1
|
Zhang Z, Fan H, Yu Z, Luo X, Zhao J, Wang N, Li Z. Metagenomics-based gene exploration and biochemical characterization of novel glucoamylases and α-amylases in Daqu and Pu-erh tea microorganisms. Int J Biol Macromol 2024; 278:134182. [PMID: 39069062 DOI: 10.1016/j.ijbiomac.2024.134182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
α-Amylases and glucoamylases play a crucial role in starch degradation for various industrial applications. Further exploration of novel α-amylases and glucoamylases with diverse enzymatic characteristics is necessary. In this study, metagenomics analysis revealed a high abundance of these enzymes in the microorganisms of Daqu and Pu-erh tea, identifying 271 glucoamylases and 232 α-amylases with significant sequence identity to known enzymes. Functional studies indicated that these enzymes have broad optimal temperatures (30 °C to 70 °C) and acidic or neutral pH optima. Additionally, two novel low-temperature glucoamylases and one novel low-temperature α-amylases were characterized, demonstrating potential for use in industries operating under low temperature conditions. Further analysis suggested that fewer molecular interactions and more flexible coli regions may contribute to their high activity at low temperatures. In summary, this study not only highlights the feasibility of exploring enzymes through metagenomic approaches, but also presents a library of novel and diverse α-amylases and glucoamylases for potential industrial applications.
Collapse
Affiliation(s)
- Zhengjie Zhang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haiyue Fan
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhao Yu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Junqi Zhao
- Qilu Institute of Technology, Shandong 250200, PR China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Nizovoy P, Bellora N, Haridas S, Sun H, Daum C, Barry K, Grigoriev IV, Libkind D, Connell LB, Moliné M. Unique genomic traits for cold adaptation in Naganishia vishniacii, a polyextremophile yeast isolated from Antarctica. FEMS Yeast Res 2020; 21:6000217. [PMID: 33232451 DOI: 10.1093/femsyr/foaa056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Cold environments impose challenges to organisms. Polyextremophile microorganisms can survive in these conditions thanks to an array of counteracting mechanisms. Naganishia vishniacii, a yeast species hitherto only isolated from McMurdo Dry Valleys, Antarctica, is an example of a polyextremophile. Here we present the first draft genomic sequence of N. vishniacii. Using comparative genomics, we unraveled unique characteristics of cold associated adaptations. 336 putative genes (total: 6183) encoding solute transfers and chaperones, among others, were absent in sister species. Among genes shared by N. vishniacii and its closest related species we found orthologs encompassing possible evidence of positive selection (dN/dS > 1). Genes associated with photoprotection were found in agreement with high solar irradiation exposure. Also genes coding for desaturases and genomic features associated with cold tolerance (i.e. trehalose synthesis and lipid metabolism) were explored. Finally, biases in amino acid usage (namely an enrichment of glutamine and a trend in proline reduction) were observed, possibly conferring increased protein flexibility. To the best of our knowledge, such a combination of mechanisms for cold tolerance has not been previously reported in fungi, making N. vishniacii a unique model for the study of the genetic basis and evolution of cold adaptation strategies.
