemical and physiological phenotype exhibited by CdPA cells returned to that of Cnt cells when cultured without Cd2+. Furthermore, no differences in the sequenced genomes upstream and downstream of the genes involved in Cd2+ resistance were found between CdPA and Cnt cells, suggesting phenotype loss rather than genome mutations induced by chronic Cd2+-exposure. Instead, a metabolic adaptation induced by Cd2+ stress was apparent. The dynamic ability of M. acetivorans to change its metabolism, depending on the environmental conditions, may be advantageous to remove cadmium in nature and biodigesters.
Collapse
Affiliation(s)
- Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Elizabeth Lira-Silva
- Departamento de Farmacología, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | | | - Fernando Pérez-Villatoro
- Winter Genomics, Mexico City, Mexico.,Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Enrique Morett
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | | | | | | | | |
Collapse
|
9
|
How Microbes Shape Their Communities? A Microbial Community Model Based on Functional Genes. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:91-105. [PMID: 31026577 PMCID: PMC6521236 DOI: 10.1016/j.gpb.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Exploring the mechanisms of maintaining microbial community structure is important to understand biofilm development or microbiota dysbiosis. In this paper, we propose a functional gene-based composition prediction (FCP) model to predict the population structure composition within a microbial community. The model predicts the community composition well in both a low-complexity community as acid mine drainage (AMD) microbiota, and a complex community as human gut microbiota. Furthermore, we define community structure shaping (CSS) genes as functional genes crucial for shaping the microbial community. We have identified CSS genes in AMD and human gut microbiota samples with FCP model and find that CSS genes change with the conditions. Compared to essential genes for microbes, CSS genes are significantly enriched in the genes involved in mobile genetic elements, cell motility, and defense mechanisms, indicating that the functions of CSS genes are focused on communication and strategies in response to the environment factors. We further find that it is the minority, rather than the majority, which contributes to maintaining community structure. Compared to health control samples, we find that some functional genes associated with metabolism of amino acids, nucleotides, and lipopolysaccharide are more likely to be CSS genes in the disease group. CSS genes may help us to understand critical cellular processes and be useful in seeking addable gene circuitries to maintain artificial self-sustainable communities. Our study suggests that functional genes are important to the assembly of microbial communities.
Collapse
|
10
|
Margaryan A, Panosyan H, Mamimin C, Trchounian A, Birkeland NK. Insights into the Bacterial Diversity of the Acidic Akhtala Mine Tailing in Armenia Using Molecular Approaches. Curr Microbiol 2019; 76:462-469. [DOI: 10.1007/s00284-019-01640-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/24/2019] [Indexed: 11/30/2022]
|
11
|
Cheaib B, Le Boulch M, Mercier PL, Derome N. Taxon-Function Decoupling as an Adaptive Signature of Lake Microbial Metacommunities Under a Chronic Polymetallic Pollution Gradient. Front Microbiol 2018; 9:869. [PMID: 29774016 PMCID: PMC5943556 DOI: 10.3389/fmicb.2018.00869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 04/16/2018] [Indexed: 11/29/2022] Open
Abstract
Adaptation of microbial communities to anthropogenic stressors can lead to reductions in microbial diversity and disequilibrium of ecosystem services. Such adaptation can change the molecular signatures of communities with differences in taxonomic and functional composition. Understanding the relationship between taxonomic and functional variation remains a critical issue in microbial ecology. Here, we assessed the taxonomic and functional diversity of a lake metacommunity system along a polymetallic pollution gradient caused by 60 years of chronic exposure to acid mine drainage (AMD). Our results highlight three adaptive signatures. First, a signature of taxon—function decoupling was detected in the microbial communities of moderately and highly polluted lakes. Second, parallel shifts in taxonomic composition occurred between polluted and unpolluted lakes. Third, variation in the abundance of functional modules suggested a gradual deterioration of ecosystem services (i.e., photosynthesis) and secondary metabolism in highly polluted lakes. Overall, changes in the abundance of taxa, function, and more importantly the polymetallic resistance genes such as copA, copB, czcA, cadR, cCusA, were correlated with trace metal content (mainly Cadmium) and acidity. Our findings highlight the impact of polymetallic pollution gradient at the lowest trophic levels.
