1
|
Zhang H, Li B, Liu X, Qian T, Zhao D, Wang J, Zhang L, Wang T. Pyrite-stimulated bio-reductive immobilization of perrhenate: Insights from integrated biotic and abiotic perspectives. WATER RESEARCH 2024; 262:122089. [PMID: 39018586 DOI: 10.1016/j.watres.2024.122089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Microbes possessing electron transfer capabilities hold great promise for remediating subsurface contaminated by redox-active radionuclides such as technetium-99 (99TcO4-) through bio-transformation of soluble contaminants into their sparingly soluble forms. However, the practical application of this concept has been impeded due to the low electron transfer efficiency and long-term product stability under various biogeochemical conditions. Herein, we proposed and tested a pyrite-stimulated bio-immobilization strategy for immobilizing ReO4- (a nonradioactive analogue of 99TcO4-) using sulfate-reducing bacteria (SRB), with a focus on pure-cultured Desulfovibrio vulgaris. Pyrite acted as an effective stimulant for the bio-transformation of ReO4-, boosting the removal rate of ReO4- (50 mg/L) in a solution from 2.8 % (without pyrite) to 100 %. Moreover, the immobilized products showed almost no signs of remobilization during 168 days of monitoring. Dual lines of evidence were presented to elucidate the underlying mechanisms for the pyrite-enhanced bio-activity. Transcriptomic analysis revealed a global upregulation of genes associated with electron conductive cytochromes c network, extracellular tryptophan, and intracellular electron transfer units, leading to enhanced ReO4- bio-reduction. Spectroscopic analysis confirmed the long-term stability of the bio-immobilized products, wherein ReO4- is reduced to stable Re(IV) oxides and Re(IV) sulfides. This work provides a novel green strategy for remediation of radionuclides- or heavy metals-contaminated sites.
Collapse
Affiliation(s)
- Haoqing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Bo Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China.
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States.
| | - Jianhui Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Lei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China; Shanxi Low-Carbon Environmental Protection Industry Group Co. Ltd. Taiyuan 030032, China
| | - Ting Wang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
2
|
Liu YH, Gao L, Jiang HC, Fang BZ, Huang Y, Li L, Li S, Abdugheni R, Lian WH, Zhang JY, Yang ZD, Mohamad OAA, Li WJ. Response of microbial diversity and function to the degradation of Barkol Saline Lake. Front Microbiol 2024; 15:1358222. [PMID: 38784797 PMCID: PMC11111964 DOI: 10.3389/fmicb.2024.1358222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Barkol Lake, a shrinking hypersaline lake situated in the northeast of Xinjiang, China, has experienced the exposure of its riverbed and the gradual drying up of its original sediment due to climate change and human activities, resulting in the formation of alkaline soils. These changes have correspondingly altered the physicochemical characteristics of the surrounding environment. Microorganisms play a crucial role, with special functioning involved in various nutrient cycling and energy transfer in saline lake environments. However, little is known about how the microbial community dynamics and metabolic functions in this shrinking saline lake relate to the degradation process. To address this knowledge gap, a cultivation-independent method of amplicon sequencing was used to identify and analyze the microbial community and its potential ecological functions in the sediment and degraded area. The microbial community diversity was found to be significantly lower in the degraded areas than in the sediment samples. The Pseudomonadota was dominant in Barkol Saline Lake. The abundance of Desulfobacterota and Bacillota in the degraded areas was lower than in the lake sediment, while Pseudomonadota, Acidobacteriota, and Actinobacteriota showed an opposite trend. The βNTI showed that microbial community assembly was primarily associated with deterministic processes in Barkol Saline Lake ecosystems and stochastic processes at the boundary between sediment and degraded areas. Functional predictions showed that sulfur metabolism, particularly sulfate respiration, was much higher in sediment samples than in the degraded areas. Overall, these findings provided a possible perspective for us to understand how microorganisms adapt to extreme environments and their role in saline lakes under environmental change.
