1
|
Miyamoto S, Osaki A, Murai A, Hirohashi Y, Sasaki T, Ogi K, Tokura TA, Kanaseki T, Tsukahara T, Kina S, Torigoe T, Miyazaki A. Effect of human survivin-2B-specific cytotoxic CD8+ T lymphocytes on CD44+/- HSC-2 and HSC-3 oral cancer cells. Eur J Oral Sci 2025:e70019. [PMID: 40399621 DOI: 10.1111/eos.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
Despite advancements in the treatment of oral cancer, cancer survival rates remain low, highlighting the need for new therapeutic strategies targeting cancer stem-like cells. Cancer stem-like cells are a small population of cancer cells within tumors that drive recurrence and metastasis. They are often resistant to conventional treatments. Immunotherapy has shown promise against cancer stem-like cells, particularly with the use of cytotoxic T lymphocytes targeting specific markers. Survivin, an apoptosis protein inhibitor, is overexpressed in several malignancies, including oral cancer, and is associated with tumor recurrence and reduced survival. Survivin-2B-specific cytotoxic T lymphocytes were produced and evaluated for their ability to target CD44+ (cancer stem-like cells) and CD44- cells (non-cancer stem-like cells), respectively, from oral cancer cell lines (HSC-2 and HSC-3, respectively). Quantitative polymerase chain reaction (qPCR) analysis confirmed similar survivin-2B expression in both cell types. Cytotoxic T lymphocyte assays revealed the effective lysis of both cancer stem-like cells and CD44- cell populations, supporting the potential of survivin-2B-specific cytotoxic T lymphocytes to overcome cancer stem-like cell-associated resistance. These findings suggest that survivin-2B peptide vaccines are effective in preventing cancer relapse by targeting cancer stem-like cells, with future directions aimed at developing multipeptide "cocktail" vaccines to reduce the risk of immune evasion.
Collapse
Affiliation(s)
- Sho Miyamoto
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Azuna Osaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Takanori Sasaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Taka-Aki Tokura
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
- Joint Research Center for Immunoproteogenomics, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Shinichiro Kina
- Center for Medical Education, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Ginowan, Okinawa, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Mehrabi M, Morris TA, Cang Z, Nguyen CHH, Sha Y, Asad MN, Khachikyan N, Greene TL, Becker DM, Nie Q, Zaragoza MV, Grosberg A. A Study of Gene Expression, Structure, and Contractility of iPSC-Derived Cardiac Myocytes from a Family with Heart Disease due to LMNA Mutation. Ann Biomed Eng 2021; 49:3524-3539. [PMID: 34585335 PMCID: PMC8671287 DOI: 10.1007/s10439-021-02850-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Genetic mutations to the Lamin A/C gene (LMNA) can cause heart disease, but the mechanisms making cardiac tissues uniquely vulnerable to the mutations remain largely unknown. Further, patients with LMNA mutations have highly variable presentation of heart disease progression and type. In vitro patient-specific experiments could provide a powerful platform for studying this phenomenon, but the use of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) introduces heterogeneity in maturity and function thus complicating the interpretation of the results of any single experiment. We hypothesized that integrating single cell RNA sequencing (scRNA-seq) with analysis of the tissue architecture and contractile function would elucidate some of the probable mechanisms. To test this, we investigated five iPSC-CM lines, three controls and two patients with a (c.357-2A>G) mutation. The patient iPSC-CM tissues had significantly weaker stress generation potential than control iPSC-CM tissues demonstrating the viability of our in vitro approach. Through scRNA-seq, differentially expressed genes between control and patient lines were identified. Some of these genes, linked to quantitative structural and functional changes, were cardiac specific, explaining the targeted nature of the disease progression seen in patients. The results of this work demonstrate the utility of combining in vitro tools in exploring heart disease mechanics.
