1
|
Raghunathan S, Rayes J, Sen Gupta A. Platelet-inspired nanomedicine in hemostasis thrombosis and thromboinflammation. J Thromb Haemost 2022; 20:1535-1549. [PMID: 35435322 PMCID: PMC9323419 DOI: 10.1111/jth.15734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
Platelets are anucleate cell-fragments derived predominantly from megakaryocytes in the bone marrow and released in the blood circulation, with a normal count of 150 000-40 000 per μl and a lifespan of approximately 10 days in humans. A primary role of platelets is to aid in vascular injury site-specific clot formation to stanch bleeding, termed hemostasis. Platelets render hemostasis by a complex concert of mechanisms involving platelet adhesion, activation and aggregation, coagulation amplification, and clot retraction. Additionally, platelet secretome can influence coagulation kinetics and clot morphology. Therefore, platelet defects and dysfunctions result in bleeding complications. Current treatment for such complications involve prophylactic or emergency transfusion of platelets. However, platelet transfusion logistics constantly suffer from limited donor availability, challenges in portability and storage, high bacterial contamination risks, and very short shelf life (~5 days). To address these issues, an exciting area of research is focusing on the development of microparticle- and nanoparticle-based platelet surrogate technologies that can mimic various hemostatic mechanisms of platelets. On the other hand, aberrant occurrence of the platelet mechanisms lead to the pathological manifestation of thrombosis and thromboinflammation. The treatments for this are focused on inhibiting the mechanisms or resolving the formed clots. Here, platelet-inspired technologies can provide unique platforms for disease-targeted drug delivery to achieve high therapeutic efficacy while avoiding systemic side-effects. This review will provide brief mechanistic insight into the role of platelets in hemostasis, thrombosis and thromboinflammation, and present the current state-of-art in the design of platelet-inspired nanomedicine for applications in these areas.
Collapse
Affiliation(s)
- Shruti Raghunathan
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Julie Rayes
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Anirban Sen Gupta
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
2
|
Luc NF, Rohner N, Girish A, Sekhon UDS, Neal MD, Gupta AS. Bioinspired artificial platelets: past, present and future. Platelets 2022; 33:35-47. [PMID: 34455908 PMCID: PMC8795470 DOI: 10.1080/09537104.2021.1967916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Platelets are anucleate blood cells produced from megakaryocytes predominantly in the bone marrow and released into blood circulation at a healthy count of 150,000-400,00 per μL and circulation lifespan of 7-9 days. Platelets are the first responders at the site of vascular injury and bleeding, and participate in clot formation via injury site-specific primary mechanisms of adhesion, activation and aggregation to form a platelet plug, as well as secondary mechanisms of augmenting coagulation via thrombin amplification and fibrin generation. Platelets also secrete various granule contents that enhance these mechanisms for clot growth and stability. The resultant clot seals the injury site to stanch bleeding, a process termed as hemostasis. Due to this critical role, a reduction in platelet count or dysregulation in platelet function is associated with bleeding risks and hemorrhagic complications. These scenarios are often treated by prophylactic or emergency transfusion of platelets. However, platelet transfusions face significant challenges due to limited donor availability, difficult portability and storage, high bacterial contamination risks, and very short shelf life (~5-7 days). These are currently being addressed by a robust volume of research involving reduced temperature storage and pathogen reduction processes on donor platelets to improve shelf-life and reduce contamination, as well as bioreactor-based approaches to generate donor-independent platelets from stem cells in vitro. In parallel, a complementary research field has emerged that involves the design of artificial platelets utilizing biosynthetic particle constructs that functionally emulate various hemostatic mechanisms of platelets. Here, we provide a comprehensive review of the history and the current state-of-the-art artificial platelet approaches, along with discussing the translational opportunities and challenges.