Collapse
Affiliation(s)
- Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hong-Chen Jiang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shuai Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jing-Yi Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhen-Dong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Department of Biological, Marine Sciences and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Arish, Egypt
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Frolov EN, Gavrilov SN, Toshchakov SV, Zavarzina DG. Genomic Insights into Syntrophic Lifestyle of ' Candidatus Contubernalis alkaliaceticus' Based on the Reversed Wood-Ljungdahl Pathway and Mechanism of Direct Electron Transfer. Life (Basel) 2023; 13:2084. [PMID: 37895465 PMCID: PMC10608574 DOI: 10.3390/life13102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The anaerobic oxidation of fatty acids and alcohols occurs near the thermodynamic limit of life. This process is driven by syntrophic bacteria that oxidize fatty acids and/or alcohols, their syntrophic partners that consume the products of this oxidation, and the pathways for interspecies electron exchange via these products or direct interspecies electron transfer (DIET). Due to the interdependence of syntrophic microorganisms on each other's metabolic activity, their isolation in pure cultures is almost impossible. Thus, little is known about their physiology, and the only available way to fill in the knowledge gap on these organisms is genomic and metabolic analysis of syntrophic cultures. Here we report the results of genome sequencing and analysis of an obligately syntrophic alkaliphilic bacterium 'Candidatus Contubernalis alkaliaceticus'. The genomic data suggest that acetate oxidation is carried out by the Wood-Ljungdahl pathway, while a bimodular respiratory system involving an Rnf complex and a Na+-dependent ATP synthase is used for energy conservation. The predicted genomic ability of 'Ca. C. alkaliaceticus' to outperform interspecies electron transfer both indirectly, via H2 or formate, and directly, via pili-like appendages of its syntrophic partner or conductive mineral particles, was experimentally demonstrated. This is the first indication of DIET in the class Dethiobacteria.
Collapse
Affiliation(s)
- Evgenii N. Frolov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, Moscow 117312, Russia; (S.N.G.); (D.G.Z.)
| | - Sergey N. Gavrilov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, Moscow 117312, Russia; (S.N.G.); (D.G.Z.)
| | - Stepan V. Toshchakov
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova Sq., 1, Moscow 123182, Russia;
| | - Daria G. Zavarzina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, Moscow 117312, Russia; (S.N.G.); (D.G.Z.)
| |
Collapse
|
4
|
Liu J, Yu J, Si W, Ding G, Zhang S, Gong D, Bi J. Variations in bacterial diversity and community structure in the sediments of an alkaline lake in Inner Mongolia plateau, China. PeerJ 2023; 11:e15909. [PMID: 37637159 PMCID: PMC10448878 DOI: 10.7717/peerj.15909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Alkaline lakes are a special aquatic ecosystem that act as important water and alkali resource in the arid-semiarid regions. The primary aim of the study is to explore how environmental factors affect community diversity and structure, and to find whether there are key microbes that can indicate changes in environmental factors in alkaline lakes. Therefore, four sediment samples (S1, S2, S3, and S4) were collected from Hamatai Lake which is an important alkali resource in Ordos' desert plateau of Inner Mongolia. Samples were collected along the salinity and alkalinity gradients and bacterial community compositions were investigated by Illumina Miseq sequencing. The results revealed that the diversity and richness of bacterial community decreased with increasing alkalinity (pH) and salinity, and bacterial community structure was obviously different for the relatively light alkaline and hyposaline samples (LAHO; pH < 8.5; salinity < 20‰) and high alkaline and hypersaline samples (HAHR; pH > 8.5; salinity > 20‰). Firmicutes, Proteobacteria and Bacteriodetes were observed to be the dominant phyla. Furthermore, Acidobacteria, Actinobacteria, and low salt-tolerant alkaliphilic nitrifying taxa were mainly distributed in S1 with LAHO characteristic. Firmicutes, Clostridia, Gammaproteobacteria, salt-tolerant alkaliphilic denitrifying taxa, haloalkaliphilic sulfur cycling taxa were mainly distributed in S2, S3 and S4, and were well adapted to haloalkaline conditions. Correlation analysis revealed that the community diversity (operational taxonomic unit numbers and/or Shannon index) and richness (Chao1) were significantly positively correlated with ammonium nitrogen (r = 0.654, p < 0.05; r = 0.680, p < 0.05) and negatively correlated with pH (r = -0.924, p < 0.01; r = -0.800, p < 0.01; r = -0.933, p < 0.01) and salinity (r = -0.615, p < 0.05; r = -0.647, p < 0.05). A redundancy analysis and variation partitioning analysis revealed that pH (explanation degrees of 53.5%, pseudo-F = 11.5, p < 0.01), TOC/TN (24.8%, pseudo-F = 10.3, p < 0.05) and salinity (9.2%, pseudo-F = 9.5, p < 0.05) were the most significant factors that caused the variations in bacterial community structure. The results suggested that alkalinity, nutrient salt and salinity jointly affect bacterial diversity and community structure, in which one taxon (Acidobacteria), six taxa (Cyanobacteria, Nitrosomonadaceae, Nitrospira, Bacillus, Lactococcus and Halomonas) and five taxa (Desulfonatronobacter, Dethiobacter, Desulfurivibrio, Thioalkalivibrio and Halorhodospira) are related to carbon, nitrogen and sulfur cycles, respectively. Classes Clostridia and Gammaproteobacteria might indicate changes of saline-alkali conditions in the sediments of alkaline lakes in desert plateau.
