1
|
Yang JI, Jung HC, Oh HM, Choi BG, Lee HS, Kang SG. NADP + or CO 2 reduction by frhAGB-encoded hydrogenase through interaction with formate dehydrogenase 3 in the hyperthermophilic archaeon Thermococcus onnurineus NA1. Appl Environ Microbiol 2023; 89:e0147423. [PMID: 37966269 PMCID: PMC10734459 DOI: 10.1128/aem.01474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/23/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The strategy using structural homology with the help of structure prediction by AlphaFold was very successful in finding potential targets for the frhAGB-encoded hydrogenase of Thermococcus onnurineus NA1. The finding that the hydrogenase can interact with FdhB to reduce the cofactor NAD(P)+ is significant in that the enzyme can function to supply reducing equivalents, just as F420-reducing hydrogenases in methanogens use coenzyme F420 as an electron carrier. Additionally, it was identified that T. onnurineus NA1 could produce formate from H2 and CO2 by the concerted action of frhAGB-encoded hydrogenase and formate dehydrogenase Fdh3.
Collapse
Affiliation(s)
- Ji-in Yang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| | - Hae-Chang Jung
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
| | | | - Bo Gyoung Choi
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
2
|
Holden JF, Sistu H. Formate and hydrogen in hydrothermal vents and their use by extremely thermophilic methanogens and heterotrophs. Front Microbiol 2023; 14:1093018. [PMID: 36950162 PMCID: PMC10025317 DOI: 10.3389/fmicb.2023.1093018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Extremely thermophilic methanogens in the Methanococci and heterotrophs in the Thermococci are common in deep-sea hydrothermal vents. All Methanococci use H2 as an electron donor, and a few species can also use formate. Most Methanococci have a coenzyme F420-reducing formate dehydrogenase. All Thermococci reduce S0 but have hydrogenases and produce H2 in the absence of S0. Some Thermococci have formate hydrogenlyase (Fhl) that reversibly converts H2 and CO2 to formate or an NAD(P)+-reducing formate dehydrogenase (Nfd). Questions remain if Methanococci or Thermococci use or produce formate in nature, why only certain species can grow on or produce formate, and what the physiological role of formate is? Formate forms abiotically in hydrothermal fluids through chemical equilibrium with primarily H2, CO2, and CO and is strongly dependent upon H2 concentration, pH, and temperature. Formate concentrations are highest in hydrothermal fluids where H2 concentrations are also high, such as in ultramafic systems where serpentinization reactions occur. In nature, Methanococci are likely to use formate as an electron donor when H2 is limiting. Thermococci with Fhl likely convert H2 and CO2 to formate when H2 concentrations become inhibitory for growth. They are unlikely to grow on formate in nature unless formate is more abundant than H2 in the environment. Nearly all Methanococci and Thermococci have a gene for at least one formate dehydrogenase catalytic subunit, which may be used to provide free formate for de novo purine biosynthesis. However, only species with a membrane-bound formate transporter can grow on or secrete formate. Interspecies H2 transfer occurs between Thermococci and Methanococci. This and putative interspecies formate transfer may support Methanococci in low H2 environments, which in turn may prevent growth inhibition of Thermococci by its own H2. Future research directions include understanding when, where, and how formate is used and produced by these organisms in nature, and how transcription of Thermococci genes encoding formate-related enzymes are regulated.
Collapse
|
3
|
Abstract
Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of mal operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons, including genes associated with thiol relay and low molecular weight thiol biosynthesis. Further analysis of a subset of these sites revealed OxsR to function during hypochlorite stress as a transcriptional activator and repressor. OxsR was shown to require a conserved cysteine (C24) for function and to use a CG-rich motif upstream of conserved BRE/TATA box promoter elements for transcriptional activation. Protein modeling suggested the C24 is located at a homodimer interface formed by antiparallel α helices, and that oxidation of this cysteine would result in the formation of an intersubunit disulfide bond. This covalent linkage may promote stabilization of an OxsR homodimer with the enhanced DNA binding properties observed in the presence of hypochlorite stress. The phylogenetic distribution TrmB family proteins, like OxsR, that have a single winged-helix DNA binding domain and conserved cysteine residue suggests this type of redox signaling mechanism is widespread in Archaea.
