1
|
Xu J, Zhao R, Liu A, Li L, Li S, Li Y, Qu M, Di Y. To live or die: "Fine-tuning" adaptation revealed by systemic analyses in symbiotic bathymodiolin mussels from diverse deep-sea extreme ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170434. [PMID: 38278266 DOI: 10.1016/j.scitotenv.2024.170434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hydrothermal vents (HVs) and cold seeps (CSs) are typical deep-sea extreme ecosystems with their own geochemical characteristics to supply the unique living conditions for local communities. Once HVs or CSs stop emission, the dramatic environmental change would pose survival risks to deep-sea organisms. Up to now, limited knowledge has been available to understand the biological responses and adaptive strategy to the extreme environments and their transition from active to extinct stage, mainly due to the technical difficulties and lack of representative organisms. In this study, bathymodiolin mussels, the dominant and successful species surviving in diverse deep-sea extreme ecosystems, were collected from active and extinct HVs (Southwest Indian Ocean) or CSs (South China Sea) via two individual cruises. The transcriptomic analysis and determination of multiple biological indexes in stress defense and metabolic systems were conducted in both gills and digestive glands of mussels, together with the metagenomic analysis of symbionts in mussels. The results revealed the ecosystem- and tissue-specific transcriptional regulation in mussels, addressing the autologous adaptations in antioxidant defense, energy utilization and key compounds (i.e. sulfur) metabolism. In detail, the successful antioxidant defense contributed to conquering the oxidative stress induced during the unavoidable metabolism of xenobiotics commonly existing in the extreme ecosystems; changes in metabolic rate functioned to handle toxic matters in different surroundings; upregulated gene expression of sulfide:quinone oxidoreductase indicated an active sulfide detoxification in mussels from HVs and active stage of HVs & CSs. Coordinately, a heterologous adaptation, characterized by the functional compensation between symbionts and mussels in energy utilization, sulfur and carbon metabolism, was also evidenced by the bacterial metagenomic analysis. Taken together, a new insight was proposed that symbiotic bathymodiolin mussels would develop a "finetuning" strategy combining the autologous and heterologous regulations to fulfill the efficient and effective adaptations for successful survival.
Collapse
Affiliation(s)
- Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Yichen Li
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Yanan Di
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China.
| |
Collapse
|
2
|
Polymenakou PN, Nomikou P, Hannington M, Petersen S, Kilias SP, Anastasiou TI, Papadimitriou V, Zaka E, Kristoffersen JB, Lampridou D, Wind S, Heinath V, Lange S, Magoulas A. Taxonomic diversity of microbial communities in sub-seafloor hydrothermal sediments of the active Santorini-Kolumbo volcanic field. Front Microbiol 2023; 14:1188544. [PMID: 37455712 PMCID: PMC10345502 DOI: 10.3389/fmicb.2023.1188544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Active hydrothermal vents of volcanic origin provide a remarkable manifestation of life on Earth under extreme conditions, which may have consequences for our understanding of habitability on other terrestrial bodies as well. Methods Here, we performed for the first time Illumina sequencing of bacterial and archaeal communities on sub-seafloor samples collected from the Santorini-Kolumbo volcanic field. A total of 19 (3-m long) gravity corers were collected and processed for microbial community analysis. Results From a total of 6,46,671 produced V4 sequences for all samples, a total of 10,496 different Operational Taxonomic Units (OTUs) were identified that were assigned to 40 bacterial and 9 archaeal phyla and 14 candidate divisions. On average, the most abundant phyla in all samples were Chloroflexi (Chloroflexota) (24.62%), followed by Proteobacteria (Pseudomonadota) (11.29%), Firmicutes (Bacillota) (10.73%), Crenarchaeota (Thermoproteota) (8.55%), and Acidobacteria (Acidobacteriota) (8.07%). At the genus level, a total of 286 known genera and candidate genera were mostly dominated by members of Bacillus, Thermoflexus, Desulfatiglans, Pseudoalteromonas, and Pseudomonas. Discussion In most of the stations, the Chao1 values at the deeper layers were comparable to the surface sediment samples denoting the high diversity in the subsurface of these ecosystems. Heatmap analysis based on the 100 most abundant OTUs, grouped the sampling stations according to their geographical location, placing together the two hottest stations (up to 99°C). This result indicates that this specific area within the active Kolumbo crater create a distinct niche, where microorganisms with adaptation strategies to withstand heat stresses can thrive, such as the endospore-forming Firmicutes.
