1
|
Habe H, Aoyagi T, Hori T, Inaba T, Sato Y, Yasutaka T. Distinctive microbial communities linked with pH and heavy metals in mine drainages across all regions of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179222. [PMID: 40157033 DOI: 10.1016/j.scitotenv.2025.179222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Passive treatment using microorganisms is a promising method for removing toxic metals from acid mine drainage (AMD). To provide a better understanding of the compositions of mine microbial communities and their relationship with pH and metal concentrations in mine water, we analyzed both physicochemical data and 16S rRNA gene amplicon sequences from 40 untreated drainages from 30 abandoned mines across all regions of Japan. In the 40 mine drainages, higher concentrations of metals (iron, lead, cadmium, copper, and manganese) were detected in mine drainages with acidic pH (< 4.5; 24 samples) than in those with circumneutral pH (> 6.0; 16 samples), except for arsenic. Comparison of principal coordinate analysis scatter plots between mine drainages of acidic and circumneutral pH revealed a relatively clear separation of microbial compositions except for one mine drainage sample. In the 24 AMDs, the dominant operational taxonomic units (OTUs) found at relative abundance levels >3 % were generally one of three related to Caballeronia arationis, Ferrovum myxofaciens, or Gallionella capsiferriformans, except for two mine drainage samples. Although the microbial communities of the 40 mine drainages were obtained from a single sampling time (triplicate analysis), they may reflect the typical microbial communities of each mine drainage, because analysis of drainage samples taken from the same sampling point over three different seasons (summer, autumn, and winter) revealed similar communities regardless of the season. Among mine drainages analyzed in this study, the OTU showing 96.8 % identity to C. arationis was the most prevalent bacterial OTU, which was found in 23 drainages (the top OTU in 15 mine drainages) with >3 % relative abundance.
Collapse
Affiliation(s)
- Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tetsuo Yasutaka
- Geological Survey of Japan, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| |
Collapse
|
2
|
Xia J, Fan X, Lu Y, Li Y, Wang Z, He S, Lyu H, Li J. Geochemical behavior of iron-sulfur coupling in coastal wetland sediments and its impact on heavy metal speciation and migration. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107065. [PMID: 40085984 DOI: 10.1016/j.marenvres.2025.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Coastal wetlands play a vital role in energy flow and material cycling, holding irreplaceable significance for global ecological security. This paper provides a comprehensive review of the geochemical behaviors of key elements, particularly iron and sulfur, in coastal wetland sediments, as well as their influence on the speciation and mobility of heavy metals. The findings indicate that the redox processes of iron, driven by both biotic and abiotic factors, are tightly coupled with sulfur redox reactions, thereby continuously regulating the speciation and mobility of heavy metals. This interplay serves as a critical determinant in the "source-sink" dynamics of heavy metals within coastal wetland sediments. A deeper understanding of these intricate mechanisms is essential for elucidating the operational principles of wetland ecosystems, assessing their ecological and environmental quality, and developing effective protection and management strategies. Future research should prioritize a deeper exploration of iron-sulfur cycling mechanisms, enhance the monitoring and evaluation of heavy metal transformation and migration processes, and investigate the environmental effects of secondary iron-sulfur minerals on the behavior and storage of heavy metals. These efforts will provide robust theoretical support for the restoration and sustainable management of coastal wetland ecosystems.
Collapse
Affiliation(s)
- Jiaojiao Xia
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 2122013, China
| | - Xue Fan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 2122013, China
| | - Yanyan Lu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 2122013, China
| | - Yan Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 2122013, China
| | - Zhiquan Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huihua Lyu
- Yancheng Yellow Sea Wetland Research Institute, Yancheng, 224051, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 2122013, China.
