1
|
Zhou P, Wu M, Ma L, Li Y, Liu X, Chen Z, Zhao Y, Li Z, Zheng L, Sun Y, Xu Y, Liu Y, Li H. Engineering Alcohol Dehydrogenase for Efficient Catalytic Synthesis of Ethyl ( R)-4-Chloro-3-hydroxybutyrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11146-11156. [PMID: 40266245 DOI: 10.1021/acs.jafc.5c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Ethyl (R)-4-chloro-3-hydroxybutyrate [(R)-CHBE] is an intermediate with high value in medicine and pesticide applications. Alcohol dehydrogenase serves as an excellent biocatalyst during the synthesis of (R)-CHBE. However, the lack of effective engineering methods limits its wider application. In this study, the sequence-modeling-docking-principle (SMDP) method was used to screen enzymes with catalytic activity. Three protein modification strategies were established for the active center, substrate channel, and distal hotspot to enhance the catalytic efficiency of alcohol dehydrogenase LCRIII. Substrate batch replenishment was used to alleviate substrate inhibition. Subsequently, optimal mutant M3 (W151F-S167A-F215Y) was successfully obtained with a specific enzyme activity of 23.00 U/mg and kcat/Km of 11.22 (mM-1·min-1), which were 4.55- and 3.98-fold higher than those of the wild type, respectively. (R)-CHBE was prepared using M3 and GDH at 298.21 g/L (>99% e.e.). This study provides a promising approach for the protein engineering modification of alcohol dehydrogenase and industrial-scale production of (R)-CHBE.
Collapse
Affiliation(s)
- Pei Zhou
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Mengxue Wu
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Lan Ma
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Yi Li
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Xiaotong Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Zongda Chen
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Yifan Zhao
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zisen Li
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Luxi Zheng
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yang Sun
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Yinbiao Xu
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Yupeng Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Hua Li
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| |
Collapse
|
2
|
Cheng F, Wang CJ, Gong XX, Sun KX, Liang XH, Xue YP, Zheng YG. Assembly and engineering of BioBricks to develop an efficient NADH regeneration system. Appl Environ Microbiol 2025; 91:e0104124. [PMID: 39660873 PMCID: PMC11784351 DOI: 10.1128/aem.01041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/25/2024] [Indexed: 12/12/2024] Open
Abstract
The cofactor regeneration system plays a crucial role in redox biocatalysis for organic synthesis and the pharmaceutical industry. The alcohol dehydrogenase (ADH)-based regeneration system offers a promising solution for the in situ regeneration of NAD(P)H. However, its widespread use is hindered by low activity and poor expression of ADH in Escherichia coli. Herein, the BioBricks (promoter, ribosome binding site [RBS], functional gene, and terminator) were assembled and engineered to constitute an efficient NADH regeneration system. The semi-rational design was employed to enhance the catalytic efficiency of GstADH (an ADH from Geobacillus stearothermophilus), resulting in a beneficial GstADH variant with a 2.1-fold increase in catalytic efficiency. Furthermore, the RBS optimization was used to increase the expression of ADH genes, leading to the identification of an RBS with a 3.2-fold increased translation rate. Using this developed system, the NADH generating velocity reached more than 2 s-1 even toward 0.1 mM NAD+, indicating that it is the most promising NADH regeneration so far. Finally, the engineered system was utilized for the asymmetric biosynthesis of l-phosphinothricin (a chiral herbicide), with a high yield (>95%). IMPORTANCE The alcohol dehydrogenase (ADH)-based coenzyme regeneration system serves as a useful tool in redox biocatalysis. This system effectively replenishes NAD(P)H by utilizing isopropanol as a substrate, with the added advantage of easily separable acetone as a by-product. Previous studies focused on discovering new adh genes and engineering the ADH protein for higher catalytic efficiency, neglecting the optimization of other gene components. In this study, a remarkably efficient NADH regeneration system was developed using BioBricks assembly for system initialization. The ADH engineering was used to enhance catalytic efficiency, and RBS optimization for elevated ADH expression, which resulted in not only a 2.1-fold increase in catalytic efficiency but also a 3.2-fold increase in translation rate. Together, these improvements resulted in an overall 6.7-fold enhancement in performance. This system finds application in a wide range of NADH-dependent biocatalysis processes and is particularly advantageous for the biosynthesis of fine chemicals.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Cheng-Jiao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Xiao Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ke-Xiang Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Xi-Hang Liang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