Collapse
Affiliation(s)
- Bachar Cheaib
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Malo Le Boulch
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada.,GenPhySE, Institut National de la Recherche Agronomique, Université de Toulouse, INPT, ENVT, Castanet-Tolosan, France
| | - Pierre-Luc Mercier
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| |
Collapse
|
12
|
|
13
|
Mesa V, Gallego JLR, González-Gil R, Lauga B, Sánchez J, Méndez-García C, Peláez AI. Bacterial, Archaeal, and Eukaryotic Diversity across Distinct Microhabitats in an Acid Mine Drainage. Front Microbiol 2017; 8:1756. [PMID: 28955322 PMCID: PMC5600952 DOI: 10.3389/fmicb.2017.01756] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Acid mine drainages are characterized by their low pH and the presence of dissolved toxic metallic species. Microorganisms survive in different microhabitats within the ecosystem, namely water, sediments, and biofilms. In this report, we surveyed the microbial diversity within all domains of life in the different microhabitats at Los Rueldos abandoned mercury underground mine (NW Spain), and predicted bacterial function based on community composition. Sediment samples contained higher proportions of soil bacteria (AD3, Acidobacteria), as well as Crenarchaeota and Methanomassiliicoccaceae archaea. Oxic and hypoxic biofilm samples were enriched in bacterial iron oxidizers from the genus Leptospirillum, order Acidithiobacillales, class Betaproteobacteria, and archaea from the class Thermoplasmata. Water samples were enriched in Cyanobacteria and Thermoplasmata archaea at a 3–98% of the sunlight influence, whilst Betaproteobacteria, Thermoplasmata archaea, and Micrarchaea dominated in acid water collected in total darkness. Stalactites hanging from the Fe-rich mine ceiling were dominated by the neutrophilic iron oxidizer Gallionella and other lineages that were absent in the rest of the microhabitats (e.g., Chlorobi, Chloroflexi). Eukaryotes were detected in biofilms and open-air water samples, and belonged mainly to clades SAR (Alveolata and Stramenopiles), and Opisthokonta (Fungi). Oxic and hypoxic biofilms displayed higher proportions of ciliates (Gonostomum, Oxytricha), whereas water samples were enriched in fungi (Paramicrosporidium and unknown microbial Helotiales). Predicted function through bacterial community composition suggested adaptive evolutive convergence of function in heterogeneous communities. Our study showcases a broad description of the microbial diversity across different microhabitats in the same environment and expands the knowledge on the diversity of microbial eukaryotes in AMD habitats.
Collapse
Affiliation(s)
- Victoria Mesa
- Department of Functional Biology - IUBA, University of OviedoOviedo, Spain.,Vedas Research and Innovation, Vedas CIIMedellín, Colombia
| | - Jose L R Gallego
- Department of Mining Exploitation and Prospecting - IUBA, University of OviedoMieres, Spain
| | - Ricardo González-Gil
- Department of Biology of Organisms and Systems - University of OviedoOviedo, Spain
| | - Béatrice Lauga
- Equipe Environnement et Microbiologie, CNRS/Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, UMR5254Pau, France
| | - Jesús Sánchez
- Department of Functional Biology - IUBA, University of OviedoOviedo, Spain
| | | | - Ana I Peláez
- Department of Functional Biology - IUBA, University of OviedoOviedo, Spain
| |
Collapse
|
14
|
Archaea in Natural and Impacted Brazilian Environments. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1259608. [PMID: 27829818 PMCID: PMC5086508 DOI: 10.1155/2016/1259608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
In recent years, archaeal diversity surveys have received increasing attention. Brazil is a country known for its natural diversity and variety of biomes, which makes it an interesting sampling site for such studies. However, archaeal communities in natural and impacted Brazilian environments have only recently been investigated. In this review, based on a search on the PubMed database on the last week of April 2016, we present and discuss the results obtained in the 51 studies retrieved, focusing on archaeal communities in water, sediments, and soils of different Brazilian environments. We concluded that, in spite of its vast territory and biomes, the number of publications focusing on archaeal detection and/or characterization in Brazil is still incipient, indicating that these environments still represent a great potential to be explored.
