1
|
Rojas-Villalta D, Rojas-Rodríguez D, Villanueva-Ilama M, Guillén-Watson R, Murillo-Vega F, Gómez-Espinoza O, Núñez-Montero K. Exploring Extremotolerant and Extremophilic Microalgae: New Frontiers in Sustainable Biotechnological Applications. BIOLOGY 2024; 13:712. [PMID: 39336139 PMCID: PMC11428398 DOI: 10.3390/biology13090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Exploring extremotolerant and extremophilic microalgae opens new frontiers in sustainable biotechnological applications. These microorganisms thrive in extreme environments and exhibit specialized metabolic pathways, making them valuable for various industries. The study focuses on the ecological adaptation and biotechnological potential of these microalgae, highlighting their ability to produce bioactive compounds under stress conditions. The literature reveals that extremophilic microalgae can significantly enhance biomass production, reduce contamination risks in large-scale systems, and produce valuable biomolecules such as carotenoids, lipids, and proteins. These insights suggest that extremophilic microalgae have promising applications in food, pharmaceutical, cosmetic, and biofuel industries, offering sustainable and efficient alternatives to traditional resources. The review concludes that further exploration and utilization of these unique microorganisms can lead to innovative and environmentally friendly solutions in biotechnology.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - David Rojas-Rodríguez
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Melany Villanueva-Ilama
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Rossy Guillén-Watson
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francinie Murillo-Vega
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Olman Gómez-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kattia Núñez-Montero
- Facultad Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| |
Collapse
|
2
|
Fais G, Casula M, Sidorowicz A, Manca A, Margarita V, Fiori PL, Pantaleo A, Caboni P, Cao G, Concas A. Cultivation of Chroococcidiopsis thermalis Using Available In Situ Resources to Sustain Life on Mars. Life (Basel) 2024; 14:251. [PMID: 38398760 PMCID: PMC10889959 DOI: 10.3390/life14020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The cultivation of cyanobacteria by exploiting available in situ resources represents a possible way to supply food and oxygen to astronauts during long-term crewed missions on Mars. Here, we evaluated the possibility of cultivating the extremophile cyanobacterium Chroococcidiopsis thermalis CCALA 050 under operating conditions that should occur within a dome hosting a recently patented process to produce nutrients and oxygen on Mars. The medium adopted to cultivate this cyanobacterium, named Martian medium, was obtained using a mixture of regolith leachate and astronauts' urine simulants that would be available in situ resources whose exploitation could reduce the mission payload. The results demonstrated that C. thermalis can grow in such a medium. For producing high biomass, the best medium consisted of specific percentages (40%vol) of Martian medium and a standard medium (60%vol). Biomass produced in such a medium exhibits excellent antioxidant properties and contains significant amounts of pigments. Lipidomic analysis demonstrated that biomass contains strategic lipid classes able to help the astronauts facing the oxidative stress and inflammatory phenomena taking place on Mars. These characteristics suggest that this strain could serve as a valuable nutritional resource for astronauts.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Mattia Casula
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Valentina Margarita
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Pier Luigi Fiori
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
3
|
Gaysina LA. Influence of pH on the Morphology and Cell Volume of Microscopic Algae, Widely Distributed in Terrestrial Ecosystems. PLANTS (BASEL, SWITZERLAND) 2024; 13:357. [PMID: 38337891 PMCID: PMC10857513 DOI: 10.3390/plants13030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Terrestrial algae are a group of photosynthetic organisms that can survive in extreme conditions. pH is one of the most important factors influencing the distribution of algae in both aquatic and terrestrial ecosystems. The impact of different pH levels on the cell volume and other morphological characteristics of authentic and reference strains of Chlorella vulgaris, Bracteacoccus minor, Pseudoccomyxa simplex, Chlorococcum infusionum, and Vischeria magna were studied. Chlorella vulgaris, Pseudoccomyxa simplex, and Vischeria magna were the most resistant species, retaining their morphology in the range of pH 4-11.5 and pH 3.5-11, respectively. The change in pH towards acidic and alkaline levels caused an increase in the volume of Pseudoccomixa simplex and Vischeria magna cells, according to a polynomial regression model. The volume of Chlorella vulgaris cells increased from a low to high pH according to a linear regression model. Changes in pH levels did not have a significant impact on the volume of Bracteacoccus minor and Chlorococcum infusionum cells. Low and high levels of pH caused an increase in oil-containing substances in Vischeria magna and Bracteacoccus minor cells. Our study revealed a high resistance of the studied species to extreme pH levels, which allows for us to recommend these strains for broader use in biotechnology and conservation studies of natural populations.