Collapse
Affiliation(s)
- Mehrsa Mehrabi
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Tessa A Morris
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Zixuan Cang
- Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA.,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Cecilia H H Nguyen
- Genetics & Genomics Division, Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Yutong Sha
- Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Mira N Asad
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Nyree Khachikyan
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Taylor L Greene
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Danielle M Becker
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA.,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Michael V Zaragoza
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA.,Genetics & Genomics Division, Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Anna Grosberg
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA. .,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA. .,Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA. .,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA. .,The Henry Samueli School of Engineering, University of California, Irvine, 2418 Engineering Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Bozhok YM, Golovko O, Nikonenko AG. nPAsym: an open-source plugin for ImageJ to quantify nuclear shape asymmetry. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105562. [PMID: 32544781 DOI: 10.1016/j.cmpb.2020.105562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES The nucleus is a complex and dynamic organelle enclosing the major part of the cell's genome. A growing body of evidence suggests that changes in the shape of this organelle can influence cell activities. The other way around, altered nuclear shape may be indicative of impaired cell function. Symmetry is an important aspect of nuclear shape not receiving the attention it merits. We address this problem by presenting a software tool allowing to quantify nuclear shape asymmetry in light microscopy images. METHODS The software named nPAsym is written in Scala and implemented as a plugin to ImageJ making possible to use it in combination with other ImageJ tools. The plugin works with 8-bit images segmented into black nuclear masks and white background. It performs a number of operations allowing to analyze multiple objects within a single image, removing some segmentation artefacts, filtering out objects incomplete and below a specified size. The feature of interest is quantified using the notion of point asymmetry. The performance of nPAsym was tested in a small-scale study comparing nuclear shapes for cells of nodular goiter, follicular thyroid adenoma and papillary thyroid carcinoma. RESULTS We present nPAsym, the ImageJ plugin, that measures nuclear shape asymmetry. It works with digital microscopic images segmented using either a raster graphics editor or built-in ImageJ functions. nPAsym is packaged in a single .jar file and does not require installation as well as configuration. It has proved effective in distinguishing between some of the nuclear shape phenotypes. CONCLUSIONS nPAsym is the user-friendly, platform-independent and open-source software tool allowing to quantify nuclear shape asymmetry in digital images captured from cytologic and histologic preparations. It has a potential to become useful for both experimental research and diagnostics.
Collapse
Affiliation(s)
- Y M Bozhok
- Department of Functional Diagnostics, V.P. Komisarenko Institute of Endocrinology and Metabolism, Vyshgorodska str. 69, 04114, Kyiv, Ukraine
| | - O Golovko
- Department of Cytology, Bogomoletz Institute of Physiology, Bogomoletz str. 4, 01024, Kyiv, Ukraine
| | - A G Nikonenko
- Department of Cytology, Bogomoletz Institute of Physiology, Bogomoletz str. 4, 01024, Kyiv, Ukraine.
| |
Collapse
|
4
|
Core JQ, Mehrabi M, Robinson ZR, Ochs AR, McCarthy LA, Zaragoza MV, Grosberg A. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations. PLoS One 2017; 12:e0188256. [PMID: 29149195 PMCID: PMC5693421 DOI: 10.1371/journal.pone.0188256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/05/2017] [Indexed: 01/24/2023] Open
Abstract
Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method’s utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei.
Collapse
Affiliation(s)
- Jason Q. Core
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
| | - Mehrsa Mehrabi
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
| | - Zachery R. Robinson
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
| | - Alexander R. Ochs
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
| | - Linda A. McCarthy
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
| | - Michael V. Zaragoza
- Pediatrics–Genetics & Genomics Division–School of Medicine, University of California, Irvine, CA, United States of America
- Biological Chemistry–School of Medicine, University of California, Irvine, CA, United States of America
| | - Anna Grosberg
- Departments of Biomedical Engineering, University of California, Irvine, CA, United States of America
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States of America
- Chemical Engineering and Materials Science, University of California, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|