Collapse
Affiliation(s)
- Paula Nizovoy
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Nicolás Bellora
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Hui Sun
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Laurie B Connell
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Martín Moliné
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| |
Collapse
|
3
|
Sadeghi-kaji S, Shareghi B, Saboury AA, Farhadian S. Investigating the interaction of porcine pancreatic elastase and propanol: A spectroscopy and molecular simulation study. Int J Biol Macromol 2020; 146:687-691. [DOI: 10.1016/j.ijbiomac.2019.12.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
|
4
|
Liu Y, Huang L, Zheng D, Xu Z, Li Y, Shao S, Zhang Y, Ge X, Lu F. Biochemical characterization of a novel GH43 family β-xylosidase from Bacillus pumilus. Food Chem 2019; 295:653-661. [DOI: 10.1016/j.foodchem.2019.05.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
5
|
Sadeghi-kaji S, Shareghi B, Saboury AA, Farhadian S. Investigation on the structure and function of porcine pancreatic elastase (PPE) under the influence of putrescine: A spectroscopy and molecular simulation study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Noby N, Saeed H, Embaby AM, Pavlidis IV, Hussein A. Cloning, expression and characterization of cold active esterase (EstN7) from Bacillus cohnii strain N1: A novel member of family IV. Int J Biol Macromol 2018; 120:1247-1255. [PMID: 30063933 DOI: 10.1016/j.ijbiomac.2018.07.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/11/2023]
Abstract
Esterases and lipases from extremophiles have attracted great attention due to their unique characteristics and wide applications. In the present study, an open reading frame (ORF) encoding a novel cold active esterase (EstN7) from Bacillus cohnii strain N1 was cloned and expressed in Escherichia coli. The full-length esterase gene encoding a protein of 320 amino acids with estimated molecular weight of 37.0 kDa. Amino acid sequence analysis revealed that the EstN7 belongs to family IV lipases with a characteristic penta-peptide motif (GXSXG), the catalytic triad Ser, Asp, His and the conserved HGGG motif of the family IV. The recombinant enzyme was purified to apparent homogeneity using nickel-affinity chromatography with a purification fold of 5 and recovery 94.5%. The specific activity of the purified enzyme was 336.89 U/mg. The recombinant EstN7 showed optimal activity at 5 °C moreover, EstN7 displayed full robust stability in the presence of wide range of organic solvents. The purified enzyme had Km and Vmax of 45 ± 0.019 μM and 1113 μmol min-1 mg-1, respectively on p-NP-acetate. These promising characteristics of the recombinant EstN7 would underpin its possible usage with high potential in the synthesis of fragile compounds in pharmaceutical industries.
Collapse
Affiliation(s)
- Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Sani HA, Shariff FM, Rahman RNZRA, Leow TC, Salleh AB. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach. Mol Biotechnol 2018; 60:1-11. [PMID: 29058211 DOI: 10.1007/s12033-017-0038-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris-HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris-HCl pH 8, while for L2 lipase it was at 70 °C in Glycine-NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.
Collapse
Affiliation(s)
- Hartini Ahmad Sani
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Fairolniza Mohd Shariff
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Thean Chor Leow
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Salleh
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
8
|
Qiu H, Li Z, Wang H, Zhang H, Li S, Luo X, Song Y, Wang N, He H, Zhou H, Ma W, Zhang T. Molecular and biochemical characterization of a novel cold-active and metal ion-tolerant GH10 xylanase from frozen soil. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1359667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Haiyan Qiu
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Zhongyuan Li
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
- Key laboratory of Feed Biotechnology, The Ministry of Agriculture of the People's Republic of China, Beijing, 100081, P.R. China
| | - Hui Wang
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Haiying Zhang
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Shuang Li
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xuegang Luo
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Yajian Song
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Nan Wang
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hongpeng He
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hao Zhou
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Wenjian Ma
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Tongcun Zhang
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
9
|
Cost effective characterization process and molecular dynamic simulation of detergent compatible alkaline protease from Bacillus pumilus strain MP27. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Sang P, Du X, Yang LQ, Meng ZH, Liu SQ. Molecular motions and free-energy landscape of serine proteinase K in relation to its cold-adaptation: a comparative molecular dynamics simulation study and the underlying mechanisms. RSC Adv 2017. [DOI: 10.1039/c6ra23230b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physicochemical bases for enzyme cold-adaptation remain elusive.
Collapse
Affiliation(s)
- Peng Sang
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| | - Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources
- Yunnan University
- Kunming
- P. R. China
- Department of Biochemistry and Molecular Biology
| | - Li-Quan Yang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
| | - Zhao-Hui Meng
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| | - Shu-Qun Liu
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| |
Collapse
|
11
|
Abstract
Using structure and sequence based analysis we can engineer proteins to increase their thermal stability.