Collapse
Affiliation(s)
- Norman F. Luc
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | - Nathan Rohner
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | - Aditya Girish
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | | | - Matthew D. Neal
- University of Pittsburgh, Pittsburgh Trauma Research Center, Department of Surgery, Pittsburgh, PA 15123, USA
| | - Anirban Sen Gupta
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Hickman DA, Pawlowski CL, Sekhon UDS, Marks J, Gupta AS. Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:10.1002/adma.201700859. [PMID: 29164804 PMCID: PMC5831165 DOI: 10.1002/adma.201700859] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/18/2017] [Indexed: 05/03/2023]
Abstract
Bleeding complications arising from trauma, surgery, and as congenital, disease-associated, or drug-induced blood disorders can cause significant morbidities and mortalities in civilian and military populations. Therefore, stoppage of bleeding (hemostasis) is of paramount clinical significance in prophylactic, surgical, and emergency scenarios. For externally accessible injuries, a variety of natural and synthetic biomaterials have undergone robust research, leading to hemostatic technologies including glues, bandages, tamponades, tourniquets, dressings, and procoagulant powders. In contrast, treatment of internal noncompressible hemorrhage still heavily depends on transfusion of whole blood or blood's hemostatic components (platelets, fibrinogen, and coagulation factors). Transfusion of platelets poses significant challenges of limited availability, high cost, contamination risks, short shelf-life, low portability, performance variability, and immunological side effects, while use of fibrinogen or coagulation factors provides only partial mechanisms for hemostasis. With such considerations, significant interdisciplinary research endeavors have been focused on developing materials and technologies that can be manufactured conveniently, sterilized to minimize contamination and enhance shelf-life, and administered intravenously to mimic, leverage, and amplify physiological hemostatic mechanisms. Here, a comprehensive review regarding the various topical, intracavitary, and intravenous hemostatic technologies in terms of materials, mechanisms, and state-of-art is provided, and challenges and opportunities to help advancement of the field are discussed.
Collapse
Affiliation(s)
- DaShawn A Hickman
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, Ohio 44106, USA
| | - Christa L Pawlowski
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, USA
| | - Ujjal D S Sekhon
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, USA
| | - Joyann Marks
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, USA
| | - Anirban Sen Gupta
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, USA
| |
Collapse
|
4
|
Sen Gupta A. Bio-inspired nanomedicine strategies for artificial blood components. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1464. [PMID: 28296287 PMCID: PMC5599317 DOI: 10.1002/wnan.1464] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/23/2017] [Accepted: 01/29/2017] [Indexed: 11/12/2022]
Abstract
Blood is a fluid connective tissue where living cells are suspended in noncellular liquid matrix. The cellular components of blood render gas exchange (RBCs), immune surveillance (WBCs) and hemostatic responses (platelets), and the noncellular components (salts, proteins, etc.) provide nutrition to various tissues in the body. Dysfunction and deficiencies in these blood components can lead to significant tissue morbidity and mortality. Consequently, transfusion of whole blood or its components is a clinical mainstay in the management of trauma, surgery, myelosuppression, and congenital blood disorders. However, donor-derived blood products suffer from issues of shortage in supply, need for type matching, high risks of pathogenic contamination, limited portability and shelf-life, and a variety of side-effects. While robust research is being directed to resolve these issues, a parallel clinical interest has developed toward bioengineering of synthetic blood substitutes that can provide blood's functions while circumventing the above problems. Nanotechnology has provided exciting approaches to achieve this, using materials engineering strategies to create synthetic and semi-synthetic RBC substitutes for enabling oxygen transport, platelet substitutes for enabling hemostasis, and WBC substitutes for enabling cell-specific immune response. Some of these approaches have further extended the application of blood cell-inspired synthetic and semi-synthetic constructs for targeted drug delivery and nanomedicine. The current study provides a comprehensive review of the various nanotechnology approaches to design synthetic blood cells, along with a critical discussion of successes and challenges of the current state-of-art in this field. WIREs Nanomed Nanobiotechnol 2017, 9:e1464. doi: 10.1002/wnan.1464 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Kashyap AS, Shooter GK, Shokoohmand A, McGovern J, Sivaramakrishnan M, Croll TI, Cane G, Leavesley DI, Söderberg O, Upton Z, Hollier BG. Antagonists of IGF:Vitronectin Interactions Inhibit IGF-I-Induced Breast Cancer Cell Functions. Mol Cancer Ther 2016; 15:1602-13. [PMID: 27196774 DOI: 10.1158/1535-7163.mct-15-0907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/28/2016] [Indexed: 11/16/2022]