Collapse
Affiliation(s)
- Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450008 Ufa, Russia;
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
4
|
Sidorowicz A, Fais G, Casula M, Borselli M, Giannaccare G, Locci AM, Lai N, Orrù R, Cao G, Concas A. Nanoparticles from Microalgae and Their Biomedical Applications. Mar Drugs 2023; 21:352. [PMID: 37367677 DOI: 10.3390/md21060352] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Over the years, microalgae have been a source of useful compounds mainly used as food and dietary supplements. Recently, microalgae have been used as a source of metabolites that can participate in the synthesis of several nanoparticles through inexpensive and environmentally friendly routes alternative to chemical synthesis. Notably, the occurrence of global health threats focused attention on the microalgae application in the medicinal field. In this review, we report the influence of secondary metabolites from marine and freshwater microalgae and cyanobacteria on the synthesis of nanoparticles that were applied as therapeutics. In addition, the use of isolated compounds on the surface of nanoparticles to combat diseases has also been addressed. Although studies have proven the beneficial effect of high-value bioproducts on microalgae and their potential in medicine, there is still room for understanding their exact role in the human body and translating lab-based research into clinical trials.
Collapse
Affiliation(s)
- Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Mattia Casula
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Antonio Mario Locci
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Nicola Lai
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Roberto Orrù
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
5
|
Yao H, Wang H, Ji J, Tan A, Song Y, Chen Z. Isolation and Identification of Mercury-Tolerant Bacteria LBA119 from Molybdenum-Lead Mining Soils and Their Removal of Hg 2. TOXICS 2023; 11:261. [PMID: 36977027 PMCID: PMC10057450 DOI: 10.3390/toxics11030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
AIMS To screen heavy metal-tolerant strains from heavy metal-contaminated soil in mining areas and determine the tolerance of the strains to different heavy metals and their removal rates through experiments. METHODS Mercury-resistant strain LBA119 was isolated from mercury-contaminated soil samples in Luanchuan County, Henan Province, China. The strain was identified by Gram staining, physiological and biochemical tests, and 16S rDNA sequences. The LBA119 strain showed good resistance and removal rates to heavy metals such as Pb2+, Hg2+, Mn2+, Zn2+, and Cd2+ using tolerance tests under optimal growth conditions. The mercury-resistant strain LBA119 was applied to mercury-contaminated soil to determine the ability of the strain to remove mercury from the soil compared to mercury-contaminated soil without bacterial biomass. RESULTS Mercury-resistant strain LBA119 is a Gram-positive bacterium that appears as a short rod under scanning electron microscopy, with a single bacterium measuring approximately 0.8 × 1.3 μm. The strain was identified as a Bacillus by Gram staining, physiological and biochemical tests, and 16S rDNA sequence analysis. The strain was highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg/L for mercury. Under a 10 mg/L mercury environment, the optimal inoculation amount, pH, temperature, and salt concentration of the LBA119 strain were 2%, 7, 30 °C, and 20 g/L, respectively. In the 10 mg/L Hg2+ LB medium, the total removal rate, volatilization rate, and adsorption rate at 36 h were 97.32%, 89.08%, and 8.24%, respectively. According to tolerance tests, the strain showed good resistance to Pb2+, Mn2+, Zn2+, Cd2+, and other heavy metals. When the initial mercury concentration was 50 mg/L and 100 mg/L, compared with the mercury-contaminated soil that contained an LB medium without bacterial biomass, LBA119 inoculation increased 15.54-37.67% after 30 days of culture. CONCLUSION This strain shows high bioremediation potential for mercury-contaminated soil.