4
|
Surface display of (R)-carbonyl reductase on Escherichia coli as biocatalyst for recycling biotransformation of 2-hydroxyacetophenone. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Zhao W, Liu M, Qin Y, Bing H, Zhang F, Zhao G. Characterization and functional of four mutants of hydroxy fatty acid dehydrogenase from Lactobacillus plantarum p-8. FEMS Microbiol Lett 2022; 369:6633657. [PMID: 35798009 DOI: 10.1093/femsle/fnac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/25/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
In this study, the hydroxy fatty acid dehydrogenase CLA-DH from Lactobacillus plantarum p-8 and its four mutant variants were expressed in Escherichia coli Rosetta (DE3). UV spectrophotometry was employed to verify the catalytic power of the purified CLA-DH to convert ricinoleic acid into 12-oxo-cis-9-octadecenoic acid in the presence of oxidized nicotinamide adenine dinucleotide (NAD+). The optimum reaction temperature for CLA-DH was 45°C, with a maintained stability between 20°C and 40°C. The optimal pH for CLA-DH catalytic activity was 6.0-7.0, with a maintained stability at a pH range of 6.0-8.0. In addition, Fe3+ promoted enzyme activity, whereas Cu2+, Zn2+, and Fe2+ inhibited enzyme activity (P < 0.05). The Km, Vmax, Kcat, and Kcat/Km of CLA-DH were determined as 2.19 ± 0.34 μM, 2.06 ± 0.28 μM min-1, 2.00 ± 0.27 min-1, and 0.92 ± 0.02 min-1μM-1, respectively. Site-directed mutagenesis and molecular dynamics simulations demonstrated that both Tyr156 and Ser143 residues play significant roles in the catalysis of CLA-DH, and its solubility is affected by Lys160 and Asp63. Moreover, Gas chromatography determined that recombinant CLA-DH could be successfully applied to Conjugated linoleic acids production.
Collapse
Affiliation(s)
- Wei Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China.,College of Food Science, Shanxi Normal University, 339 Taiyu Road, Taiyuan 030031, China
| | - Meiqi Liu
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Yali Qin
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Han Bing
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Feng Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Guofen Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| |
Collapse
|
6
|
Ménil S, Petit J, Courvoisier‐Dezord E, Debard A, Pellouin V, Reignier T, Sergent M, Deyris V, Duquesne K, Berardinis V, Alphand V. Tuning of the enzyme ratio in a neutral redox convergent cascade: A key approach for an efficient one‐pot/two‐step biocatalytic whole‐cell system. Biotechnol Bioeng 2019; 116:2852-2863. [DOI: 10.1002/bit.27133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Sidiky Ménil
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean‐Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | | | - Adrien Debard
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | - Virginie Pellouin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | - Thomas Reignier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Michelle Sergent
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE Marseille France
| | - Valérie Deyris
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Véronique Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | | |
Collapse
|
7
|
Co-immobilization of Short-Chain Dehydrogenase/Reductase and Glucose Dehydrogenase for the Efficient Production of (±)-Ethyl Mandelate. Catal Letters 2019. [DOI: 10.1007/s10562-019-02727-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Beer B, Pick A, Döring M, Lommes P, Sieber V. Substrate scope of a dehydrogenase from Sphingomonas species A1 and its potential application in the synthesis of rare sugars and sugar derivatives. Microb Biotechnol 2018; 11:747-758. [PMID: 29697194 PMCID: PMC6011931 DOI: 10.1111/1751-7915.13272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
Rare sugars and sugar derivatives that can be obtained from abundant sugars are of great interest to biochemical and pharmaceutical research. Here, we describe the substrate scope of a short‐chain dehydrogenase/reductase from Sphingomonas species A1 (SpsADH) in the oxidation of aldonates and polyols. The resulting products are rare uronic acids and rare sugars respectively. We provide insight into the substrate recognition of SpsADH using kinetic analyses, which show that the configuration of the hydroxyl groups adjacent to the oxidized carbon is crucial for substrate recognition. Furthermore, the specificity is demonstrated by the oxidation of d‐sorbitol leading to l‐gulose as sole product instead of a mixture of d‐glucose and l‐gulose. Finally, we applied the enzyme to the synthesis of l‐gulose from d‐sorbitol in an in vitro system using a NADH oxidase for cofactor recycling. This study shows the usefulness of exploring the substrate scope of enzymes to find new enzymatic reaction pathways from renewable resources to value‐added compounds.