Collapse
Affiliation(s)
- Paraskevi N. Polymenakou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Paraskevi Nomikou
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Mark Hannington
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sven Petersen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Stephanos P. Kilias
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Thekla I. Anastasiou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Vasiliki Papadimitriou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Eleutheria Zaka
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Jon Bent Kristoffersen
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Danai Lampridou
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Sandra Wind
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Verena Heinath
- Institute of Geosciences, University of Kiel (CAU), Kiel, Germany
| | - Sabine Lange
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Antonios Magoulas
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| |
Collapse
|
3
|
Zhong YW, Zhou P, Cheng H, Zhou YD, Pan J, Xu L, Li M, Tao CH, Wu YH, Xu XW. Metagenomic Features Characterized with Microbial Iron Oxidoreduction and Mineral Interaction in Southwest Indian Ridge. Microbiol Spectr 2022; 10:e0061422. [PMID: 36286994 PMCID: PMC9769843 DOI: 10.1128/spectrum.00614-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023] Open
Abstract
The Southwest Indian Ridge (SWIR) is one of the typical representatives of deep-sea ultraslow-spreading ridges, and has increasingly become a hot spot of studying subsurface geological activities and deep-sea mining management. However, the understanding of microbial activities is still limited on active hydrothermal vent chimneys in SWIR. In this study, samples from an active black smoker and a diffuse vent located in the Longqi hydrothermal region were collected for deep metagenomic sequencing, which yielded approximately 290 GB clean data and 295 mid-to-high-quality metagenome-assembled genomes (MAGs). Sulfur oxidation conducted by a variety of Gammaproteobacteria, Alphaproteobacteria, and Campylobacterota was presumed to be the major energy source for chemosynthesis in Longqi hydrothermal vents. Diverse iron-related microorganisms were recovered, including iron-oxidizing Zetaproteobacteria, iron-reducing Deferrisoma, and magnetotactic bacterium. Twenty-two bacterial MAGs from 12 uncultured phyla harbored iron oxidase Cyc2 homologs and enzymes for organic carbon degradation, indicated novel chemolithoheterotrophic iron-oxidizing bacteria that affected iron biogeochemistry in hydrothermal vents. Meanwhile, potential interactions between microbial communities and chimney minerals were emphasized as enriched metabolic potential of siderophore transportation, and extracellular electron transfer functioned by multi-heme proteins was discovered. Composition of chimney minerals probably affected microbial iron metabolic potential, as pyrrhotite might provide more available iron for microbial communities. Collectively, this study provides novel insights into microbial activities and potential mineral-microorganism interactions in hydrothermal vents. IMPORTANCE Microbial activities and interactions with minerals and venting fluid in active hydrothermal vents remain unclear in the ultraslow-spreading SWIR (Southwest Indian Ridge). Understanding about how minerals influence microbial metabolism is currently limited given the obstacles in cultivating microorganisms with sulfur or iron oxidoreduction functions. Here, comprehensive descriptions on microbial composition and metabolic profile on 2 hydrothermal vents in SWIR were obtained based on cultivation-free metagenome sequencing. In particular, autotrophic sulfur oxidation supported by minerals was presumed, emphasizing the role of chimney minerals in supporting chemosynthesis. Presence of novel heterotrophic iron-oxidizing bacteria was also indicated, suggesting overlooked biogeochemical pathways directed by microorganisms that connected sulfide mineral dissolution and organic carbon degradation in hydrothermal vents. Our findings offer novel insights into microbial function and biotic interactions on minerals in ultraslow-spreading ridges.
Collapse
Affiliation(s)
- Ying-Wen Zhong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Peng Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Hong Cheng
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Ya-Dong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, PR China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Chun-Hui Tao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Submarine Geosciences, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Yue-Hong Wu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Xue-Wei Xu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| |
Collapse
|
4
|
Interaction between Microbes, Minerals, and Fluids in Deep-Sea Hydrothermal Systems. MINERALS 2021. [DOI: 10.3390/min11121324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery of deep-sea hydrothermal vents in the late 1970s widened the limits of life and habitability. The mixing of oxidizing seawater and reduction of hydrothermal fluids create a chemical disequilibrium that is exploited by chemosynthetic bacteria and archaea to harness energy by converting inorganic carbon into organic biomass. Due to the rich variety of chemical sources and steep physico-chemical gradients, a large array of microorganisms thrive in these extreme environments, which includes but are not restricted to chemolithoautotrophs, heterotrophs, and mixotrophs. Past research has revealed the underlying relationship of these microbial communities with the subsurface geology and hydrothermal geochemistry. Endolithic microbial communities at the ocean floor catalyze a number of redox reactions through various metabolic activities. Hydrothermal chimneys harbor Fe-reducers, sulfur-reducers, sulfide and H2-oxidizers, methanogens, and heterotrophs that continuously interact with the basaltic, carbonate, or ultramafic basement rocks for energy-yielding reactions. Here, we briefly review the global deep-sea hydrothermal systems, microbial diversity, and microbe–mineral interactions therein to obtain in-depth knowledge of the biogeochemistry in such a unique and geologically critical subseafloor environment.
