1
|
Wang S, Chen D, Liu Q, Zang L, Zhang G, Sui M, Dai Y, Zhou C, Li Y, Yang Y, Ding F. Dominant influence of plants on soil microbial carbon cycling functions during natural restoration of degraded karst vegetation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118889. [PMID: 37666128 DOI: 10.1016/j.jenvman.2023.118889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
The impacts of natural restoration projects on soil microbial carbon (C) cycling functions have not been well recognized despite their wide implementation in the degraded karst areas of southwest China. In this study, metagenomic sequencing assays were conducted on functional genes and microorganisms related to soil C-cycling at three natural restoration stages (shrubbery, TG; secondary forest, SG; old-growth forest, OG) in the southeast of Guizhou Province, China. The aims were to investigate the changes in microbial potentials responsible for soil C cycling and the underlying driving forces. The natural restoration resulted in vegetation establishment at all three restoration stages, rendering alterations of soil microbial C cycle functions as indicated by metagenomic gene assays. When TG was restored into OG, the number and diversity of genes and microorganisms involved in soil C cycling remained unchanged, but their composition underwent significant shifts. Specifically, microbial potentials for soil C decomposition exhibited an increase driven by the collaborative efforts of plants and soils, while microbial potentials for soil C biosynthesis displayed an initial upswing followed by a subsequent decline which was primarily influenced by plants alone. In comparison to soil nutrients, it was determined that plant diversities served as the primary driving factor for the alterations in microbial carbon cycle potentials. Soil microbial communities involved in C cycling were predominantly attributed to Proteobacteria (31.87%-40.25%) and Actinobacteria (11.29%-26.07%), although their contributions varied across the three restoration stages. The natural restoration of degraded karst vegetation thus influences soil microbial C cycle functions by enhancing C decomposition potentials and displaying a nuanced pattern of biosynthesis potentials, primarily influenced by above-ground plants. These results provide valuable new insights into the regulation of soil C cycling during the restoration of degraded karst vegetation from genetic and microbial perspectives.
Collapse
Affiliation(s)
- Shasha Wang
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Danmei Chen
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Qingfu Liu
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Lipeng Zang
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Guangqi Zhang
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Mingzhen Sui
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Yu Dai
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chunjie Zhou
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Yujuan Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Yousu Yang
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Fangjun Ding
- Guizhou Libo Observation and Research Station for Karst Forest Ecosystem, National Forestry and Grassland Administration, Libo, 558400, China
| |
Collapse
|
2
|
Metagenomics reveal the role of microorganism and GH genes contribute to Sichuan South-road dark tea quality formation during pile fermentation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
3
|
Ding N, Zhao B, Han X, Li C, Gu Z, Li Z. Starch-Binding Domain Modulates the Specificity of Maltopentaose Production at Moderate Temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9057-9065. [PMID: 35829707 DOI: 10.1021/acs.jafc.2c03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maltooligosaccharide-forming amylases (MFAs) hydrolyze starch into maltooligosaccharides with a defined degree of polymerization. However, the enzymatic mechanism underlying the product specificity remains partially understood. Here, we show that Saccharophagus degradans MFA (SdMFA) contains a noncatalytic starch-binding domain (SBD), which belongs to the carbohydrate-binding module family 20 and enables modulation of the product specificity. Removal of SBD from SdMFA resulted in a 3.5-fold lower production of the target maltopentaose. Conversely, appending SBD to another MFA from Bacillus megaterium improved the specificity for maltopentaose. SdMFA exhibited a higher level of exo-action and greater product specificity when reacting with amylopectin than with amylose. Our structural analysis and molecular dynamics simulation suggested that SBD could promote the recognition of nonreducing ends of substrates and delivery of the substrate chain to a groove end toward the active site in the catalytic domain. Furthermore, we demonstrate that a moderate temperature could mediate SBD to interact with the substrate with loose affinity, which facilitates the substrate to slide toward the active site. Together, our study reveals the structural and conditional bases for the specificity of MFAs, providing generalizable strategies to engineer MFAs and optimize the biosynthesis of maltooligosaccharides.