Collapse
Affiliation(s)
- Hanyue Yao
- School of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang 471023, China
| | - Hui Wang
- School of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiangtao Ji
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Aobo Tan
- School of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang 471023, China
| | - Yang Song
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhi Chen
- Department of Building, Civil and Environmental, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
6
|
Sustainable Microalgae and Cyanobacteria Biotechnology. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Marine organisms are a valuable source of new compounds, many of which have remarkable biotechnological properties, such as microalgae and cyanobacteria, which have attracted special attention to develop new industrial production routes. These organisms are a source of many biologically active molecules in nature, including antioxidants, immunostimulants, antivirals, antibiotics, hemagglutinates, polyunsaturated fatty acids, peptides, proteins, biofuels, and pigments. The use of several technologies to improve biomass production, in the first step, industrial processes schemes have been addressed with different accomplishments. It is critical to consider all steps involved in producing a bioactive valuable compound, such as species and strain selection, nutrient supply required to support productivity, type of photobioreactor, downstream processes, namely extraction, recovery, and purification. In general, two product production schemes can be mentioned; one for large amounts of product, such as biodiesel or any other biofuel and the biomass for feeding purposes; the other for when the product will be used in the human health domain, such as antivirals, antibiotics, antioxidants, etc. Several applications for microalgae have been documented. In general, the usefulness of an application for each species of microalgae is determined by growth and product production. Furthermore, the use of OMICS technologies enabled the development of a new design for human therapeutic recombinant proteins, including strain selection based on previous proteomic profiles, gene cloning, and the development of expression networks. Microalgal expression systems have an advantage over traditional microbial, plant, and mammalian expression systems for new and sustainable microalga applications, for responsible production and consumption.
Collapse
|
7
|
Rhie MN, Hong K, Lee T. Effects of the induction of anoxia in photobioreactor on effective cultivation of Scenedesmus acuminatus under mixotrophic cultivation mode. ENVIRONMENTAL TECHNOLOGY 2022; 43:2359-2379. [PMID: 33475031 DOI: 10.1080/09593330.2021.1880487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to investigate the optimum conditions of several factors (i.e. types and concentration of acetate, aeration rate, pH control) for maximizing the mixotrophic cultivation of Scenedesmus acuminatus using acetate as an organic carbon source. When acetate was used, dissolved oxygen (DO) was quickly consumed and resulted in an anoxic condition for 52 h. Then, DO increased quickly by photosynthetic reaction. Whenever we put acetate in a reactor after DO was recovered to higher than 7 mg/L, cells were quickly grown via cell respiration, which subsequently resulted in an anoxic condition. Compared to aeration, ammonium acetate, ammonium acetate with aeration tests, the highest maximum biomass productivity of 0.73 g/L/d was obtained for pH control test with ammonium acetate dosage. From this study, we found that DO was essential for the fast assimilation of acetate and depleted DO was quickly regenerated for pH control test. From this fact, we found that pH control test with ammonium acetate dosage was the best cultivation method for Scenedesmus acuminatus under mixotrophic condition. These findings could be a useful reference for maximizing the cultivation of S. acuminatus in industrial-scale applications.