Abstract
We provide proof-of-concept evidence for a new class of therapeutics that target growth factor:extracellular matrix (GF:ECM) interactions for the management of breast cancer. Insulin-like growth factor-I (IGF-I) forms multiprotein complexes with IGF-binding proteins (IGFBP) and the ECM protein vitronectin (VN), and stimulates the survival, migration and invasion of breast cancer cells. For the first time we provide physical evidence for IGFBP-3:VN interactions in breast cancer patient tissues; these interactions were predominantly localized to tumor cell clusters and in stroma surrounding tumor cells. We show that disruption of IGF-I:IGFBP:VN complexes with L(27)-IGF-II inhibits IGF-I:IGFBP:VN-stimulated breast cancer cell migration and proliferation in two- and three-dimensional assay systems. Peptide arrays screened to identify regions critical for the IGFBP-3/-5:VN and IGF-II:VN interactions demonstrated IGFBP-3/-5 and IGF-II binds VN through the hemopexin-2 domain, and VN binds IGFBP-3 at residues not involved in the binding of IGF-I to IGFBP-3. IGFBP-interacting VN peptides identified from these peptide arrays disrupted the IGF-I:IGFBP:VN complex, impeded the growth of primary tumor-like spheroids and, more importantly, inhibited the invasion of metastatic breast cancer cells in 3D assay systems. These studies provide first-in-field evidence for the utility of small peptides in antagonizing GF:ECM-mediated biologic functions and present data demonstrating the potential of these peptide antagonists as novel therapeutics. Mol Cancer Ther; 15(7); 1602-13. ©2016 AACR.
Collapse
Affiliation(s)
- Abhishek S Kashyap
- Queensland University of Technology, Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia. Cancer Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
| | - Gary K Shooter
- Queensland University of Technology, Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia
| | - Ali Shokoohmand
- Queensland University of Technology, Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia
| | - Jacqui McGovern
- Queensland University of Technology, Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia
| | | | - Tristan I Croll
- Queensland University of Technology, Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia
| | - Gaëlle Cane
- Department of Immunology, Genetics and Pathology Science for Life Laboratory, BMC, Uppsala University, Uppsala, Sweden
| | - David I Leavesley
- Queensland University of Technology, Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia
| | - Ola Söderberg
- Department of Immunology, Genetics and Pathology Science for Life Laboratory, BMC, Uppsala University, Uppsala, Sweden
| | - Zee Upton
- Queensland University of Technology, Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia
| | - Brett G Hollier
- Queensland University of Technology, Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia. Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
6
|
Zhang L, Zhang C, Sun Y. Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions: II. Inhibitor library, screening, and experimental validation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4734-4742. [PMID: 24697658 DOI: 10.1021/la4046012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Platelet adhesion on collagen mediated by integrin α2β1 has been proven important in arterial thrombus formation, leading to an exigent demand on development of potent inhibitors for the integrin α2β1-collagen binding. In the present study, a biomimetic design strategy of platelet adhesion inhibitors was established, based on the affinity binding model of integrin proposed in part I. First, a heptapeptide library containing 8000 candidates was designed to functionally mimic the binding motif of integrin α2β1. Then, each heptapeptide in the library was docked onto a collagen molecule for the assessment of its affinity, followed by a screening based on its structure similarity to the original structure in the affinity binding model. Eight candidates were then selected for further screening by molecular dynamics (MD) simulations. Thereafter, three candidates chosen from MD simulations were separately added into the physiological saline containing separated integrin and collagen, to check their abilities for blocking the integrin-collagen interaction using MD simulations. Of these three candidates, significant inhibition was observed in the presence of LWWNSYY. Finally, the binding affinity of LWWNSYY for collagen was demonstrated by isothermal titration calorimetry. Moreover, significant inhibition of platelet adhesion in the presence of LWWNSYY has been experimentally validated. This work has thus developed an effective strategy for the biomimetic design of peptide-based platelet adhesion inhibitors.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | | | | |
Collapse
|
7
|
Qiao J, Shen Y, Shi M, Lu Y, Cheng J, Chen Y. Molecular cloning and characterization of rhesus monkey platelet glycoprotein Ibα, a major ligand-binding subunit of GPIb-IX-V complex. Thromb Res 2014; 133:817-25. [PMID: 24560895 DOI: 10.1016/j.thromres.2014.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/04/2014] [Accepted: 01/27/2014] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Through binding to von Willebrand factor (VWF), platelet glycoprotein (GP) Ibα, the major ligand-binding subunit of the GPIb-IX-V complex, initiates platelet adhesion and aggregation in response to exposed VWF or elevated fluid-shear stress. There is little data regarding non-human primate platelet GPIbα. This study cloned and characterized rhesus monkey (Macaca Mullatta) platelet GPIbα. MATERIALS AND METHODS DNAMAN software was used for sequence analysis and alignment. N/O-glycosylation sites and 3-D structure modelling were predicted by online OGPET v1.0, NetOGlyc 1.0 Server and SWISS-MODEL, respectively. Platelet function was evaluated by ADP- or ristocetin-induced platelet aggregation. RESULTS Rhesus monkey GPIbα contains 2,268 nucleotides with an open reading frame encoding 755 amino acids. Rhesus monkey GPIbα nucleotide and protein sequences share 93.27% and 89.20% homology respectively, with human. Sequences encoding the leucine-rich repeats of rhesus monkey GPIbα share strong similarity with human, whereas PEST sequences and N/O-glycosylated residues vary. The GPIbα-binding residues for thrombin, filamin A and 14-3-3ζ are highly conserved between rhesus monkey and human. Platelet function analysis revealed monkey and human platelets respond similarly to ADP, but rhesus monkey platelets failed to respond to low doses of ristocetin where human platelets achieved 76% aggregation. However, monkey platelets aggregated in response to higher ristocetin doses. CONCLUSIONS Monkey GPIbα shares strong homology with human GPIbα, however there are some differences in rhesus monkey platelet activation through GPIbα engagement, which need to be considered when using rhesus monkey platelet to investigate platelet GPIbα function.
Collapse
Affiliation(s)
- Jianlin Qiao
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Haematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | - Yang Shen
- Australian Centre for Blood Diseases, Monash University, Melbourne, 3004, Victoria, Australia
| | - Meimei Shi
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Broos K, Trekels M, Jose RA, Demeulemeester J, Vandenbulcke A, Vandeputte N, Venken T, Egle B, De Borggraeve WM, Deckmyn H, De Maeyer M. Identification of a small molecule that modulates platelet glycoprotein Ib-von Willebrand factor interaction. J Biol Chem 2012; 287:9461-72. [PMID: 22232560 PMCID: PMC3308782 DOI: 10.1074/jbc.m111.311431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/23/2011] [Indexed: 11/06/2022] Open
Abstract
The von Willebrand factor (VWF) A1-glycoprotein (GP) Ibα interaction is of major importance during thrombosis mainly at sites of high shear stress. Inhibitors of this interaction prevent platelet-dependent thrombus formation in vivo, without major bleeding complications. However, the size and/or protein nature of the inhibitors currently in development limit oral bioavailability and clinical development. We therefore aimed to search for a small molecule protein-protein interaction inhibitor interfering with the VWF-GPIbα binding. After determination of putative small molecule binding pockets on the surface of VWF-A1 and GPIbα using site-finding algorithms and molecular dynamics, high throughput molecular docking was performed on both binding partners. A selection of compounds showing good in silico docking scores into the predicted pockets was retained for testing their in vitro effect on VWF-GPIbα complex formation, by which we identified a compound that surprisingly stimulated the VWF-GPIbα binding in a ristocetin cofactor ELISA and increased platelet adhesion in whole blood to collagen under arterial shear rate but in contrast inhibited ristocetin-induced platelet aggregation. The selected compound adhering to the predicted binding partner GPIbα could be confirmed by saturation transfer difference NMR spectroscopy. We thus clearly identified a small molecule that modulates VWF-GPIbα binding and that will now serve as a starting point for further studies and chemical modifications to fully characterize the interaction and to manipulate specific activity of the compound.