| |
Collapse
|
3
|
Arce-Rodríguez A, Libby E, Castellón E, Avendaño R, Cambronero JC, Vargas M, Pieper DH, Bertilsson S, Chavarría M, Puente-Sánchez F. Out of the blue: the independent activity of sulfur-oxidizers and diatoms mediate the sudden color shift of a tropical river. ENVIRONMENTAL MICROBIOME 2023; 18:6. [PMID: 36658604 PMCID: PMC9854191 DOI: 10.1186/s40793-023-00464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Río Celeste ("Sky-Blue River") is a river located in the Tenorio National Park (Costa Rica) that has become an important hotspot for eco-tourism due to its striking sky-blue color. A previous study indicated that this color is not caused by dissolved chemical species, but by formation of light-scattering aluminosilicate particles at the mixing point of two colorless streams, the acidic Quebrada Agria and the neutral Río Buenavista. RESULTS We now present microbiological information on Río Celeste and its two tributaries, as well as a more detailed characterization of the particles that occur at the mixing point. Our results overturn the previous belief that the light scattering particles are formed by the aggregation of smaller particles coming from Río Buenavista, and rather point to chemical formation of hydroxyaluminosilicate colloids when Quebrada Agria is partially neutralized by Río Buenavista, which also contributes silica to the reaction. The process is mediated by the activities of different microorganisms in both streams. In Quebrada Agria, sulfur-oxidizing bacteria generate an acidic environment, which in turn cause dissolution and mobilization of aluminum and other metals. In Río Buenavista, the growth of diatoms transforms dissolved silicon into colloidal biogenic forms which may facilitate particle precipitation. CONCLUSIONS We show how the sky-blue color of Río Celeste arises from the tight interaction between chemical and biological processes, in what constitutes a textbook example of emergent behavior in environmental microbiology.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Institute of Microbiology, Technical University of Braunschweig, 38106, Brunswick, Germany
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Eduardo Libby
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Erick Castellón
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Juan Carlos Cambronero
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Maribel Vargas
- Centro de Investigaciones en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Stefan Bertilsson
- Deparment of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms Väg 9, 756 51, Uppsala, Sweden
| | - Max Chavarría
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Fernando Puente-Sánchez
- Deparment of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms Väg 9, 756 51, Uppsala, Sweden.
| |
Collapse
|
4
|
Phytochemistry Meets Geochemistry—Blumenol C Sulfate: A New Megastigmane Sulfate from Palicourea luxurians (Rubiaceae: Palicoureeae). Molecules 2022; 27:molecules27217284. [PMID: 36364108 PMCID: PMC9658315 DOI: 10.3390/molecules27217284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
There is a previously neglected influence of geochemical conditions on plant phytochemistry. In particular, high concentrations of dissolved salts can affect their biosynthesis of natural products. Detoxification is most likely an important aspect for the plant, but additional natural products can also give it an expanded range of bioactivities. During the phytochemical analysis a Palicourea luxurians plant collected in a sulfate-rich environment (near the Río Sucio, Costa Rica) showed an interesting natural product in this regard. The structure of this compound was determined using spectroscopic and computational methods (NMR, MS, UV, IR, CD, optical rotation, quantum chemical calculations) and resulted in a megastigmane sulfate ester possessing a β-ionone core structure, namely blumenol C sulfate (1, C13H22O5S). The levels of sulfur and sulfate ions in the leaves of the plant were determined using elemental analysis and compared to the corresponding levels in comparable plant leaves from a less sulfate-rich environments. The analyses show the leaves from which we isolated blumenol C sulfate (1) to contain 35% more sulfur and 80% more sulfate than the other samples. Antimicrobial and antioxidant activities of compound 1 were tested against Escherichia coli, E. coli ampR and Bacillus subtilis as well as measured using complementary in vitro FRAP and ATBS assays, respectively. These bioactivities are comparable to those determined for structurally related megastigmanes. The sulfur and sulfate content of the plant leaves from the sulfate-rich environment was significantly higher than that of the other plants. Against this background of salt stress, we discuss a possible biosynthesis of blumenol C sulfate (1). Furthermore, there appears to be no benefit for the plant in terms of extended bioactivities. Hence, the formation of blumenol C sulfate (1) probably primarily serves the plant detoxification process.