Collapse
Affiliation(s)
- Ning Ding
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Xu Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Zeng Y, Zheng H, Shen Y, Xu J, Tan M, Liu F, Song H. Identification and analysis of binding residues in the CBM68 of pullulanase PulA from Anoxybacillus sp. LM18-11. J Biosci Bioeng 2019; 127:8-15. [DOI: 10.1016/j.jbiosc.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022]
|
5
|
Andrade AC, Fróes A, Lopes FÁC, Thompson FL, Krüger RH, Dinsdale E, Bruce T. Diversity of Microbial Carbohydrate-Active enZYmes (CAZYmes) Associated with Freshwater and Soil Samples from Caatinga Biome. MICROBIAL ECOLOGY 2017; 74:89-105. [PMID: 28070679 DOI: 10.1007/s00248-016-0911-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Semi-arid and arid areas occupy about 33% of terrestrial ecosystems. However, little information is available about microbial diversity in the semi-arid Caatinga, which represents a unique biome that extends to about 11% of the Brazilian territory and is home to extraordinary diversity and high endemism level of species. In this study, we characterized the diversity of microbial genes associated with biomass conversion (carbohydrate-active enzymes, or so-called CAZYmes) in soil and freshwater of the Caatinga. Our results showed distinct CAZYme profiles in the soil and freshwater samples. Glycoside hydrolases and glycosyltransferases were the most abundant CAZYme families, with glycoside hydrolases more dominant in soil (∼44%) and glycosyltransferases more abundant in freshwater (∼50%). The abundances of individual glycoside hydrolase, glycosyltransferase, and carbohydrate-binding module subfamilies varied widely between soil and water samples. A predominance of glycoside hydrolases was observed in soil, and a higher contribution of enzymes involved in carbohydrate biosynthesis was observed in freshwater. The main taxa associated with the CAZYme sequences were Planctomycetia (relative abundance in soil, 29%) and Alphaproteobacteria (relative abundance in freshwater, 27%). Approximately 5-7% of CAZYme sequences showed low similarity with sequences deposited in non-redundant databases, suggesting putative homologues. Our findings represent a first attempt to describe specific microbial CAZYme profiles for environmental samples. Characterizing these enzyme groups associated with the conversion of carbohydrates in nature will improve our understanding of the significant roles of enzymes in the carbon cycle. We identified a CAZYme signature that can be used to discriminate between soil and freshwater samples, and this signature may be related to the microbial species adapted to the habitat. The data show the potential ecological roles of the CAZYme repertoire and associated biotechnological applications.
Collapse
Affiliation(s)
- Ana Camila Andrade
- Faculdade de Tecnologia e Ciências, Grupo de Biotecnologia Ambiental, Department of Bioenergy, Salvador, Brazil
| | - Adriana Fróes
- Laboratory of Microbiology, Institute of Biology, and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | - Thiago Bruce
- Faculdade de Tecnologia e Ciências, Grupo de Biotecnologia Ambiental, Department of Bioenergy, Salvador, Brazil.
- Department of Biology, San Diego State University, San Diego, CA, USA.
- Institute of Biology, Microbiology department, Universidade Federal da Bahia (UFBA), Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
|
7
|
High throughput screening of starch structures using carbohydrate microarrays. Sci Rep 2016; 6:30551. [PMID: 27468930 PMCID: PMC4965820 DOI: 10.1038/srep30551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches.
Collapse
|
8
|
Jo HJ, Park S, Jeong HG, Kim JW, Park JT. Vibrio vulnificusglycogen branching enzyme preferentially transfers very short chains: N1 domain determines the chain length transferred. FEBS Lett 2015; 589:1089-94. [DOI: 10.1016/j.febslet.2015.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
|