Collapse
Affiliation(s)
- Katleen Broos
- From the Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kortrijk, E. Sabbelaan 53, B-8500 Kortrijk
| | - Mieke Trekels
- the Laboratory for Biomolecular Modelling, Department of Chemistry, Division of Biochemistry, Molecular and Structural Biology, Katholieke Universiteit Leuven, Celestijnenlaan 200G bus 2403, 3001 Heverlee, Leuven, and
| | - Rani Alphonsa Jose
- the Laboratory for Molecular Design and Synthesis, Department of Chemistry, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Jonas Demeulemeester
- the Laboratory for Biomolecular Modelling, Department of Chemistry, Division of Biochemistry, Molecular and Structural Biology, Katholieke Universiteit Leuven, Celestijnenlaan 200G bus 2403, 3001 Heverlee, Leuven, and
| | - Aline Vandenbulcke
- From the Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kortrijk, E. Sabbelaan 53, B-8500 Kortrijk
| | - Nele Vandeputte
- From the Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kortrijk, E. Sabbelaan 53, B-8500 Kortrijk
| | - Tom Venken
- the Laboratory for Biomolecular Modelling, Department of Chemistry, Division of Biochemistry, Molecular and Structural Biology, Katholieke Universiteit Leuven, Celestijnenlaan 200G bus 2403, 3001 Heverlee, Leuven, and
| | - Brecht Egle
- the Laboratory for Molecular Design and Synthesis, Department of Chemistry, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Wim M. De Borggraeve
- the Laboratory for Molecular Design and Synthesis, Department of Chemistry, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Hans Deckmyn
- From the Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kortrijk, E. Sabbelaan 53, B-8500 Kortrijk
| | - Marc De Maeyer
- the Laboratory for Biomolecular Modelling, Department of Chemistry, Division of Biochemistry, Molecular and Structural Biology, Katholieke Universiteit Leuven, Celestijnenlaan 200G bus 2403, 3001 Heverlee, Leuven, and
| |
Collapse
|
9
|
Harnedy PA, FitzGerald RJ. Bioactive peptides from marine processing waste and shellfish: A review. J Funct Foods 2012. [DOI: 10.1016/j.jff.2011.09.001] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
10
|
Szanto T, Vanhoorelbeke K, Toth G, Vandenbulcke A, Toth J, Noppe W, Deckmyn H, Harsfalvi J. Identification of a VWF peptide antagonist that blocks platelet adhesion under high shear conditions by selectively inhibiting the VWF-collagen interaction. J Thromb Haemost 2009; 7:1680-7. [PMID: 19624458 DOI: 10.1111/j.1538-7836.2009.03552.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Because the collagen-VWF-GPIb/IX/V axis plays an important role in thrombus formation, it represents a promising target for development of new antithrombotic agents. OBJECTIVES We used phage display to identify potential small peptides that interfere with the VWF-collagen binding and might serve as lead products for the development of possible oral antithrombotic compounds. METHODS A random linear heptamer peptide library was used to select VWF-binding peptides. RESULTS We identified a phage clone, displaying the YDPWTPS sequence, further referred to as L7-phage, that bound to VWF in a specific and a dose-dependent manner. This L7-phage specifically inhibited the VWF-collagen interaction under both static and flow conditions. Epitope mapping using deletion mutants of VWF revealed that the L7-phage does not bind to the known collagen-binding A3 domain within VWF, but to the more carboxyterminal situated C domain. This inhibition was not due to steric hindrance of the A3 domain-collagen interaction by the L7-phage. Indeed, a tetrabranched multi-antigen peptide (MAP) presenting four copies of the peptide, but not the scrambled MAP, also inhibited VWF-collagen interaction under conditions of high shear stress at a concentration of 148 nmol L(-1). CONCLUSIONS Based on these results, we conclude that we have identified the first peptide antagonist that binds to the VWF C domain and by this specifically inhibits the VWF binding to collagen, suppressing platelet adhesion and aggregation under high shear conditions. As a consequence, this peptide and its future derivates are potentially interesting antithrombotic agents.
Collapse
Affiliation(s)
- T Szanto
- Clinical Research Center, Medical and Health Science Center, University of Debrecen, Debrecen H-4012, Hungary
| | | | | | | | | | | | | | | |
Collapse
|