Collapse
Affiliation(s)
- Jumei Liu
- College of Chemistry and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jingli Yu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Wantong Si
- College of Chemistry and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, China
| | - Ge Ding
- College of Chemistry and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, China
| | - Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Donghui Gong
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Jie Bi
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| |
Collapse
|
5
|
Bourhane Z, Cagnon C, Castañeda C, Rodríguez-Ochoa R, Álvaro-Fuentes J, Cravo-Laureau C, Duran R. Vertical organization of microbial communities in Salineta hypersaline wetland, Spain. Front Microbiol 2023; 14:869907. [PMID: 36778872 PMCID: PMC9911865 DOI: 10.3389/fmicb.2023.869907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Microbial communities inhabiting hypersaline wetlands, well adapted to the environmental fluctuations due to flooding and desiccation events, play a key role in the biogeochemical cycles, ensuring ecosystem service. To better understand the ecosystem functioning, we studied soil microbial communities of Salineta wetland (NE Spain) in dry and wet seasons in three different landscape stations representing situations characteristic of ephemeral saline lakes: S1 soil usually submerged, S2 soil intermittently flooded, and S3 soil with halophytes. Microbial community composition was determined according to different redox layers by 16S rRNA gene barcoding. We observed reversed redox gradient, negative at the surface and positive in depth, which was identified by PERMANOVA as the main factor explaining microbial distribution. The Pseudomonadota, Gemmatimonadota, Bacteroidota, Desulfobacterota, and Halobacteriota phyla were dominant in all stations. Linear discriminant analysis effect size (LEfSe) revealed that the upper soil surface layer was characterized by the predominance of operational taxonomic units (OTUs) affiliated to strictly or facultative anaerobic halophilic bacteria and archaea while the subsurface soil layer was dominated by an OTU affiliated to Roseibaca, an aerobic alkali-tolerant bacterium. In addition, the potential functional capabilities, inferred by PICRUSt2 analysis, involved in carbon, nitrogen, and sulfur cycles were similar in all samples, irrespective of the redox stratification, suggesting functional redundancy. Our findings show microbial community changes according to water flooding conditions, which represent useful information for biomonitoring and management of these wetlands whose extreme aridity and salinity conditions are exposed to irreversible changes due to human activities.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Christine Cagnon
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Rafael Rodríguez-Ochoa
- Departamento de Medio Ambiente y Ciencias del Suelo, Universidad de Lleida, Lleida, Spain
| | | | | | - Robert Duran
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
6
|
Valkanas MM, Rosso T, Packard JE, Trun NJ. Limited carbon sources prevent sulfate remediation in circumneutral abandoned mine drainage. FEMS Microbiol Ecol 2021; 97:6070647. [PMID: 33417684 DOI: 10.1093/femsec/fiaa262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023] Open
Abstract
Passive remediation systems (PRS) use both biotic and abiotic processes to precipitate contaminants from abandoned mine drainage (AMD) so that the contaminants do not spread into local watersheds. PRS are efficient at removing heavy metals but sulfate remediation frequently does not occur. To understand the reasons for the lack of sulfate remediation, we studied four PRS that treat circumneutral AMD and one raw mine drainage discharge. Using 16S sequencing analysis, microbial community composition revealed a high relative abundance of bacterial families with sulfur cycling genera. Anaerobic abiotic studies showed that sulfide was quickly geochemically oxidized in the presence of iron hydroxides, leading to a buildup of sulfur intermediates. Supplementation of laboratory grown microbes from the PRS with lactate demonstrated the ability of actively growing microbes to overcome this abiotic sulfide oxidation by increasing the rate of sulfate reduction. Thus, the lack of carbon sources in the PRS contributes to the lack of sulfate remediation. Bacterial community analysis of 16S rRNA gene revealed that while the microbial communities in different parts of the PRS were phylogenetically distinct, the contaminated environments selected for communities that shared similar metabolic capabilities.