Collapse
Affiliation(s)
- H. Pezeshgi Modarres
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - M. R. Mofrad
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory
- Department of Mechanical and Manufacturing Engineering
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
12
|
de Aguiar C, Costa MGS, Verli H. Dynamics on human Toll-like receptor 4 complexation to MD-2: the coreceptor stabilizing function. Proteins 2015; 83:373-82. [PMID: 25488602 DOI: 10.1002/prot.24739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/20/2014] [Accepted: 11/26/2014] [Indexed: 12/30/2022]
Abstract
The interaction between human Toll-like receptor 4 (hTLR4) and its coreceptor, myeloid differentiation factor 2 (MD-2), is important in Gram-negative bacteria lipopolysaccharide (LPS) recognition. In this process, MD-2 recognizes LPS and promotes the dimerization of the complex hTLR4-MD-2-LPS, triggering an intracellular immune signaling. In this study, we employed distinct computational methods to explore the dynamical properties of the hTLR4-MD-2 complex and investigated the implications of the coreceptor complexation to the structural biology of hTLR4. We characterized both global and local dynamics of free and MD-2 complexed hTLR4, in both (hTLR4-MD-2)1 and (hTLR4-MD-2)2 states. Both molecular dynamics and normal mode analysis reveled a stabilization of the terminal regions of hTLR4 upon complexation to MD-2. We are able to identify conserved important residues involved on the hTLR4-MD-2 interaction dynamics and disclose C-terminal motions that may be associated to the signaling process upon oligomerization.
Collapse
Affiliation(s)
- Carla de Aguiar
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15005, Porto Alegre, 91500-970, RS, Brazil
| | | | | |
Collapse
|
13
|
Pezeshgi Modarres H, Dorokhov BD, Popov VO, Ravin NV, Skryabin KG, Dal Peraro M. Understanding and Engineering Thermostability in DNA Ligase from Thermococcus sp. 1519. Biochemistry 2015; 54:3076-85. [DOI: 10.1021/bi501227b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hassan Pezeshgi Modarres
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Boris D. Dorokhov
- Centre
“Bioengineering”, Russian Academy of Sciences, Moscow 117312, Russia
| | - Vladimir O. Popov
- Bach
Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- RSC “Kurchatov Institute”, Moscow 123182, Russia
| | - Nikolai V. Ravin
- Centre
“Bioengineering”, Russian Academy of Sciences, Moscow 117312, Russia
| | - Konstantin G. Skryabin
- Centre
“Bioengineering”, Russian Academy of Sciences, Moscow 117312, Russia
- RSC “Kurchatov Institute”, Moscow 123182, Russia
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| |
Collapse
|
14
|
Benrezkallah D, Dauchez M, Krallafa A. Molecular dynamics of the salt dependence of a cold-adapted enzyme: endonuclease I. J Biomol Struct Dyn 2015; 33:2511-21. [DOI: 10.1080/07391102.2014.1002007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Isolation of a Novel Cold-Active Family 11 Xylanase from the Filamentous Fungus Bispora antennata and Deletion of its N-Terminal Amino Acids on Thermostability. Appl Biochem Biotechnol 2014; 175:925-36. [DOI: 10.1007/s12010-014-1344-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
16
|
Wells SA, Crennell SJ, Danson MJ. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function. Proteins 2014; 82:2657-70. [PMID: 24948467 DOI: 10.1002/prot.24630] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 11/07/2022]
Abstract
Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative.
Collapse
Affiliation(s)
- Stephen A Wells
- Department of Chemistry/Department of Physics, University of Bath, BATH, BA2 7AY, United Kingdom
| | | | | |
Collapse
|
17
|
Do H, Lee JH, Kwon MH, Song HE, An JY, Eom SH, Lee SG, Kim HJ. Purification, characterization and preliminary X-ray diffraction analysis of a cold-active lipase (CpsLip) from the psychrophilic bacterium Colwellia psychrerythraea 34H. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:920-4. [PMID: 23908044 PMCID: PMC3729175 DOI: 10.1107/s1744309113019428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/14/2013] [Indexed: 11/10/2022]
Abstract
The putative lipase CpsLip from the psychrophilic bacterium Colwellia psychrerythraea 34H encodes a 34,538 Da, 308-amino-acid protein. In this study, CpsLip (UniProtKB code Q486T5) was expressed as an N-terminal hexahistidine fusion protein in Escherichia coli and purified by affinity and size-exclusion chromatography. The expression and purification of CpsLip enabled characterization of the lipase enzymatic properties of the protein. The optimal activity temperature and pH of the recombinant protein were 298 K and pH 7, respectively. CpsLip maintained over 80% activity in the low-temperature range (278-288 K), thereby suggesting that CpsLip is a cold-active lipase. Substrate-specificity analysis demonstrated that CpsLip exhibits maximum activity towards the C12 acyl group. In addition, sequence-alignment results revealed that CpsLip has a highly conserved catalytic triad in the active site consisting of residues Ser111, Asp135 and His283. Moreover, purified CpsLip was successfully crystallized using the hanging-drop vapour-diffusion method and a complete diffraction data set was collected to 4.0 Å resolution using synchrotron radiation on the BL-5A beamline of the Photon Factory.