Collapse
|
5
|
Rojas-Gätjens D, Fuentes-Schweizer P, Rojas-Jiménez K, Pérez-Pantoja D, Avendaño R, Alpízar R, Coronado-Ruíz C, Chavarría M. Methylotrophs and Hydrocarbon-Degrading Bacteria Are Key Players in the Microbial Community of an Abandoned Century-Old Oil Exploration Well. MICROBIAL ECOLOGY 2022; 83:83-99. [PMID: 33864491 DOI: 10.1007/s00248-021-01748-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
In this work, we studied the microbial community and the physicochemical conditions prevailing in an exploratory oil well, abandoned a century ago, located in the Cahuita National Park (Costa Rica). According to our analysis, Cahuita well is characterized by a continuous efflux of methane and the presence of a mixture of hydrocarbons including phenanthrene/anthracene, fluoranthene, pyrene, dibenzothiophene, tricyclic terpanes, pyrene, sesquiterpenes, sterane, and n-alkanes. Based on the analysis of 16S rRNA gene amplicons, we detected a significant abundance of methylotrophic bacteria such as Methylobacillus (6.3-26.0% of total reads) and Methylococcus (4.1-30.6%) and the presence of common genera associated with hydrocarbon degradation, such as Comamonas (0.8-4.6%), Hydrogenophaga (1.5-3.3%) Rhodobacter (1.0-4.9%), and Flavobacterium (1.1-6.5%). The importance of C1 metabolism in this niche was confirmed by amplifying the methane monooxygenase (MMO)-encoding gene (pmo) from environmental DNA and the isolation of two strains closely related to Methylorubrum rhodesianum and Paracoccus communis with the ability to growth using methanol and formate as sole carbon source respectively. In addition, we were able to isolated 20 bacterial strains from the genera Pseudomonas, Acinetobacter, and Microbacterium which showed the capability to grow using the hydrocarbons detected in the oil well as sole carbon source. This work describes the physicochemical properties and microbiota of an environment exposed to hydrocarbons for 100 years, and it not only represents a contribution to the understanding of microbial communities in environments with permanently high concentrations of these compounds but also has biotechnological implications for bioremediation of petroleum-polluted sites.
Collapse
Affiliation(s)
- Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Paola Fuentes-Schweizer
- Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica
| | - Keilor Rojas-Jiménez
- Escuela de Biología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Randall Alpízar
- Hidroambiente Consultores, 45, Goicoechea, San José, Costa Rica
| | - Carolina Coronado-Ruíz
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica.
- Escuela de Química, Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica.
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica.
| |
Collapse
|
6
|
Rojas-Gätjens D, Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Libby E, Mora-Amador R, Rojas-Jimenez K, Fuentes-Schweizer P, Pieper DH, Chavarría M. Temperature and elemental sulfur shape microbial communities in two extremely acidic aquatic volcanic environments. Extremophiles 2021; 25:85-99. [PMID: 33416983 DOI: 10.1007/s00792-020-01213-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023]
Abstract
Aquatic environments of volcanic origin provide an exceptional opportunity to study the adaptations of microorganisms to early planet life conditions. Here, we characterized the prokaryotic communities and physicochemical properties of seepage sites at the bottom of the Poas Volcano crater and the Agrio River, two geologically related extremely acidic environments located in Costa Rica. Both locations hold a low pH (1.79-2.20) and have high sulfate and iron concentrations (Fe = 47-206 mg/L, SO42- = 1170-2460 mg/L), but significant differences in their temperature (90.0-95.0 ºC in the seepages at Poas Volcano, 19.1-26.6 ºC in Agrio River) and in the elemental sulfur content. Based on the analysis of 16S rRNA gene sequences, we determined that Sulfobacillus spp. represented more than half of the sequences in Poas Volcano seepage sites, while Agrio River was dominated by Leptospirillum and members of the archaeal order Thermoplasmatales. Both environments share some chemical characteristics and part of their microbiota, however, the temperature and the reduced sulfur are likely the main distinguishing features, ultimately shaping their microbial communities. Our data suggest that in the Poas Volcano-Agrio River system there is a common metabolism but with specialization of species that adapt to the physicochemical conditions of each environment.