Collapse
|
4
|
Pillot G, Amin Ali O, Davidson S, Shintu L, Godfroy A, Combet-Blanc Y, Bonin P, Liebgott PP. Identification of enriched hyperthermophilic microbial communities from a deep-sea hydrothermal vent chimney under electrolithoautotrophic culture conditions. Sci Rep 2021; 11:14782. [PMID: 34285254 PMCID: PMC8292307 DOI: 10.1038/s41598-021-94135-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Deep-sea hydrothermal vents are extreme and complex ecosystems based on a trophic chain. We are still unsure of the identities of the first colonizers of these environments and their metabolism, but they are thought to be (hyper)thermophilic autotrophs. Here we investigate whether the electric potential observed across hydrothermal chimneys could serve as an energy source for these first colonizers. Experiments were performed in a two-chamber microbial electrochemical system inoculated with deep-sea hydrothermal chimney samples, with a cathode as sole electron donor, CO2 as sole carbon source, and nitrate, sulfate, or oxygen as electron acceptors. After a few days of culturing, all three experiments showed growth of electrotrophic biofilms consuming the electrons (directly or indirectly) and producing organic compounds including acetate, glycerol, and pyruvate. Within the biofilms, the only known autotroph species retrieved were members of Archaeoglobales. Various heterotrophic phyla also grew through trophic interactions, with Thermococcales growing in all three experiments as well as other bacterial groups specific to each electron acceptor. This electrotrophic metabolism as energy source driving initial microbial colonization of conductive hydrothermal chimneys is discussed.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Oulfat Amin Ali
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Sylvain Davidson
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Laetitia Shintu
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Anne Godfroy
- IFREMER, CNRS, Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes-UMR6197, Ifremer, Centre de Brest CS10070, Plouzané, France
| | - Yannick Combet-Blanc
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Patricia Bonin
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Pierre-Pol Liebgott
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France.
| |
Collapse
|
5
|
Rawat M, Maupin-Furlow JA. Redox and Thiols in Archaea. Antioxidants (Basel) 2020; 9:antiox9050381. [PMID: 32380716 PMCID: PMC7278568 DOI: 10.3390/antiox9050381] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Low molecular weight (LMW) thiols have many functions in bacteria and eukarya, ranging from redox homeostasis to acting as cofactors in numerous reactions, including detoxification of xenobiotic compounds. The LMW thiol, glutathione (GSH), is found in eukaryotes and many species of bacteria. Analogues of GSH include the structurally different LMW thiols: bacillithiol, mycothiol, ergothioneine, and coenzyme A. Many advances have been made in understanding the diverse and multiple functions of GSH and GSH analogues in bacteria but much less is known about distribution and functions of GSH and its analogues in archaea, which constitute the third domain of life, occupying many niches, including those in extreme environments. Archaea are able to use many energy sources and have many unique metabolic reactions and as a result are major contributors to geochemical cycles. As LMW thiols are major players in cells, this review explores the distribution of thiols and their biochemistry in archaea.