Collapse
Affiliation(s)
- Mi Na Rhie
- Department of Environmental Engineering, Pukyong National University, Busan, Republic of Korea
- National Fishery Products Quality Service, Busan, Republic of Korea
| | - Kai Hong
- Department of Environmental Engineering, Pukyong National University, Busan, Republic of Korea
| | - Taeyoon Lee
- Department of Environmental Engineering, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
8
|
Alcántara-Martínez N, Figueroa-Martínez F, Rivera-Cabrera F, Volke-Sepúlveda T. An unexpected guest: a green microalga associated with the arsenic-tolerant shrub Acacia farnesiana. FEMS Microbiol Ecol 2022; 98:6565283. [PMID: 35394028 DOI: 10.1093/femsec/fiac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The best-known plant endophytes include mainly fungi and bacteria, but there are also a few records of microalgae growing endophytically in vascular land plants, some of which belong to the genus Coccomyxa. In this study, we isolated a single-celled photosynthetic microorganism from the arsenic-tolerant shrub Acacia farnesiana, thus we hypothesized that it is an endophytic arsenic-tolerant microalga. The microorganism was identified as belonging to the genus Coccomyxa, and the observation of algal cells within the root tissues strongly suggests its endophytic nature. The alga's tolerance to arsenate (AsV) and its influence on the fitness of A. farnesiana in the presence of AsV were evaluated. Coccomyxa sp. can tolerate up to 2000 µM of AsV for periods shorter than 10 days, however, AsV-tolerance decreased significantly in longer exposure periods. The association with the microalga increased the pigment content in aboveground tissues of A. farnesiana seedlings exposed to AsV for 50 days, without changes in plant growth or arsenic accumulation. This work describes the association, probably endophytic, between an angiosperm and a microalga, confirming the ability of the genus Coccomyxa to form associations with land plants and broadening the known variety of plant endophytes.
Collapse
Affiliation(s)
- Nemi Alcántara-Martínez
- Department of Compared Biology, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán 04510, Mexico City, MEXICO
| | - Francisco Figueroa-Martínez
- CONACyT Research Fellow, Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Mexico City. MEXICO
| | - Fernando Rivera-Cabrera
- Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Mexico City. MEXICO
| | - Tania Volke-Sepúlveda
- CONACyT Research Fellow, Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Mexico City. MEXICO
| |
Collapse
|
9
|
Park WK, Min K, Yun JH, Kim M, Kim MS, Park GW, Lee SY, Lee S, Lee J, Lee JP, Moon M, Lee JS. Paradigm shift in algal biomass refinery and its challenges. BIORESOURCE TECHNOLOGY 2022; 346:126358. [PMID: 34800638 DOI: 10.1016/j.biortech.2021.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have been studied and tested for over 70 years. However, biodiesel, the prime target of the algal industry, has suffered from low competitiveness and current steps toward banning the internal combustion engine all over the world. Meanwhile, interest in reducing CO2 emissions has grown as the world has witnessed disasters caused by global warming. In this situation, in order to maximize the benefits of the microalgal industry and surmount current limitations, new breakthroughs are being sought. First, drop-in fuel, mandatory for the aviation and maritime industries, has been discussed as a new product. Second, methods to secure stable and feasible outdoor cultivation focusing on CO2 sequestration were investigated. Lastly, the need for an integrated refinery process to simultaneously produce multiple products has been discussed. While the merits of microalgae industry remain valid, further investigations into these new frontiers would put algal industry at the core of future bio-based economy.
Collapse
Affiliation(s)
- Won-Kun Park
- Department of Chemistry & Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| |
Collapse
|
10
|
Castiglia D, Landi S, Esposito S. Advanced Applications for Protein and Compounds from Microalgae. PLANTS (BASEL, SWITZERLAND) 2021; 10:1686. [PMID: 34451730 PMCID: PMC8398235 DOI: 10.3390/plants10081686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
Algal species still show unrevealed and unexplored potentiality for the identification of new compounds. Photosynthetic organisms represent a valuable resource to exploit and sustain the urgent need of sustainable and green technologies. Particularly, unconventional organisms from extreme environments could hide properties to be employed in a wide range of biotechnology applications, due to their peculiar alleles, proteins, and molecules. In this review we report a detailed dissection about the latest and advanced applications of protein derived from algae. Furthermore, the innovative use of modified algae as bio-reactors to generate proteins or bioactive compounds was discussed. The latest progress about pharmaceutical applications, including the possibility to obtain drugs to counteract virus (as SARS-CoV-2) were also examined. The last paragraph will survey recent cases of the utilization of extremophiles as bio-factories for specific protein and molecule production.