Collapse
|
5
|
Dong X, Zhang C, Li W, Weng S, Song W, Li J, Wang Y. Functional diversity of microbial communities in inactive seafloor sulfide deposits. FEMS Microbiol Ecol 2021; 97:6327547. [PMID: 34302348 DOI: 10.1093/femsec/fiab108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/22/2021] [Indexed: 11/12/2022] Open
Abstract
The seafloor sulfide structures of inactive vents are known to host abundant and diverse microorganisms potentially supported by mineralogy of sulfides. However, little is known about the diversity and distribution of microbial functions. Here, we used genome-resolved metagenomics to predict microbial metabolic functions and the contribution of horizontal gene transfer to the functionality of microorganisms inhabiting several hydrothermally inactive seafloor deposits among globally distributed deep-sea vent fields. Despite of geographically distant vent fields, similar microbial community patterns were observed with the dominance of Gammaproteobacteria, Bacteroidota and previously overlooked Candidatus Patescibacteria. Metabolically flexible Gammaproteobacteria are major potential primary producers utilizing mainly sulfur, iron and hydrogen as electron donors coupled with oxygen and nitrate respiration for chemolithoautotrophic growth. In addition to heterotrophic microorganisms like free-living Bacteroidota, Ca. Patescibacteria potentially perform fermentative recycling of organic carbon. Finally, we provided evidence that many functional genes that are central to energy metabolism have been laterally transferred among members within the community and largely within the same class. Taken together, these findings shed light on microbial ecology and evolution in inactive seafloor sulfide deposits after the cessation of hydrothermal activities.
Collapse
Affiliation(s)
- Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Wenli Li
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Shengze Weng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Weizhi Song
- Centre for Marine Science & Innovation, University of New South Wales, 2052 Sydney, Australia
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Yong Wang
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| |
Collapse
|
6
|
Bravakos P, Mandalakis M, Nomikou P, Anastasiou TI, Kristoffersen JB, Stavroulaki M, Kilias S, Kotoulas G, Magoulas A, Polymenakou PN. Genomic adaptation of Pseudomonas strains to acidity and antibiotics in hydrothermal vents at Kolumbo submarine volcano, Greece. Sci Rep 2021; 11:1336. [PMID: 33446715 PMCID: PMC7809023 DOI: 10.1038/s41598-020-79359-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/04/2020] [Indexed: 12/05/2022] Open
Abstract
Although the rise of antibiotic and multidrug resistant bacteria is one of the biggest current threats to human health, our understanding of the mechanisms involved in antibiotic resistance selection remains scarce. We performed whole genome sequencing of 21 Pseudomonas strains, previously isolated from an active submarine volcano of Greece, the Kolumbo volcano. Our goal was to identify the genetic basis of the enhanced co-tolerance to antibiotics and acidity of these Pseudomonas strains. Pangenome analysis identified 10,908 Gene Clusters (GCs). It revealed that the numbers of phage-related GCs and sigma factors, which both provide the mechanisms of adaptation to environmental stressors, were much higher in the high tolerant Pseudomonas strains compared to the rest ones. All identified GCs of these strains were associated with antimicrobial and multidrug resistance. The present study provides strong evidence that the CO2-rich seawater of the volcano associated with low pH might be a reservoir of microorganisms carrying multidrug efflux-mediated systems and pumps. We, therefore, suggest further studies of other extreme environments (or ecosystems) and their associated physicochemical parameters (or factors) in the rise of antibiotic resistance.