Collapse
|
15
|
Yin H, Niu J, Ren Y, Cong J, Zhang X, Fan F, Xiao Y, Zhang X, Deng J, Xie M, He Z, Zhou J, Liang Y, Liu X. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci Rep 2015; 5:14266. [PMID: 26391875 PMCID: PMC4585741 DOI: 10.1038/srep14266] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/21/2015] [Indexed: 11/09/2022] Open
Abstract
Response of biological communities to environmental stresses is a critical issue in ecology, but how microbial communities shift across heavy metal gradients remain unclear. To explore the microbial response to heavy metal contamination (e.g., Cr, Mn, Zn), the composition, structure and functional potential of sedimentary microbial community were investigated by sequencing of 16S rRNA gene amplicons and a functional gene microarray. Analysis of 16S rRNA sequences revealed that the composition and structure of sedimentary microbial communities changed significantly across a gradient of heavy metal contamination, and the relative abundances were higher for Firmicutes, Chloroflexi and Crenarchaeota, but lower for Proteobacteria and Actinobacteria in highly contaminated samples. Also, molecular ecological network analysis of sequencing data indicated that their possible interactions might be enhanced in highly contaminated communities. Correspondently, key functional genes involved in metal homeostasis (e.g., chrR, metC, merB), carbon metabolism, and organic remediation showed a higher abundance in highly contaminated samples, indicating that bacterial communities in contaminated areas may modulate their energy consumption and organic remediation ability. This study indicated that the sedimentary indigenous microbial community may shift the composition and structure as well as function priority and interaction network to increase their adaptability and/or resistance to environmental contamination.
Collapse
Affiliation(s)
- Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Youhua Ren
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410083, China
| | - Jing Cong
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xiaoxia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Beijing 100081, China.,Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Beijing 100081, China.,Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jie Deng
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman 73019, USA
| | - Ming Xie
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman 73019, USA
| | - Zhili He
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman 73019, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman 73019, USA.,School of Environment, Tsinghua University, Beijing 100084, China.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94710, USA
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| |
Collapse
|
16
|
Zhang J, Wang LH, Yang JC, Liu H, Dai JL. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:29-36. [PMID: 25437950 DOI: 10.1016/j.scitotenv.2014.11.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
The toxicities and effects of various metals and metalloids would be misunderstood by health risks based on their concentrations, when their effects on bacterial and ecological functions in soil are disregarded. This study investigated the concentrations and health risks of heavy metals, soil properties, and bacterial 16S rRNA gene in soil around the largest fresh water lake in North China. The health risks posed by Mn and As were higher than those of other heavy metals and metalloids. Mn, As, and C were significantly correlated with the bacterial species richness indices. According to canonical correspondence analysis, species richness was mainly affected by Mn, Pb, As, and organic matter, while species evenness was mainly affected by Mn, pH, N, C, Cd, and Pb. Covariable analysis confirmed that most effects of metals on bacterial diversity were attributed to the combined effects of metals and soil properties rather than single metals. Most bacteria detected in (almost) all soil were identified as Gammaproteobacteria. Specific bacteria belonging to Proteobacteria (Gamma, Alpha, Epsilon, and Beta), Firmicutes, Actinobacteria, Cyanobacterium, Nitrospirae, and Fusobacterium were only identified in soil with high concentrations of Mn, Pb, and As, indicating their remediation potency. Bacterial abilities and mechanisms in pollutant resistance and element cycling in the region were also discussed.