Collapse
Affiliation(s)
- Daniela Castiglia
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Simone Landi
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| | - Sergio Esposito
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| |
Collapse
|
11
|
Fais G, Malavasi V, Scano P, Soru S, Caboni P, Cao G. Metabolomics and lipid profile analysis of Coccomyxa melkonianii SCCA 048. Extremophiles 2021; 25:357-368. [PMID: 34057605 PMCID: PMC8254698 DOI: 10.1007/s00792-021-01234-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/20/2021] [Indexed: 01/05/2023]
Abstract
With an unsupervised GC-MS metabolomics approach, polar metabolite changes of the microalgae Coccomyxa melkonianii SCCA 048 grown under standard conditions for seven weeks were studied. C. melkonianii was sampled at the Rio Irvi River, in the mining site of Montevecchio-Ingurtosu (Sardinia, Italy), which is severely contaminated by heavy metals and shows high concentrations of sulfates. The partial-least-square (PLS) analysis of the GC-MS data indicated that growth of C. melkonianii was characterized by an increase of the levels of threonic acid, myo-inositol, malic acid, and fumaric acid. Furthermore, at the sixth week of exponential phase the lipid fingerprint of C. melkonianii was studied by LC-QTOF-MS. C. melkonianii lipid extract characterized through an iterative MS/MS analysis showed the following percent levels: 61.34 ± 0.60% for triacylglycerols (TAG); 11.55 ± 0.09% for diacylglyceryltrimethyl homoserines (DGTS), 11.34 ± 0.10% for sulfoquinovosyldiacylglycerols (SQDG) and, 5.29 ± 0.04% for lysodiacylglyceryltrimethyl homoserines (LDGTS). Noteworthy, we were able to annotate different fatty acid ester of hydroxyl fatty acid, such as FAHFA (18:1_20:3), FAHFA (18:2_20:4), FAHFA (18:0_20:2), and FAHFA (18:1_18:0), with relevant biological activity. These approaches can be useful to study the biochemistry of this extremophile algae in the view of its potential exploitation in the phycoremediation of polluted mining areas.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, via San Giorgio 12, 09124, Cagliari, Italy
| | - Veronica Malavasi
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, via San Giorgio 12, 09124, Cagliari, Italy
| | - Paola Scano
- Department of Life and Environmental Sciences, University of Cagliari, 09124, Cagliari, Italy
| | - Santina Soru
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, via San Giorgio 12, 09124, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, 09124, Cagliari, Italy.
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, via San Giorgio 12, 09124, Cagliari, Italy.,Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, piazza d'Armi, 09123, Cagliari, Italy
| |
Collapse
|
12
|
Desjardins SM, Laamanen CA, Basiliko N, Scott JA. Selection and re-acclimation of bioprospected acid-tolerant green microalgae suitable for growth at low pH. Extremophiles 2021; 25:129-141. [PMID: 33475805 DOI: 10.1007/s00792-021-01216-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/06/2021] [Indexed: 01/04/2023]
Abstract
For mass culture of photosynthetic green microalgae, industrial flue gases can represent a low-cost resource of CO2. However, flue gases are often avoided, because they often also contain high levels of SO2 and/or NO2, which cause significant acidification of media to below pH 3 due to production of sulfuric and nitric acid. This creates an unsuitable environment for the neutrophilic microalgae commonly used in large-scale commercial production. To address this issue, we have looked at selecting acid-tolerant microalgae via growth at pH 2.5 carried out with samples bioprospected from an active smelter site. Of the eight wild samples collected, one consisting mainly of Coccomyxa sp. grew at pH 2.5 and achieved a density of 640 mg L-1. Furthermore, three previously bioprospected green microalgae from acidic waters (pH 3-4.5) near abandoned mine sites were also re-acclimated down to their in-situ pH environment after approximately 4 years spent at neutral pH. Of those three, an axenic culture of Coccomyxa sp. was the most successful at re-acclimating and achieved the highest density of 293.1 mg L-1 and maximum daily productivity of 38.8 mg L-1 day-1 at pH 3. Re-acclimation of acid-tolerant species is, therefore, achievable when directly placed at their original pH, but gradual reduction in pH is recommended to give the cells time to acclimate.