Collapse
Affiliation(s)
- Barbara Beer
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - André Pick
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Manuel Döring
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Petra Lommes
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Str. 1, 85748, Garching, Germany.,Fraunhofer Institute of Interfacial Engineering and Biotechnology (IGB), Bio-, Electro- and Chemo Catalysis (BioCat) Branch, Schulgasse 11a, Straubing, 94315, Germany.,School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Road, St. Lucia, 4072, Qld, Australia
| |
Collapse
|
9
|
Zhao FJ, Liu Y, Pei XQ, Guo C, Wu ZL. Single mutations of ketoreductase ChKRED20 enhance the bioreductive production of (1S)-2-chloro-1-(3, 4-difluorophenyl) ethanol. Appl Microbiol Biotechnol 2016; 101:1945-1952. [PMID: 27830294 DOI: 10.1007/s00253-016-7947-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 11/28/2022]
Abstract
(1S)-2-chloro-1-(3, 4-difluorophenyl) ethanol ((S)-CFPL) is an intermediate for the drug ticagrelor, and is manufactured via chemical approaches. To develop a biocatalytic solution to (S)-CFPL, an inventory of ketoreductases from Chryseobacterium sp. CA49 were rescreened, and ChKRED20 was found to catalyze the reduction of the ketone precursor with excellent stereoselectivity (>99 % ee). After screening an error-prone PCR library of the wild-type ChKRED20, two mutants, each bearing a single amino acid substitution of H145L or L205M, were identified with significantly increased activity. Then, the two critical positions were each randomized by constructing saturation mutagenesis libraries, which delivered several mutants with further enhanced activity. Among them, the mutant L205A was the best performer with a specific activity of 178 μmol/min/mg, ten times of that of the wild-type. Its k cat/K m increased by 15 times and half-life at 50 °C increased by 70 %. The mutant catalyzed the complete conversion of 150 and 200 g/l substrate within 6 and 20 h, respectively, to yield enantiopure (S)-CFPL with an isolated yield of 95 %.
Collapse
Affiliation(s)
- Feng-Jiao Zhao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.,Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.,Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Qiong Pei
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.,Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Guo
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.,Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Liu Wu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
10
|
Mormile MR. Going from microbial ecology to genome data and back: studies on a haloalkaliphilic bacterium isolated from Soap Lake, Washington State. Front Microbiol 2014; 5:628. [PMID: 25477871 PMCID: PMC4237134 DOI: 10.3389/fmicb.2014.00628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/03/2014] [Indexed: 01/20/2023] Open
Abstract
Soap Lake is a meromictic, alkaline (∼pH 9.8) and saline (∼14–140 g liter-1) lake located in the semiarid area of eastern Washington State. Of note is the length of time it has been meromictic (at least 2000 years) and the extremely high sulfide level (∼140 mM) in its monimolimnion. As expected, the microbial ecology of this lake is greatly influenced by these conditions. A bacterium, Halanaerobium hydrogeniformans, was isolated from the mixolimnion region of this lake. Halanaerobium hydrogeniformans is a haloalkaliphilic bacterium capable of forming hydrogen from 5- and 6-carbon sugars derived from hemicellulose and cellulose. Due to its ability to produce hydrogen under saline and alkaline conditions, in amounts that rival genetically modified organisms, its genome was sequenced. This sequence data provides an opportunity to explore the unique metabolic capabilities of this organism, including the mechanisms for tolerating the extreme conditions of both high salinity and alkalinity of its environment.
Collapse
Affiliation(s)
- Melanie R Mormile
- Department of Biological Sciences, Missouri University of Science and Technology Rolla, MO, USA
| |
Collapse
|
11
|
Basner A, Antranikian G. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome. PLoS One 2014; 9:e85844. [PMID: 24454935 PMCID: PMC3891874 DOI: 10.1371/journal.pone.0085844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022] Open
Abstract
Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P) as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P), the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.
Collapse
Affiliation(s)
- Alexander Basner
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Structures of Alcohol Dehydrogenases from Ralstonia and Sphingobium spp. Reveal the Molecular Basis for Their Recognition of ‘Bulky–Bulky’ Ketones. Top Catal 2013. [DOI: 10.1007/s11244-013-0191-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Eram MS, Ma K. Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles. Biomolecules 2013; 3:578-96. [PMID: 24970182 PMCID: PMC4030962 DOI: 10.3390/biom3030578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 08/15/2013] [Indexed: 11/16/2022] Open
Abstract
Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the reduction of acetyl-CoA to acetaldehyde in mesophilic organisms. AcDH is present in some mesophilic (such as clostridia) and thermophilic bacteria (e.g., Geobacillus and Thermoanaerobacter). However, no AcDH gene or protein homologs could be found in the released genomes and proteomes of hyperthermophiles. Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles under different assay conditions. In conclusion, no commonly-known PDCs was found in hyperthermophiles. Instead of the commonly-known PDC, it appears that at least one multifunctional enzyme is responsible for catalyzing the non-oxidative decarboxylation of pyruvate to acetaldehyde in hyperthermophiles.