Collapse
Affiliation(s)
- Juan Zhang
- Environmental Research Institute, Shandong University, Jinan 250100, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Li-Hong Wang
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan 250014, China
| | - Jun-Cheng Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Liu
- Environmental Research Institute, Shandong University, Jinan 250100, China
| | - Jiu-Lan Dai
- Environmental Research Institute, Shandong University, Jinan 250100, China.
| |
Collapse
|
17
|
Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains. Extremophiles 2012; 17:75-85. [PMID: 23143658 DOI: 10.1007/s00792-012-0495-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022]
Abstract
Zinc can occur in extremely high concentrations in acidic, heavy metal polluted environments inhabited by acidophilic prokaryotes. Although these organisms are able to thrive in such severely contaminated ecosystems their resistance mechanisms have not been well studied. Bioinformatic analysis of a range of acidophilic bacterial and archaeal genomes identified homologues of several known zinc homeostasis systems. These included primary and secondary transporters, such as the primary heavy metal exporter ZntA and Nramp super-family secondary importer MntH. Three acidophilic model microorganisms, the archaeon 'Ferroplasma acidarmanus', the Gram negative bacterium Acidithiobacillus caldus, and the Gram positive bacterium Acidimicrobium ferrooxidans, were selected for detailed analyses. Zinc speciation modeling of the growth media demonstrated that a large fraction of the free metal ion is complexed, potentially affecting its toxicity. Indeed, many of the putative zinc homeostasis genes were constitutively expressed and with the exception of 'F. acidarmanus' ZntA, they were not up-regulated in the presence of excess zinc. Proteomic analysis revealed that zinc played a role in oxidative stress in At. caldus and Am. ferrooxidans. Furthermore, 'F. acidarmanus' kept a constant level of intracellular zinc over all conditions tested whereas the intracellular levels increased with increasing zinc exposure in the remaining organisms.
Collapse
|
18
|
Survival of the fittest: overcoming oxidative stress at the extremes of Acid, heat and metal. Life (Basel) 2012; 2:229-42. [PMID: 25371104 PMCID: PMC4187130 DOI: 10.3390/life2030229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 11/29/2022] Open
Abstract
The habitat of metal respiring acidothermophilic lithoautotrophs is perhaps the most oxidizing environment yet identified. Geothermal heat, sulfuric acid and transition metals contribute both individually and synergistically under aerobic conditions to create this niche. Sulfuric acid and metals originating from sulfidic ores catalyze oxidative reactions attacking microbial cell surfaces including lipids, proteins and glycosyl groups. Sulfuric acid also promotes hydrocarbon dehydration contributing to the formation of black “burnt” carbon. Oxidative reactions leading to abstraction of electrons is further impacted by heat through an increase in the proportion of reactant molecules with sufficient energy to react. Collectively these factors and particularly those related to metals must be overcome by thermoacidophilic lithoautotrophs in order for them to survive and proliferate. The necessary mechanisms to achieve this goal are largely unknown however mechanistics insights have been gained through genomic studies. This review focuses on the specific role of metals in this extreme environment with an emphasis on resistance mechanisms in Archaea.
Collapse
|
19
|
Bruce T, de Castro A, Kruger R, Thompson CC, Thompson FL. Microbial Diversity of Brazilian Biomes. ADVANCES IN MICROBIAL ECOLOGY 2012. [DOI: 10.1007/978-1-4614-2182-5_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Cardoso AM, Vieira RP, Paranhos R, Clementino MM, Albano RM, Martins OB. Hunting for extremophiles in rio de janeiro. Front Microbiol 2011; 2:100. [PMID: 21747804 PMCID: PMC3129008 DOI: 10.3389/fmicb.2011.00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/21/2011] [Indexed: 11/28/2022] Open
Affiliation(s)
- Alexander M Cardoso
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Silveira CB, Vieira RP, Cardoso AM, Paranhos R, Albano RM, Martins OB. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean. PLoS One 2011; 6:e17789. [PMID: 21408023 PMCID: PMC3052384 DOI: 10.1371/journal.pone.0017789] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 02/09/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. METHODOLOGY/PRINCIPAL FINDINGS We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. CONCLUSIONS/SIGNIFICANCE Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine bacterioplankton communities in a tropical island at the South Atlantic Ocean.