Collapse
Affiliation(s)
- Panos Bravakos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (IMBBC-HCMR), Gournes Pediados, Heraklion Crete, Greece
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (IMBBC-HCMR), Gournes Pediados, Heraklion Crete, Greece
| | - Paraskevi Nomikou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Thekla I Anastasiou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (IMBBC-HCMR), Gournes Pediados, Heraklion Crete, Greece
| | - Jon Bent Kristoffersen
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (IMBBC-HCMR), Gournes Pediados, Heraklion Crete, Greece
| | - Melanthia Stavroulaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (IMBBC-HCMR), Gournes Pediados, Heraklion Crete, Greece
| | - Stephanos Kilias
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Kotoulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (IMBBC-HCMR), Gournes Pediados, Heraklion Crete, Greece
| | - Antonios Magoulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (IMBBC-HCMR), Gournes Pediados, Heraklion Crete, Greece
| | - Paraskevi N Polymenakou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (IMBBC-HCMR), Gournes Pediados, Heraklion Crete, Greece.
| |
Collapse
|
7
|
Mandalakis M, Gavriilidou A, Polymenakou PN, Christakis CA, Nomikou P, Medvecký M, Kilias SP, Kentouri M, Kotoulas G, Magoulas A. Microbial strains isolated from CO 2-venting Kolumbo submarine volcano show enhanced co-tolerance to acidity and antibiotics. MARINE ENVIRONMENTAL RESEARCH 2019; 144:102-110. [PMID: 30654982 DOI: 10.1016/j.marenvres.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
As ocean acidification intensifies, there is growing global concern about the impacts that future pH levels are likely to have on marine life and ecosystems. By analogy, a steep decrease of seawater pH with depth is encountered inside the Kolumbo submarine volcano (northeast Santorini) as a result of natural CO2 venting, making this system ideal for ocean acidification research. Here, we investigated whether the increase of acidity towards deeper layers of Kolumbo crater had any effect on relevant phenotypic traits of bacterial isolates. A total of 31 Pseudomonas strains were isolated from both surface- (SSL) and deep-seawater layers (DSL), with the latter presenting a significantly higher acid tolerance. In particular, the DSL strains were able to cope with H+ levels that were 18 times higher. Similarly, the DSL isolates exhibited a significantly higher tolerance than SSL strains against six commonly used antibiotics and As(III). More importantly, a significant positive correlation was revealed between antibiotics and acid tolerance across the entire set of SSL and DSL isolates. Our findings imply that Pseudomonas species with higher resilience to antibiotics could be favored by the prospect of acidifying oceans. Further studies are required to determine if this feature is universal across marine bacteria and to assess potential ecological impacts.
Collapse
Affiliation(s)
- Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece.
| | - Asimenia Gavriilidou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | - Paraskevi N Polymenakou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | - Christos A Christakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | - Paraskevi Nomikou
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupoli Zographou, 15784, Athens, Greece
| | - Matej Medvecký
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic; Veterinary Research Institute, 62100, Brno, Czech Republic
| | - Stephanos P Kilias
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupoli Zographou, 15784, Athens, Greece
| | - Maroudio Kentouri
- Department of Biology, University of Crete, 70013, Heraklion, Greece
| | - Georgios Kotoulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | - Antonios Magoulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| |
Collapse
|
8
|
Hydrothermal chimneys host habitat-specific microbial communities: analogues for studying the possible impact of mining seafloor massive sulfide deposits. Sci Rep 2018; 8:10386. [PMID: 29991752 PMCID: PMC6039533 DOI: 10.1038/s41598-018-28613-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/22/2018] [Indexed: 01/17/2023] Open
Abstract
To assess the risk that mining of seafloor massive sulfides (SMS) from extinct hydrothermal vent environments has for changing the ecosystem irreversibly, we sampled SMS analogous habitats from the Kairei and the Pelagia vent fields along the Indian Ridge. In total 19.8 million 16S rRNA tags from 14 different sites were analyzed and the microbial communities were compared with each other and with publicly available data sets from other marine environments. The chimneys appear to provide habitats for microorganisms that are not found or only detectable in very low numbers in other marine habitats. The chimneys also host rare organisms and may function as a vital part of the ocean’s seed bank. Many of the reads from active and inactive chimney samples were clustered into OTUs, with low or no resemblance to known species. Since we are unaware of the chemical reactions catalyzed by these unknown organisms, the impact of this diversity loss and bio-geo-coupling is hard to predict. Given that chimney structures can be considered SMS analogues, removal of sulfide deposits from the seafloor in the Kairei and Pelagia fields will most likely alter microbial compositions and affect element cycling in the benthic regions and probably beyond.
Collapse
|