Collapse
Affiliation(s)
- Mamta Rawat
- Biology Department, California State University, Fresno, CA 93740, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| |
Collapse
|
6
|
Direct Electron Transfer between the frhAGB-Encoded Hydrogenase and Thioredoxin Reductase in the Nonmethanogenic Archaeon Thermococcus onnurineus NA1. Appl Environ Microbiol 2020; 86:AEM.02630-19. [PMID: 31924613 DOI: 10.1128/aem.02630-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/21/2019] [Indexed: 11/20/2022] Open
Abstract
To date, NAD(P)H, ferredoxin, and coenzyme F420 have been identified as electron donors for thioredoxin reductase (TrxR). In this study, we present a novel electron source for TrxR. In the hyperthermophilic archaeon Thermococcus onnurineus NA1, the frhAGB-encoded hydrogenase, a homolog of the F420-reducing hydrogenase of methanogens, was demonstrated to interact with TrxR in coimmunoprecipitation experiments and in vitro pulldown assays. Electrons derived from H2 oxidation by the frhAGB-encoded hydrogenase were transferred to TrxR and reduced Pdo, a redox partner of TrxR. Interaction and electron transfer were observed between TrxR and the heterodimeric hydrogenase complex (FrhAG) as well as the heterotrimeric complex (FrhAGB). Hydrogen-dependent reduction of TrxR was 7-fold less efficient than when NADPH was the electron donor. This study not only presents a different type of electron donor for TrxR but also reveals new functionality of the frhAGB-encoded hydrogenase utilizing a protein as an electron acceptor.IMPORTANCE This study has importance in that TrxR can use H2 as an electron donor with the aid of the frhAGB-encoded hydrogenase as well as NAD(P)H in T. onnurineus NA1. Further studies are needed to explore the physiological significance of this protein. This study also has importance as a significant step toward understanding the functionality of the frhAGB-encoded hydrogenase in a nonmethanogen; the hydrogenase can transfer electrons derived from oxidation of H2 to a protein target by direct contact without the involvement of an electron carrier, which is distinct from the mechanism of its homologs, F420-reducing hydrogenases of methanogens.
Collapse
|
7
|
Methionine Sulfoxide Reductases of Archaea. Antioxidants (Basel) 2018; 7:antiox7100124. [PMID: 30241308 PMCID: PMC6211008 DOI: 10.3390/antiox7100124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023] Open
Abstract
Methionine sulfoxide reductases are found in all domains of life and are important in reversing the oxidative damage of the free and protein forms of methionine, a sulfur containing amino acid particularly sensitive to reactive oxygen species (ROS). Archaea are microbes of a domain of life distinct from bacteria and eukaryotes. Archaea are well known for their ability to withstand harsh environmental conditions that range from habitats of high ROS, such as hypersaline lakes of intense ultraviolet (UV) radiation and desiccation, to hydrothermal vents of low concentrations of dissolved oxygen at high temperature. Recent evidence reveals the methionine sulfoxide reductases of archaea function not only in the reduction of methionine sulfoxide but also in the ubiquitin-like modification of protein targets during oxidative stress, an association that appears evolutionarily conserved in eukaryotes. Here is reviewed methionine sulfoxide reductases and their distribution and function in archaea.
Collapse
|
8
|
Gene regulation of two ferredoxin:NADP + oxidoreductases by the redox-responsive regulator SurR in Thermococcus kodakarensis. Extremophiles 2017; 21:903-917. [PMID: 28688056 DOI: 10.1007/s00792-017-0952-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 07/02/2017] [Indexed: 01/21/2023]
Abstract
The redox-responsive regulator SurR in the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus kodakarensis binds to the SurR-binding consensus sequence (SBS) by responding to the presence of elemental sulfur. Here we constructed a surR gene disruption strain (DTS) in T. kodakarensis, and identified the genes that were under SurR control by comparing the transcriptomes of DTS and parent strains. Among these genes, transcript levels of ferredoxin:NADP+ oxidoreductases 1 and 2 (FNOR1 and FNOR2) genes displayed opposite responses to surR deletion, indicating that SurR repressed FNOR1 transcription while enhancing FNOR2 transcription. Each promoter region contains an SBS upstream (uSBS) and downstream (dSBS) of TATA. In addition to in vitro binding assays, we examined the roles of each SBS in vivo. In FNOR1, mutations in either one of the SBSs resulted in a complete loss of repression, indicating that the presence of both SBSs was essential for repression. In FNOR2, uSBS indeed functioned to enhance gene expression, whereas dSBS functioned in gene repression. SurR bound to uSBS2 of FNOR2 more efficiently than to dSBS2 in vitro, which may explain why SurR overall enhances FNOR2 transcription. Further analyses indicated the importance in the distance between uSBS and TATA for transcriptional activation in FNOR2.
Collapse
|