Collapse
Affiliation(s)
- Cynthia B. Silveira
- Instituto de Bioquímica Médica,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo P. Vieira
- Instituto de Bioquímica Médica,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander M. Cardoso
- Instituto Nacional de Metrologia
Normalização e Qualidade Industrial, Rio de Janeiro,
Brazil
- * E-mail:
| | - Rodolfo Paranhos
- Instituto de Biologia, Universidade Federal do
Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodolpho M. Albano
- Departamento de Bioquímica,
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Orlando B. Martins
- Instituto de Bioquímica Médica,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Lu S, Gischkat S, Reiche M, Akob DM, Hallberg KB, Küsel K. Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl Environ Microbiol 2010; 76:8174-83. [PMID: 20971876 PMCID: PMC3008266 DOI: 10.1128/aem.01931-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/13/2010] [Indexed: 02/01/2023] Open
Abstract
Using a combination of cultivation-dependent and -independent methods, this study aimed to elucidate the diversity of microorganisms involved in iron cycling and to resolve their in situ functional links in sediments of an acidic lignite mine lake. Using six different media with pH values ranging from 2.5 to 4.3, 117 isolates were obtained that grouped into 38 different strains, including 27 putative new species with respect to the closest characterized strains. Among the isolated strains, 22 strains were able to oxidize Fe(II), 34 were able to reduce Fe(III) in schwertmannite, the dominant iron oxide in this lake, and 21 could do both. All isolates falling into the Gammaproteobacteria (an unknown Dyella-like genus and Acidithiobacillus-related strains) were obtained from the top acidic sediment zones (pH 2.8). Firmicutes strains (related to Bacillus and Alicyclobacillus) were only isolated from deep, moderately acidic sediment zones (pH 4 to 5). Of the Alphaproteobacteria, Acidocella-related strains were only isolated from acidic zones, whereas Acidiphilium-related strains were isolated from all sediment depths. Bacterial clone libraries generally supported and complemented these patterns. Geobacter-related clone sequences were only obtained from deep sediment zones, and Geobacter-specific quantitative PCR yielded 8 × 10(5) gene copy numbers. Isolates related to the Acidobacterium, Acidocella, and Alicyclobacillus genera and to the unknown Dyella-like genus showed a broad pH tolerance, ranging from 2.5 to 5.0, and preferred schwertmannite to goethite for Fe(III) reduction. This study highlighted the variety of acidophilic microorganisms that are responsible for iron cycling in acidic environments, extending the results of recent laboratory-based studies that showed this trait to be widespread among acidophiles.
Collapse
Affiliation(s)
- Shipeng Lu
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany, School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Stefan Gischkat
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany, School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Marco Reiche
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany, School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Denise M. Akob
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany, School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Kevin B. Hallberg
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany, School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Kirsten Küsel
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany, School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| |
Collapse
|
23
|
Ivanova I, Atanassov I, Lyutskanova D, Stoilova-Disheva M, Dimitrova D, Tomova I, Derekova A, Radeva G, Buchvarova V, Kambourova M. High Archaea diversity in Varvara hot spring, Bulgaria. J Basic Microbiol 2010; 51:163-72. [PMID: 21077120 DOI: 10.1002/jobm.201000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/18/2010] [Indexed: 11/08/2022]
Abstract
The phylogeny of the latest recognized domain, Archaea, is still complicated and it is largely based on environmental sequences. A culture independent molecular phylogenetic analysis revealed high Archaea diversity in a terrestrial hot spring, village Varvara, Bulgaria. A total of 35 archaeal operational taxonomic units (OTUs) belonging to three of the classified five Archaea phyla were identified. Most of the sequences were affiliated with the phylum Crenarchaeota (23), grouped in four branches. The rest of the sequences showed highest similarity to the unidentified archaeal clones (9), Euryarchaeota (2), and "Korarchaeota " (1). Eight (23%) of the sequenced 16S rDNAs didn't have known close relatives and represented new and diverse OTUs, four of them forming a new archaeal subgroup without close described sequences or culturable relatives. A sequence affiliated with "Korarchaeota " showed low similarity (90%) to the closest neighbor and both sequences formed unique branch in this phylum. Consequently, the constructed archaeal libraries are characterized by (1) high proportion of OTUs representing uncultivated archaeal phylogroups, (2) the abundance of novel phylotype sequences, (3) the presence of high proportions of Crenarchaeota phylotypes unrelated to cultivated organisms and (4) the presence of a sequence only distantly related to "Korarchaeota " phylum.
Collapse
Affiliation(s)
- Iva Ivanova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | | | | | | | | | |
Collapse
|