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Kesen Ma
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
14
|
Mayoral JG, Leonard KT, Nouzova M, Noriega FG, Defelipe LA, Turjanski AG. Functional analysis of a mosquito short-chain dehydrogenase cluster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:96-115. [PMID: 23238893 PMCID: PMC3697000 DOI: 10.1002/arch.21078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The short-chain dehydrogenases (SDR) constitute one of the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone, and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP⁺-dependent and they have S-enantioselectivity and preference for secondary alcohols with 8-15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity toward the (10S)-isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes.
Collapse
Affiliation(s)
- Jaime G Mayoral
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
15
|
Thermostable alcohol dehydrogenase from Thermococcus kodakarensis KOD1 for enantioselective bioconversion of aromatic secondary alcohols. Appl Environ Microbiol 2013; 79:2209-17. [PMID: 23354700 DOI: 10.1128/aem.03873-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent K(m) values for the cofactors NAD(P)(+) and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O-20% 2-propanol and H2O-50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols.
Collapse
|
16
|
Zhou S, Zhang SC, Lai DY, Zhang SL, Chen ZM. Biocatalytic characterization of a short-chain alcohol dehydrogenase with broad substrate specificity from thermophilic Carboxydothermus hydrogenoformans. Biotechnol Lett 2012; 35:359-65. [PMID: 23160740 DOI: 10.1007/s10529-012-1082-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/31/2012] [Indexed: 11/29/2022]
Abstract
The gene encoding a novel short-chain alcohol dehydrogenase in the thermophilic bacterium, Carboxydothermus hydrogenoformans, was identified and overexpressed in Escherichia coli. The enzyme was thermally stable and displayed the highest activity at 70 °C and pH 6.0. It preferred NAD(H) over NADP(H) as a cofactor and exhibited broad substrate specificity towards aliphatic ketones, cycloalkanones, aromatic ketones, and ketoesters. Furthermore, ethyl benzoylformate was asymmetrically reduced by the purified enzyme, using an additional coupled NADH regeneration system, with 95 % conversion and in an enantiomeric excess of (99.9 %). The results of this study may lead to the discovery of a novel method for asymmetric reduction of alcohols, which is an important tool in organic synthesis.
Collapse
Affiliation(s)
- Shuo Zhou
- Lab of Biocatalysis, Hangzhou Normal University, 402-Building D, 1378 West Wenyi Road, Hangzhou, 311121, China
| | | | | | | | | |
Collapse
|
17
|
Pennacchio A, Sannino V, Sorrentino G, Rossi M, Raia CA, Esposito L. Biochemical and structural characterization of recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius highly enantioselective on diaryl diketone benzil. Appl Microbiol Biotechnol 2012; 97:3949-64. [DOI: 10.1007/s00253-012-4273-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
18
|
Rocha-Martín J, Vega D, Bolivar JM, Hidalgo A, Berenguer J, Guisán JM, López-Gallego F. Characterization and further stabilization of a new anti-prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. BIORESOURCE TECHNOLOGY 2012; 103:343-350. [PMID: 22055107 DOI: 10.1016/j.biortech.2011.10.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
The use of dehydrogenases in asymmetric chemistry has exponentially grown in the last decades facilitated by the genome mining. Here, a new short-chain alcohol dehydrogenase from Thermus thermophilus HB27 has been expressed, purified, characterized and stabilized by immobilization on solid supports. The enzyme catalyzes both oxidative and reductive reactions at neutral pH with a broad range of substrates. Its highest activity was found towards the reduction of 2,2',2″-trifluoroacetophenone (85 U/mg at 65 °C and pH 7). Moreover, the enzyme was stabilized more than 200-fold by multipoint covalent immobilization on agarose matrixes via glyoxyl chemistry. Such heterogeneous catalyst coupled to an immobilized cofactor recycling partner performed the quantitative asymmetric reduction of 2,2',2″-trifluoroacetophenone and rac-2-phenylpropanal to (S)-(+)-α-(trifluoromethyl)benzyl alcohol and (R)-2-phenyl-1-propanol with enantiomeric excesses of 96% and 71%, respectively. To our knowledge this is the first alcohol dehydrogenase from a thermophilic source with anti-Prelog selectivity for aryl ketones and that preferentially produces R-profens.
Collapse
Affiliation(s)
- Javier Rocha-Martín
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|