Collapse
Affiliation(s)
- Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Alejandro Arce-Rodríguez
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Fernando Puente-Sánchez
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Eduardo Libby
- Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica
| | - Raúl Mora-Amador
- Escuela Centroamericana de Geología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica.,Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, San José, 11501-2060, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica.,Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica. .,Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica. .,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica.
| |
Collapse
|
7
|
Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Libby E, Mora-Amador R, Rojas-Jimenez K, Martínez M, Pieper DH, Chavarría M. Microbial Community Structure Along a Horizontal Oxygen Gradient in a Costa Rican Volcanic Influenced Acid Rock Drainage System. MICROBIAL ECOLOGY 2020; 80:793-808. [PMID: 32572534 DOI: 10.1007/s00248-020-01530-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
We describe the geochemistry and microbial diversity of a pristine environment that resembles an acid rock drainage (ARD) but it is actually the result of hydrothermal and volcanic influences. We designate this environment, and other comparable sites, as volcanic influenced acid rock drainage (VARD) systems. The metal content and sulfuric acid in this ecosystem stem from the volcanic milieu and not from the product of pyrite oxidation. Based on the analysis of 16S rRNA gene amplicons, we report the microbial community structure in the pristine San Cayetano Costa Rican VARD environment (pH = 2.94-3.06, sulfate ~ 0.87-1.19 g L-1, iron ~ 35-61 mg L-1 (waters), and ~ 8-293 g kg-1 (sediments)). San Cayetano was found to be dominated by microorganisms involved in the geochemical cycling of iron, sulfur, and nitrogen; however, the identity and abundance of the species changed with the oxygen content (0.40-6.06 mg L-1) along the river course. The hypoxic source of San Cayetano is dominated by a putative anaerobic sulfate-reducing Deltaproteobacterium. Sulfur-oxidizing bacteria such as Acidithiobacillus or Sulfobacillus are found in smaller proportions with respect to typical ARD. In the oxic downstream, we identified aerobic iron-oxidizers (Leptospirillum, Acidithrix, Ferrovum) and heterotrophic bacteria (Burkholderiaceae bacterium, Trichococcus, Acidocella). Thermoplasmatales archaea closely related to environmental phylotypes found in other ARD niches were also observed throughout the entire ecosystem. Overall, our study shows the differences and similarities in the diversity and distribution of the microbial communities between an ARD and a VARD system at the source and along the oxygen gradient that establishes on the course of the river.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Fernando Puente-Sánchez
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Eduardo Libby
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Raúl Mora-Amador
- Escuela Centroamericana de Geología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, San José, 11501-2060, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - María Martínez
- Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Heredia, 2386-3000, Costa Rica
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica.
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica.
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica.
| |
Collapse
|
8
|
McGenity TJ, Gessesse A, Hallsworth JE, Garcia Cela E, Verheecke‐Vaessen C, Wang F, Chavarría M, Haggblom MM, Molin S, Danchin A, Smid EJ, Lood C, Cockell CS, Whitby C, Liu S, Keller NP, Stein LY, Bordenstein SR, Lal R, Nunes OC, Gram L, Singh BK, Webster NS, Morris C, Sivinski S, Bindschedler S, Junier P, Antunes A, Baxter BK, Scavone P, Timmis K. Visualizing the invisible: class excursions to ignite children's enthusiasm for microbes. Microb Biotechnol 2020; 13:844-887. [PMID: 32406115 PMCID: PMC7264897 DOI: 10.1111/1751-7915.13576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
We have recently argued that, because microbes have pervasive - often vital - influences on our lives, and that therefore their roles must be taken into account in many of the decisions we face, society must become microbiology-literate, through the introduction of relevant microbiology topics in school curricula (Timmis et al. 2019. Environ Microbiol 21: 1513-1528). The current coronavirus pandemic is a stark example of why microbiology literacy is such a crucial enabler of informed policy decisions, particularly those involving preparedness of public-health systems for disease outbreaks and pandemics. However, a significant barrier to attaining widespread appreciation of microbial contributions to our well-being and that of the planet is the fact that microbes are seldom visible: most people are only peripherally aware of them, except when they fall ill with an infection. And it is disease, rather than all of the positive activities mediated by microbes, that colours public perception of 'germs' and endows them with their poor