Collapse
Affiliation(s)
- Michelle M Valkanas
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Taylor Rosso
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Jessica E Packard
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Nancy J Trun
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| |
Collapse
|
7
|
Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052201] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulphate-reducing bacteria (SRB) are dominant species causing corrosion of various types of materials. However, they also play a beneficial role in bioremediation due to their tolerance of extreme pH conditions. The application of sulphate-reducing bacteria (SRB) in bioremediation and control methods for microbiologically influenced corrosion (MIC) in extreme pH environments requires an understanding of the microbial activities in these conditions. Recent studies have found that in order to survive and grow in high alkaline/acidic condition, SRB have developed several strategies to combat the environmental challenges. The strategies mainly include maintaining pH homeostasis in the cytoplasm and adjusting metabolic activities leading to changes in environmental pH. The change in pH of the environment and microbial activities in such conditions can have a significant impact on the microbial corrosion of materials. These bacteria strategies to combat extreme pH environments and their effect on microbial corrosion are presented and discussed.
Collapse
|
8
|
Pérez-Bernal MF, Brito EMS, Bartoli M, Aubé J, Ollivier B, Guyoneaud R, Hirschler-Réa A. Desulfobotulus mexicanus sp. nov., a novel sulfate-reducing bacterium isolated from the sediment of an alkaline crater lake in Mexico. Int J Syst Evol Microbiol 2020; 70:3219-3225. [PMID: 32271141 DOI: 10.1099/ijsem.0.004159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-negative, non-spore-forming, vibrio-shaped, anaerobic, alkaliphilic, sulfate-reducing bacterium, designated strain PAR22NT, was isolated from sediment samples collected at an alkaline crater lake in Guanajuato (Mexico). Strain PAR22NT grew at temperatures between 15 and 37 °C (optimum, 32 °C), at pH between pH 8.3 and 10.1 (optimum, pH 9.0-9.6), and in the presence of NaCl up to 10 %. Pyruvate, 2-methylbutyrate and fatty acids (4-18 carbon atoms) were used as electron donors in the presence of sulfate as a terminal electron acceptor and were incompletely oxidized to acetate and CO2. Besides sulfate, both sulfite and elemental sulfur were also used as terminal electron acceptors and were reduced to sulfide. The predominant fatty acids were summed feature 10 (C18 : 1 ω7c and/or C18 : 1 ω9t and/or C18 : 1 ω12t), C18 : 1 ω9c and C16 : 0. The genome size of strain PAR22NT was 3.8 Mb including 3391 predicted genes. The genomic DNA G+C content was 49.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that it belongs to the genus Desulfobotulus within the class Deltaproteobacteria. Its closest phylogenetic relatives are Desulfobotulus alkaliphilus (98.4 % similarity) and Desulfobotulus sapovorans (97.9 % similarity). Based on phylogenetic, phenotypic and chemotaxonomic characteristics, we propose that the isolate represents a novel species of the genus Desulfobotulus with the name Desulfobotulus mexicanus sp. nov. The type strain is PAR22NT (=DSM 105758T=JCM 32146T).
