1
|
Wu J, Fu YS, Lin K, Huang X, Chen YJ, Lai D, Kang N, Huang L, Weng CF. A narrative review: The pharmaceutical evolution of phenolic syringaldehyde. Biomed Pharmacother 2022; 153:113339. [PMID: 35780614 DOI: 10.1016/j.biopha.2022.113339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
To better understand the pharmacological characters of syringaldehyde (SA), which is a key-odorant compound of whisky and brandy, this review article is the first to compile the published literature for molecular docking that were subsequently validated by in vitro and in vivo assays to predict and develop insights into the medicinal properties of SA in terms of anti-oxidation, anti-inflammation, and anti-diabetes. The molecular docking displayed significantly binding affinity for SA towards tumor necrosis factor-α, interleukin-6, and antioxidant enzymes when inflammation from myocardial infarction and spinal cord ischemia. Moreover, SA nicely docked with dipeptidyl peptidase-IV, glucagon-like peptide 1 receptor, peroxisome proliferator-activated receptor, acetylcholine M2 receptor, and acetylcholinesterase in anti-diabetes investigations. These are associated with (1) an increase glucose utilization and insulin sensitivity to an anti-hyperglycemic effect; and (2) to potentiate intestinal contractility to abolish the α-amylase reaction when concurrently reducing retention time and glucose absorption of the intestinal tract to achieve a glucose-lowering effect. In silico screening of multi-targets concomitantly with preclinical tests could provide a potential exploration for new indications for drug discovery and development.
Collapse
Affiliation(s)
- Jingyi Wu
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Yaw-Syan Fu
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Kaihuang Lin
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Xin Huang
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Yi-Jing Chen
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Ning Kang
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Liyue Huang
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ching-Feng Weng
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|
2
|
The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging wine is a usual practice in winemaking, as the wine quality improves due to the compounds extracted from wood barrels or chips, cubes, blocks, or staves used. The wood species used are traditionally oak, namely from Quercus petraea, Q. alba, or Q. robur species. In the last years, the increasing request for oak wood has caused a significant increase in environmental and production costs. Therefore, heartwood from several alternative species has been considered a potential wood source for winemaking and aging. Thus, the main purpose of this review is the application of these alternative wood species on wine production and to discuss the advantages and disadvantages of its use compared with the traditional wood species, namely oak wood. In addition, a brief chemical characterization of several wood species with possible application in enology is also discussed in this review.
Collapse
|
3
|
You S, Xie Y, Zhuang X, Chen H, Qin Y, Cao J, Lan T. Effect of high antioxidant activity on bacteriostasis of lignin from sugarcane bagasse. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Cameleyre M, Lytra G, Schütte L, Vicard JC, Barbe JC. Oak Wood Volatiles Impact on Red Wine Fruity Aroma Perception in Various Matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13319-13330. [PMID: 32286816 DOI: 10.1021/acs.jafc.0c00583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This research examined the impact of oak wood volatile compounds on the perception of red wine fruity aroma in several matrices. Several aromatic reconstitutions were prepared, consisting of 13 esters, representing the fruity pool of red wine, and 14 oak wood compounds at the various concentrations corresponding to the levels released by light, medium, and heavy toasting of barrels. These reconstitutions were prepared in dilute alcohol solution, dearomatized red wine, and commercial red wine. Sensory analysis revealed the impact of the addition or omission of some oak wood compounds. The "detection threshold" of the fruity pool was then evaluated. The presence of 2-furanmethanethiol individually and the oak wood compound mixture, at concentrations representing various toasting levels, had a significant masking effect on the fruity pool, whereas vanillin had a significant enhancing effect in model solution. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the oak wood compound mixture. The addition of compounds at concentrations representing different toasting levels led to a predictable increase in the perception of the oak wood descriptors (spicy, smoky, and toasty) in all of the matrices tested. The perception of fruity notes also varied depending upon the toasting level and the complexity of the matrix. In dilute alcohol solution and dearomatized red wine, light toasting preserved or intensified the fruity notes. Generally, in all matrices tested, fresh-fruit and red-berry-fruit notes decreased with the addition of wood at medium and heavy toasting levels.