image. It is imperative to render microbes visible, to give them life and form for children (and adults), and to counter prevalent misconceptions, through exposure to imagination-capturing images of microbes and examples of their beneficial outputs, accompanied by a balanced narrative. This will engender automatic mental associations between everyday information inputs, as well as visual, olfactory and tactile experiences, on the one hand, and the responsible microbes/microbial communities, on the other hand. Such associations, in turn, will promote awareness of microbes and of the many positive and vital consequences of their actions, and facilitate and encourage incorporation of such consequences into relevant decision-making processes. While teaching microbiology topics in primary and secondary school is key to this objective, a strategic programme to expose children directly and personally to natural and managed microbial processes, and the results of their actions, through carefully planned class excursions to local venues, can be instrumental in bringing microbes to life for children and, collaterally, their families. In order to encourage the embedding of microbiology-centric class excursions in current curricula, we suggest and illustrate here some possibilities relating to the topics of food (a favourite pre-occupation of most children), agriculture (together with horticulture and aquaculture), health and medicine, the environment and biotechnology. And, although not all of the microbially relevant infrastructure will be within reach of schools, there is usually access to a market, local food store, wastewater treatment plant, farm, surface water body, etc., all of which can provide opportunities to explore microbiology in action. If children sometimes consider the present to be mundane, even boring, they are usually excited with both the past and the future so, where possible, visits to local museums (the past) and research institutions advancing knowledge frontiers (the future) are strongly recommended, as is a tapping into the natural enthusiasm of local researchers to leverage the educational value of excursions and virtual excursions. Children are also fascinated by the unknown, so, paradoxically, the invisibility of microbes makes them especially fascinating objects for visualization and exploration. In outlining some of the options for microbiology excursions, providing suggestions for discussion topics and considering their educational value, we strive to extend the vistas of current class excursions and to: (i) inspire teachers and school managers to incorporate more microbiology excursions into curricula; (ii) encourage microbiologists to support school excursions and generally get involved in bringing microbes to life for children; (iii) urge leaders of organizations (biopharma, food industries, universities, etc.) to give school outreach activities a more prominent place in their mission portfolios, and (iv) convey to policymakers the benefits of providing schools with funds, materials and flexibility for educational endeavours beyond the classroom.
Collapse
Affiliation(s)
| | - Amare Gessesse
- Department of Biological Sciences and BiotechnologyBotswana International University of Science and TechnologyPalapyeBotswana
| | - John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University BelfastBelfastUK
| | | | | | - Fengping Wang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Max Chavarría
- Escuela de QuímicaCentro de Investigaciones en Productos Naturales (CIPRONA)Universidad de Costa RicaSan JoséCosta Rica
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot)CeNAT-CONARESan JoséCosta Rica
| | - Max M. Haggblom
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Søren Molin
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Antoine Danchin
- Institut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Eddy J. Smid
- Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| | - Cédric Lood
- Department of Microbial and Molecular SystemsCentre of Microbial and Plant GeneticsLaboratory of Computational Systems BiologyKU Leuven3001LeuvenBelgium
- Department of BiosystemsLaboratory of Gene TechnologyKU Leuven3001LeuvenBelgium
| | | | | | | | - Nancy P. Keller
- Department of Medical Microbiology and ImmunologyUniversity of WisconsinMadisonWIUSA
| | - Lisa Y. Stein
- Department of Biological SciencesUniversity of AlbertaEdmontonABCanada
| | - Seth R. Bordenstein
- Department of Biological SciencesVanderbilt Microbiome InitiativeVanderbilt UniversityNashvilleTNUSA
| | - Rup Lal
- The Energy and Resources InstituteLodhi RoadNew Delhi110003India
| | - Olga C. Nunes
- Department of Chemical EngineeringUniversity of Porto4200‐465PortoPortugal
| | - Lone Gram
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentUniversity of Western SydneyPenrithAustralia
| | - Nicole S. Webster
- Australian Institute of Marine ScienceTownsvilleQLDAustralia
- Australian Centre for EcogenomicsUniversity of QueenslandBrisbaneQLDAustralia
| | | | | | | | - Pilar Junier
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - André Antunes
- State Key Laboratory of Lunar and Planetary SciencesMacau University of Science and Technology (MUST)Taipa, Macau SARChina