Collapse
Affiliation(s)
- Maria Fernanda Pérez-Bernal
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.,Laboratory of Sanitary and Environmental Engineering, Engineering Division, Campus de Guanajuato, University of Guanajuato, Guanajuato, Mexico.,Environmental Microbiology group, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, Pau, France
| | - Elcia M S Brito
- Laboratory of Sanitary and Environmental Engineering, Engineering Division, Campus de Guanajuato, University of Guanajuato, Guanajuato, Mexico.,Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Manon Bartoli
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Johanne Aubé
- Present address: Univ. Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France.,Environmental Microbiology group, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, Pau, France
| | - Bernard Ollivier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Rémy Guyoneaud
- Environmental Microbiology group, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, Pau, France
| | - Agnès Hirschler-Réa
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| |
Collapse
|
9
|
Qian Z, Tianwei H, Mackey HR, van Loosdrecht MCM, Guanghao C. Recent advances in dissimilatory sulfate reduction: From metabolic study to application. WATER RESEARCH 2019; 150:162-181. [PMID: 30508713 DOI: 10.1016/j.watres.2018.11.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 05/24/2023]
Abstract
Sulfate-reducing bacteria (SRB) are a group of diverse anaerobic microorganisms omnipresent in natural habitats and engineered environments that use sulfur compounds as the electron acceptor for energy metabolism. Dissimilatory sulfate reduction (DSR)-based techniques mediated by SRB have been utilized in many sulfate-containing wastewater treatment systems worldwide, particularly for acid mine drainage, groundwater, sewage and industrial wastewater remediation. However, DSR processes are often operated suboptimally and disturbances are common in practical application. To improve the efficiency and robustness of SRB-based processes, it is necessary to study SRB metabolism and operational conditions. In this review, the mechanisms of DSR processes are reviewed and discussed focusing on intracellular and extracellular electron transfer with different electron donors (hydrogen, organics, methane and electrodes). Based on the understanding of the metabolism of SRB, responses of SRB to environmental stress (pH-, temperature-, and salinity-related stress) are summarized at the species and community levels. Application in these stressed conditions is discussed and future research is proposed. The feasibility of recovering energy and resources such as biohydrogen, hydrocarbons, polyhydroxyalkanoates, magnetite and metal sulfides through the use of SRB were investigated but some long-standing questions remain unanswered. Linking the existing scientific understanding and observations to practical application is the challenge as always for promotion of SRB-based techniques.
Collapse
Affiliation(s)
- Zeng Qian
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Tianwei
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Chen Guanghao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
10
|
Timmers PHA, Vavourakis CD, Kleerebezem R, Damsté JSS, Muyzer G, Stams AJM, Sorokin DY, Plugge CM. Metabolism and Occurrence of Methanogenic and Sulfate-Reducing Syntrophic Acetate Oxidizing Communities in Haloalkaline Environments. Front Microbiol 2018; 9:3039. [PMID: 30619130 PMCID: PMC6295475 DOI: 10.3389/fmicb.2018.03039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/26/2018] [Indexed: 01/31/2023] Open
Abstract
Anaerobic syntrophic acetate oxidation (SAO) is a thermodynamically unfavorable process involving a syntrophic acetate oxidizing bacterium (SAOB) that forms interspecies electron carriers (IECs). These IECs are consumed by syntrophic partners, typically hydrogenotrophic methanogenic archaea or sulfate reducing bacteria. In this work, the metabolism and occurrence of SAOB at extremely haloalkaline conditions were investigated, using highly enriched methanogenic (M-SAO) and sulfate-reducing (S-SAO) cultures from south-western Siberian hypersaline soda lakes. Activity tests with the M-SAO and S-SAO cultures and thermodynamic calculations indicated that H2 and formate are important IECs in both SAO cultures. Metagenomic analysis of the M-SAO cultures showed that the dominant SAOB was ‘Candidatus Syntrophonatronum acetioxidans,’ and a near-complete draft genome of this SAOB was reconstructed. ‘Ca. S. acetioxidans’ has all genes necessary for operating the Wood–Ljungdahl pathway, which is likely employed for acetate oxidation. It also encodes several genes essential to thrive at haloalkaline conditions; including a Na+-dependent ATP synthase and marker genes for ‘salt-out‘ strategies for osmotic homeostasis at high soda conditions. Membrane lipid analysis of the M-SAO culture showed the presence of unusual bacterial diether membrane lipids which are presumably beneficial at extreme haloalkaline conditions. To determine the importance of SAO in haloalkaline environments, previously obtained 16S rRNA gene sequencing data and metagenomic data of five different hypersaline soda lake sediment samples were investigated, including the soda lakes where the enrichment cultures originated from. The draft genome of ‘Ca. S. acetioxidans’ showed highest identity with two metagenome-assembled genomes (MAGs) of putative SAOBs that belonged to the highly abundant and diverse Syntrophomonadaceae family present in the soda lake sediments. The 16S rRNA gene amplicon datasets of the soda lake sediments showed a high similarity of reads to ‘Ca. S. acetioxidans’ with abundance as high as 1.3% of all reads, whereas aceticlastic methanogens and acetate oxidizing sulfate-reducers were not abundant (≤0.1%) or could not be detected. These combined results indicate that SAO is the primary anaerobic acetate oxidizing pathway at extreme haloalkaline conditions performed by haloalkaliphilic syntrophic consortia.