Collapse
Affiliation(s)
- Hackwon Do
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Republic of Korea
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Republic of Korea
| | - Mi Hyun Kwon
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Hye Eun Song
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Jun Yop An
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Sung Gu Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Republic of Korea
| | - Hak Jun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Republic of Korea
| |
Collapse
|
18
|
Structural adaptation of cold-active RTX lipase from Pseudomonas sp. strain AMS8 revealed via homology and molecular dynamics simulation approaches. BIOMED RESEARCH INTERNATIONAL 2013; 2013:925373. [PMID: 23738333 PMCID: PMC3662180 DOI: 10.1155/2013/925373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/06/2013] [Accepted: 03/29/2013] [Indexed: 11/17/2022]
Abstract
The psychrophilic enzyme is an interesting subject to study due to its special ability to adapt to extreme temperatures, unlike typical enzymes. Utilizing computer-aided software, the predicted structure and function of the enzyme lipase AMS8 (LipAMS8) (isolated from the psychrophilic Pseudomonas sp., obtained from the Antarctic soil) are studied. The enzyme shows significant sequence similarities with lipases from Pseudomonas sp. MIS38 and Serratia marcescens. These similarities aid in the prediction of the 3D molecular structure of the enzyme. In this study, 12 ns MD simulation is performed at different temperatures for structural flexibility and stability analysis. The results show that the enzyme is most stable at 0°C and 5°C. In terms of stability and flexibility, the catalytic domain (N-terminus) maintained its stability more than the noncatalytic domain (C-terminus), but the non-catalytic domain showed higher flexibility than the catalytic domain. The analysis of the structure and function of LipAMS8 provides new insights into the structural adaptation of this protein at low temperatures. The information obtained could be a useful tool for low temperature industrial applications and molecular engineering purposes, in the near future.
Collapse
|
19
|
Joshi S, Satyanarayana T. Biotechnology of cold-active proteases. BIOLOGY 2013; 2:755-83. [PMID: 24832807 PMCID: PMC3960895 DOI: 10.3390/biology2020755] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/17/2013] [Accepted: 04/24/2013] [Indexed: 11/17/2022]
Abstract
The bulk of Earth's biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth's surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review.
Collapse
Affiliation(s)
- Swati Joshi
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
20
|
Feller G. Psychrophilic enzymes: from folding to function and biotechnology. SCIENTIFICA 2013; 2013:512840. [PMID: 24278781 PMCID: PMC3820357 DOI: 10.1155/2013/512840] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/06/2012] [Indexed: 05/10/2023]
Abstract
Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry, University of Liège, B6a, 4000 Liège, Belgium
- *Georges Feller:
| |
Collapse
|
21
|
Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 2012; 13:11643-11665. [PMID: 23109875 PMCID: PMC3472767 DOI: 10.3390/ijms130911643] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 01/20/2023] Open
Abstract
Psychrophiles, i.e., organisms thriving permanently at near-zero temperatures, synthesize cold-active enzymes to sustain their cell cycle. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. Considering the subtle structural adjustments required for low temperature activity, directed evolution appears to be the most suitable methodology to engineer cold activity in biological catalysts.