| | - Bonnie K. Baxter
- Great Salt Lake InstituteWestminster CollegeSalt Lake CityUtahUSA
| | - Paola Scavone
- Department of MicrobiologyInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
| | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| |
Collapse
|
9
|
In situ metabolic activities of uncultivated Ferrovum sp. CARN8 evidenced by metatranscriptomic analysis. Res Microbiol 2020; 171:37-43. [DOI: 10.1016/j.resmic.2019.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 11/23/2022]
|
10
|
Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Martínez-Cruz M, de Moor JM, Pieper DH, Chavarría M. Thermoplasmatales and sulfur-oxidizing bacteria dominate the microbial community at the surface water of a CO 2-rich hydrothermal spring located in Tenorio Volcano National Park, Costa Rica. Extremophiles 2019; 23:177-187. [PMID: 30600357 DOI: 10.1007/s00792-018-01072-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Here we report the chemical and microbial characterization of the surface water of a CO2-rich hydrothermal vent known in Costa Rica as Borbollones, located at Tenorio Volcano National Park. The Borbollones showed a temperature surrounding 60 °C, a pH of 2.4 and the gas released has a composition of ~ 97% CO2, ~ 0.07% H2S, ~ 2.3% N2 and ~ 0.12% CH4. Other chemical species such as sulfate and iron were found at high levels with respect to typical fresh water bodies. Analysis by 16S rRNA gene metabarcoding revealed that in Borbollones predominates an archaeon from the order Thermoplasmatales and one bacterium from the genus Sulfurimonas. Other sulfur- (genera Thiomonas, Acidithiobacillus, Sulfuriferula, and Sulfuricurvum) and iron-oxidizing bacteria (genera Sideroxydans, Gallionella, and Ferrovum) were identified. Our results show that CO2-influenced surface water of Borbollones contains microorganisms that are usually found in acid rock drainage environments or sulfur-rich hydrothermal vents. To our knowledge, this is the first microbiological characterization of a CO2-dominated hydrothermal spring from Central America and expands our understanding of those extreme ecosystems.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Institute of Microbiology, Technical University of Braunschweig, 38106, Brunswick, Germany.,Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany.,Molecular Bacteriology Research Group, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Fernando Puente-Sánchez
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - María Martínez-Cruz
- Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), 2386-3000, Heredia, Costa Rica
| | - J Maarten de Moor
- Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), 2386-3000, Heredia, Costa Rica
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica. .,Escuela de Química, Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, 11501-2060, San José, Costa Rica. .,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, 11501-2060, San José, Costa Rica.
| |
Collapse
|
11
|
Cheng Q, Nengzi L, Bao L, Huang Y, Liu S, Cheng X, Li B, Zhang J. Distribution and genetic diversity of microbial populations in the pilot-scale biofilter for simultaneous removal of ammonia, iron and manganese from real groundwater. CHEMOSPHERE 2017; 182:450-457. [PMID: 28521159 DOI: 10.1016/j.chemosphere.2017.05.075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/27/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
A pilot-scale biofilter treating real groundwater was developed in this study, which showed that ammonia, iron and manganese were mainly removed at 0.4, 0.4 and 0.8 m of the filter bed, respectively, and the corresponding removal efficiencies were 90.82%, 95.48% and 95.90% in steady phase, respectively. The variation of microbial populations in the biofilter during start-up process was also investigated using high-throughput pyrosequencing (HTP). Results indicated that the main functional microbes for ammonia, iron and manganese removal were Nitrosomonas, Crenothrix and Crenothrix, respectively, which was mainly distributed at 0.8, 0, and 0.8 m of the filter bed with a corresponding abundance of 8.7%, 28.12% and 11.33% in steady phase, respectively. Kinds of other bacteria which may be related to methane, hydrogen sulfide and organic matter removal, were also found. In addition, small part of archaea was also detected, such as Candidatus Nitrososphaera, which plays a role in nitritation.
Collapse
Affiliation(s)
- Qingfeng Cheng
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China; Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Lichao Nengzi
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Linlin Bao
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, PR China
| | - Yang Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Shengyu Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Xiuwen Cheng
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xinning Road 18, Chengxi District, Xining 810008, PR China; Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Bo Li
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xinning Road 18, Chengxi District, Xining 810008, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|