Collapse
Affiliation(s)
- Sabrina Marie Desjardins
- Bharti School of Engineering, Laurentian University, Sudbury, ON, Canada.,Vale Living With Lakes Centre, Laurentian University, Sudbury, ON, Canada
| | | | - Nathan Basiliko
- Bharti School of Engineering, Laurentian University, Sudbury, ON, Canada.,Vale Living With Lakes Centre, Laurentian University, Sudbury, ON, Canada.,Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - John Ashley Scott
- Bharti School of Engineering, Laurentian University, Sudbury, ON, Canada. .,Vale Living With Lakes Centre, Laurentian University, Sudbury, ON, Canada. .,Department of Biology, Laurentian University, Sudbury, ON, Canada.
| |
Collapse
|
13
|
Malavasi V, Soru S, Cao G. Extremophile Microalgae: the potential for biotechnological application. JOURNAL OF PHYCOLOGY 2020; 56:559-573. [PMID: 31917871 DOI: 10.1111/jpy.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Microalgae are photosynthetic microorganisms that use sunlight as an energy source, and convert water, carbon dioxide, and inorganic salts into algal biomass. The isolation and selection of microalgae, which allow one to obtain large amounts of biomass and valuable compounds, is a prerequisite for their successful industrial production. This work provides an overview of extremophile algae, where their ability to grow under harsh conditions and the corresponding accumulation of metabolites are addressed. Emphasis is placed on the high-value products of some prominent algae. Moreover, the most recent applications of these microorganisms and their potential exploitation in the context of astrobiology are taken into account.
Collapse
Affiliation(s)
- Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Santina Soru
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|
14
|
Maltsev Y, Maltseva I, Maltseva S, Kociolek JP, Kulikovskiy M. Fatty Acid Content and Profile of the Novel Strain of Coccomyxa elongata (Trebouxiophyceae, Chlorophyta) Cultivated at Reduced Nitrogen and Phosphorus Concentrations. JOURNAL OF PHYCOLOGY 2019; 55:1154-1165. [PMID: 31318981 DOI: 10.1111/jpy.12903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
A novel freshwater strain of Coccomyxa elongata (MZ-Ch64) was isolated from the Zaporizhia region, Ukraine. The identification was based on the phylogenetic analysis of SSU rDNA gene and ITS1-5.8S rDNA-ITS2 region and predicted secondary structure of the ITS2. Phylogenetic analysis placed this strain in the Coccomyxa group, within the class Trebouxiophyceae. The novel strain MZ-Ch64 formed a strongly supported lineage closest with C. elongata. The MZ-Ch64 strain differed from the morphological description of the species by the size of vegetative cells and absence of small mucilaginous caps at one end of the cell. A number of experiments with different concentrations of phosphate and nitrate were conducted to evaluate changes in the resulting fatty acid profiles and biomass productivity. The fatty acid profile and total fatty acids varied significantly under different nutrient deficiencies. The dominant fatty acid during cultivation on standard BBM medium, as well as in phosphorus-depleted conditions, was oleic acid (to 48.0%-54.6% of total fatty acids). Absence of nitrogen alone, and absence of both nitrogen and phosphorus, led to an increase of palmitic acid (to 24.7%-25.6%), cis-7-hexadecenoic acid (to 14.8%) and α-linolenic acid (to 9.1%-10.1%) in comparison with the control sample. The greatest variation was found for oleic acid (31.9%-54.6%). Thus, this strain can be considered as a potential producer of oleic acid or cis-7-hexadecenoic and α-linolenic acids for biotechnological applications.
Collapse
Affiliation(s)
- Yevhen Maltsev
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Irina Maltseva
- Bohdan Khmelnytskyi Melitopol State Pedagogical University, 72312, Melitopol, Ukraine
| | - Svetlana Maltseva
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - John Patrick Kociolek
- Museum of Natural History and Department of Ecology and Evolutionary Biology, University of Colorado, 80309, Boulder, Colorado, USA
| | - Maxim Kulikovskiy
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| |
Collapse
|