Collapse
|
22
|
Kosugi T, Hayashi S. Crucial Role of Protein Flexibility in Formation of a Stable Reaction Transition State in an α-Amylase Catalysis. J Am Chem Soc 2012; 134:7045-55. [DOI: 10.1021/ja212117m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Takahiro Kosugi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Wang SY, Hu W, Lin XY, Wu ZH, Li YZ. A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: gene cloning, expression, and enzymatic characterization. Appl Microbiol Biotechnol 2011; 93:1503-12. [PMID: 21792591 DOI: 10.1007/s00253-011-3480-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 06/23/2011] [Accepted: 07/13/2011] [Indexed: 11/26/2022]
Abstract
The cellulolytic myxobacterium Sorangium cellulosum is able to efficiently degrade many kinds of polysaccharides, but none of the enzymes involved have been characterized. In this paper, a xylanase gene (xynA) was cloned from S. cellulosum So9733-1 using thermal asymmetric interlaced PCR. The gene is composed of 1,209 bp and has only 52.27% G + C content, which is much lower than that of most myxobacterial DNA reported (67-72%). Gene xynA encodes a 402 amino acid protein that contains a single catalytic domain belonging to the glycoside hydrolase family 10. The novel xylanase gene, xynA, was expressed in Escherichia coli BL21 (DE3) and the recombinant protein (r-XynA) was purified by Ni-affinity chromatography. The r-XynA had the optimum temperature of 30-35°C and exhibited 33.3% activity at 5°C and 13.7% activity at 0°C. Approximately 80% activity was lost after 20-min pre-incubation at 50°C. These results indicate that r-XynA is a cold-active xylanase with low thermostability. At 30°C, the K (m) values of r-XynA on beechwood xylan, birchwood xylan, and oat spelt xylan were 25.77 ± 4.16, 26.52 ± 4.78, and 38.13 ± 5.35 mg/mL, respectively. The purified r-XynA displayed optimum activity at pH 7.0. The activity of r-XynA was enhanced by the presence of Ca(2+). The r-XynA hydrolyzed beechwood xylan, birchwood xylan, and xylooligosaccharides (xylotriose, xylotetraose, and xylopentose) to produce primarily xylose and xylobiose. To our knowledge, this is the first report on the characterization of a xylanase from S. cellulosum.
Collapse
Affiliation(s)
- Shu-Yun Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
24
|
Kim SG, Jung BW, Kim H. Hemocyanin-derived phenoloxidase activity with broad temperature stability extending into the cold environment in hemocytes of the hair crab Erimacrus isenbeckii. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:103-8. [DOI: 10.1016/j.cbpb.2011.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
|
25
|
Martinez R, Schwaneberg U, Roccatano D. Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution. Protein Eng Des Sel 2011; 24:533-44. [DOI: 10.1093/protein/gzr014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Kosugi T, Hayashi S. Local entropy difference upon a substrate binding of a psychrophilic α-amylase and a mesophilic homologue. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2010.11.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Mereghetti P, Riccardi L, Brandsdal BO, Fantucci P, De Gioia L, Papaleo E. Near native-state conformational landscape of psychrophilic and mesophilic enzymes: probing the folding funnel model. J Phys Chem B 2010; 114:7609-19. [PMID: 20518574 DOI: 10.1021/jp911523h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, increased interest has been directed to the study of enzyme adaptation to low temperatures. In particular, a peculiar folding funnel model was proposed for the free energy landscape of a psychrophilic alpha-amylase and other cold-adapted enzymes. In the present contribution, the comparison between the near native-state dynamics and conformational landscape in the essential subspace of different cold-adapted enzymes with their mesophilic counterparts, as obtained by more than 0.1 micros molecular dynamics simulations at different temperatures, allows the folding funnel model to be probed. Common characteristics were highlighted in the near native-state dynamics of psychrophilic enzymes belonging to different enzymatic families when compared to the mesophilic counterparts. According to the model, a cold-adapted enzyme in its native-state consists of a large population of conformations which can easily interconvert and result in high structural flexibility.
Collapse
Affiliation(s)
- Paolo Mereghetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Münz M, Lyngsø R, Hein J, Biggin PC. Dynamics based alignment of proteins: an alternative approach to quantify dynamic similarity. BMC Bioinformatics 2010; 11:188. [PMID: 20398246 PMCID: PMC2868010 DOI: 10.1186/1471-2105-11-188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/14/2010] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The dynamic motions of many proteins are central to their function. It therefore follows that the dynamic requirements of a protein are evolutionary constrained. In order to assess and quantify this, one needs to compare the dynamic motions of different proteins. Comparing the dynamics of distinct proteins may also provide insight into how protein motions are modified by variations in sequence and, consequently, by structure. The optimal way of comparing complex molecular motions is, however, far from trivial. The majority of comparative molecular dynamics studies performed to date relied upon prior sequence or structural alignment to define which residues were equivalent in 3-dimensional space. RESULTS Here we discuss an alternative methodology for comparative molecular dynamics that does not require any prior alignment information. We show it is possible to align proteins based solely on their dynamics and that we can use these dynamics-based alignments to quantify the dynamic similarity of proteins. Our method was tested on 10 representative members of the PDZ domain family. CONCLUSIONS As a result of creating pair-wise dynamics-based alignments of PDZ domains, we have found evolutionarily conserved patterns in their backbone dynamics. The dynamic similarity of PDZ domains is highly correlated with their structural similarity as calculated with Dali. However, significant differences in their dynamics can be detected indicating that sequence has a more refined role to play in protein dynamics than just dictating the overall fold. We suggest that the method should be generally applicable.