Collapse
Affiliation(s)
- Peer H A Timmers
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,European Centre of Excellence for Sustainable Water Technology, Wetsus, Leeuwarden, Netherlands
| | - Charlotte D Vavourakis
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, Utrecht University, Utrecht, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Dimity Y Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,European Centre of Excellence for Sustainable Water Technology, Wetsus, Leeuwarden, Netherlands
| |
Collapse
|
11
|
Vavourakis CD, Andrei AS, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. MICROBIOME 2018; 6:168. [PMID: 30231921 PMCID: PMC6146748 DOI: 10.1186/s40168-018-0548-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/03/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Hypersaline soda lakes are characterized by extreme high soluble carbonate alkalinity. Despite the high pH and salt content, highly diverse microbial communities are known to be present in soda lake brines but the microbiome of soda lake sediments received much less attention of microbiologists. Here, we performed metagenomic sequencing on soda lake sediments to give the first extensive overview of the taxonomic diversity found in these complex, extreme environments and to gain novel physiological insights into the most abundant, uncultured prokaryote lineages. RESULTS We sequenced five metagenomes obtained from four surface sediments of Siberian soda lakes with a pH 10 and a salt content between 70 and 400 g L-1. The recovered 16S rRNA gene sequences were mostly from Bacteria, even in the salt-saturated lakes. Most OTUs were assigned to uncultured families. We reconstructed 871 metagenome-assembled genomes (MAGs) spanning more than 45 phyla and discovered the first extremophilic members of the Candidate Phyla Radiation (CPR). Five new species of CPR were among the most dominant community members. Novel dominant lineages were found within previously well-characterized functional groups involved in carbon, sulfur, and nitrogen cycling. Moreover, key enzymes of the Wood-Ljungdahl pathway were encoded within at least four bacterial phyla never previously associated with this ancient anaerobic pathway for carbon fixation and dissimilation, including the Actinobacteria. CONCLUSIONS Our first sequencing effort of hypersaline soda lake sediment metagenomes led to two important advances. First, we showed the existence and obtained the first genomes of haloalkaliphilic members of the CPR and several hundred other novel prokaryote lineages. The soda lake CPR is a functionally diverse group, but the most abundant organisms in this study are likely fermenters with a possible role in primary carbon degradation. Second, we found evidence for the presence of the Wood-Ljungdahl pathway in many more taxonomic groups than those encompassing known homo-acetogens, sulfate-reducers, and methanogens. Since only few environmental metagenomics studies have targeted sediment microbial communities and never to this extent, we expect that our findings are relevant not only for the understanding of haloalkaline environments but can also be used to set targets for future studies on marine and freshwater sediments.
Collapse
Affiliation(s)
- Charlotte D. Vavourakis
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, the Netherlands
| | - Adrian-Stefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, 60 let Oktyabrya pr-t, 7, bld. 2, Moscow, Russian Federation 117312
- Environmental Biotechnology, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, the Netherlands
| |
Collapse
|
12
|
Zaitseva SV, Abidueva EY, Radnagurueva AA, Bazarov SM, Buryukhaev SP. Structure of Microbial Communities of the Sediments of Alkaline Transbaikalia Lakes with Different Salinity. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
13
|
Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia). Extremophiles 2018; 22:651-663. [DOI: 10.1007/s00792-018-1026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
|
14
|
Ben Ali Gam Z, Thioye A, Cayol JL, Joseph M, Fauque G, Labat M. Characterization of Desulfovibrio salinus sp. nov., a slightly halophilic sulfate-reducing bacterium isolated from a saline lake in Tunisia. Int J Syst Evol Microbiol 2018; 68:715-720. [DOI: 10.1099/ijsem.0.002567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Zouhaier Ben Ali Gam
- Laboratoire de Microbiologie IRD, Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MI0 UM110, 163 avenue de Luminy, case 925, F-13288 Marseille cedex 9, France
| | - Abdoulaye Thioye
- Laboratoire de Microbiologie IRD, Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MI0 UM110, 163 avenue de Luminy, case 925, F-13288 Marseille cedex 9, France
- Laboratoire de Microbiologie Appliquée et de Génie Industriel, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, Dakar, Sénégal
| | - Jean-Luc Cayol
- Laboratoire de Microbiologie IRD, Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MI0 UM110, 163 avenue de Luminy, case 925, F-13288 Marseille cedex 9, France
| | - Manon Joseph
- Laboratoire de Microbiologie IRD, Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MI0 UM110, 163 avenue de Luminy, case 925, F-13288 Marseille cedex 9, France
| | - Guy Fauque
- Laboratoire de Microbiologie IRD, Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MI0 UM110, 163 avenue de Luminy, case 925, F-13288 Marseille cedex 9, France
| | - Marc Labat
- Laboratoire de Microbiologie IRD, Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MI0 UM110, 163 avenue de Luminy, case 925, F-13288 Marseille cedex 9, France
| |
Collapse
|
15
|
Liu ZH, Yin H, Lin Z, Dang Z. Sulfate-reducing bacteria in anaerobic bioprocesses: basic properties of pure isolates, molecular quantification, and controlling strategies. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/21622515.2018.1437783] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ze-hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, People’s Republic of China
- Key Lab Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, People’s Republic of China
- Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, People’s Republic of China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, People’s Republic of China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, People’s Republic of China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
'Candidatus Desulfonatronobulbus propionicus': a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles 2016; 20:895-901. [PMID: 27734192 DOI: 10.1007/s00792-016-0881-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Propionate can be directly oxidized anaerobically with sulfate as e-acceptor at haloalkaline conditions either incompletely to acetate (an example is Desulfobulbus alkaliphilus), or completely (for example by the members of genus Desulfonatronobacter). An enrichment with propionate at methanogenic conditions (without sulfate) inoculated with mixed sediments from hypersaline soda lakes in Kulunda Steppe (Altai, Russia) resulted in a domination of a new member of Syntrophobacteraceae (Deltaproteobacteria) in a consortium with the haloalkaliphilic lithotrophic methanogen Methanocalculus alkaliphilus. Transfer of this culture to a medium containing propionate as e-donor and sulfate as e-acceptor resulted in a disappearance of the methanogen and sulfide formation by the bacterial component, finally isolated into a pure culture at these conditions. Strain APr1 formed a distinct phylogenetic lineage within the family Syntrophobacteraceae, being equally distant from its members at the genus level. Phenotypically, strain APr1 resembled the species of the genus Syntrophobacter with substrate spectrum restricted to propionate and propanol utilized with sulfate, sulfite and thiosulfate as the e-acceptors. Propionate is oxidized incompletely to acetate. It is a moderately salt-tolerant (max. 1.2 M Na+) obligate alkaliphile (pH opt. 10). The isolate is proposed to be classified as a new candidate genus and species 'Candidatus Desulfonatronobulbus propionicus'.
Collapse
|
17
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2016; 66:1-3. [PMID: 26865469 DOI: 10.1099/ijsem.0.000737] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|