Collapse
Affiliation(s)
- Márton Münz
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Rune Lyngsø
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK
| | - Jotun Hein
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
29
|
Pasi M, Riccardi L, Fantucci P, De Gioia L, Papaleo E. Dynamic properties of a psychrophilic alpha-amylase in comparison with a mesophilic homologue. J Phys Chem B 2009; 113:13585-95. [PMID: 19775158 DOI: 10.1021/jp900790n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cold-active, chloride-dependent alpha-amylase from Pseudoalteromonas haloplanktis (AHA) is one of the best characterized psychrophilic enzymes, and shares high sequence and structural similarity with its mesophilic porcine counterpart (PPA). An atomic detail comparative analysis was carried out by performing more than 60 ns of multiple-replica explicit-solvent molecular dynamics simulations on the two enzymes in order to characterize the differences in ensemble properties and dynamics in solution between the two homologues. We find in both enzymes high flexibility clusters in the surroundings of the substrate-binding groove, primarily involving the long loops that protrude from the main domain's barrel structure. These loops are longer in PPA and extend further away from the core of the barrel, where the active site is located: essential fluctuations in PPA mainly affect the highly solvent-accessible portions of these loops, whereas AHA is characterized by greater flexibility in the immediate surroundings of the active site. Furthermore, detailed analysis of active-site dynamics has revealed that elements previously identified through X-ray crystallography as involved in substrate binding in both enzymes undergo concerted motions that may be linked to catalysis.
Collapse
Affiliation(s)
- Marco Pasi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.za della Scienza 2, 20126 Milan, Italy
| | | | | | | | | |
Collapse
|
30
|
Gu J, Hilser VJ. Sequence-based analysis of protein energy landscapes reveals nonuniform thermal adaptation within the proteome. Mol Biol Evol 2009; 26:2217-27. [PMID: 19592668 DOI: 10.1093/molbev/msp140] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thermal adaptation of individual proteins is often achieved through modulating protein stability, with proteins that are adapted to extreme cold environments having increased conformational flexibility when brought to mesophilic conditions. Conversely, proteins adapted to higher temperatures appear less dynamic and are found to be much more stable against thermal denaturation than their mesophilic counterparts. According to the current paradigm, the adaptation of an organism for survival at higher or lower temperatures is facilitated by the adaptation of the component proteins. We note, however, that these observations have been carried out on relatively few proteins. The extent to which the conformational stabilities of all members of the proteome have been modulated for thermal adaptation remains unclear, with no direct experimental strategies to address this issue. Adapted extremophilies are likely to use a multitude of molecular and biophysical strategies for survival and, therefore, evolution of specific biophysical properties of proteins for optimal function may not be necessary for all proteins in the proteome. Using a sequence-based predictor of protein stability, eScape, an in silico examination of several extremophilic proteomes shows a correlation between the collective stability of the proteins and the thermal range of survival for the organism as expected. Unexpectedly, however, the analysis shows that protein thermostability is modified to different extents across the proteome and depends on the functional role for which the protein is involved. Identification of these differences provides unique opportunities to study interdependence within the proteome as well as the role that the proteome plays in the process of evolutionary thermal adaptation.
Collapse
Affiliation(s)
- Jenny Gu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Texas, USA
| | | |
Collapse
|
31
|
Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases. FEBS Lett 2008; 582:1008-18. [DOI: 10.1016/j.febslet.2008.02.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/29/2008] [Accepted: 02/19/2008] [Indexed: 11/17/2022]
|