Collapse
Affiliation(s)
- Margaux Cameleyre
- Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 Villenave d'Ornon, France
| | - Georgia Lytra
- Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 Villenave d'Ornon, France
| | - Larissa Schütte
- Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 Villenave d'Ornon, France
| | | | - Jean-Christophe Barbe
- Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 Villenave d'Ornon, France
| |
Collapse
|
5
|
Lauberte L, Fabre G, Ponomarenko J, Dizhbite T, Evtuguin DV, Telysheva G, Trouillas P. Lignin Modification Supported by DFT-Based Theoretical Study as a Way to Produce Competitive Natural Antioxidants. Molecules 2019; 24:molecules24091794. [PMID: 31075868 PMCID: PMC6539611 DOI: 10.3390/molecules24091794] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 11/25/2022] Open
Abstract
The valorization of lignins as renewable aromatic feedstock is of utmost importance in terms of the use of sustainable resources. This study provides a deductive approach towards market-oriented lignin-derived antioxidants by ascertaining the direct effect of different structural features of lignin on the reactivity of its phenolic OH groups in the radical scavenging reactions. The antioxidant activity of a series of compounds, modeling lignin structural units, was experimentally characterized and rationalized, using thermodynamic descriptors. The calculated O–H bond dissociation enthalpies (BDE) of characteristic lignin subunits were used to predict the modification pathways of technical lignins. The last ones were isolated by soda delignification from different biomass sources and their oligomeric fractions were studied as a raw material for modification and production of optimized antioxidants. These were characterized in terms of chemical structure, molecular weight distribution, content of the functional groups, and the antioxidant activity. The developed approach for the targeted modification of lignins allowed the products competitive with two commercial synthetic phenolic antioxidants in both free radical scavenging and stabilization of thermooxidative destruction of polyurethane films.
Collapse
Affiliation(s)
- Liga Lauberte
- Latvian State Institute of Wood Chemistry, Dzerbenes Str. 27, LV-1006 Riga, Latvia.
| | - Gabin Fabre
- INSERM UMR 1248, Université de Limoges, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France.
| | | | - Tatiana Dizhbite
- Latvian State Institute of Wood Chemistry, Dzerbenes Str. 27, LV-1006 Riga, Latvia.
| | - Dmitry V Evtuguin
- CICECO/University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Galina Telysheva
- Latvian State Institute of Wood Chemistry, Dzerbenes Str. 27, LV-1006 Riga, Latvia.
| | - Patrick Trouillas
- INSERM UMR 1248, Université de Limoges, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France.
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
6
|
Champ CE, Kundu-Champ A. Maximizing Polyphenol Content to Uncork the Relationship Between Wine and Cancer. Front Nutr 2019; 6:44. [PMID: 31114789 PMCID: PMC6502998 DOI: 10.3389/fnut.2019.00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Studies have revealed conflicting results regarding the risk of cancer from alcohol consumption. Furthermore, some studies have suggested that wine may have benefits that separate it from other alcoholic beverages. As wine contains a significant amount of chemicals, specifically polyphenols like anthocyanins and proanthocyanidins (PA), that can affect cellular function and promote health, this hypothesis is reasonably supported by recent research. Polyphenols promote several anticancer cellular pathways, including xenobiotic metabolism, support of innate antioxidant production, and stimulation of phase I and II detoxification of carcinogens. However, the multitude of growing and production conditions of grapes, including temperature, water availability, soil type, maceration, and aging can result in a remarkably varying final product based on the available literature. Thus, we hypothesize that wines produced from grapes cultivated between steady daily temperatures at 15–25°C with moderate sun exposure from flowering to harvest, lower vine-water status, resulting either from lower precipitation, and irrigation practices or more permeable soil types, limitation of fertilizers, extended maceration, and aging in oak will impact the concentration of anthocyanins and PA in the finished wine and may have a differential impact on cancer. This higher concentration of polyphenols would, in theory, create a healthier wine, thus explaining the conflicting reports on the benefits or harms of wine.
Collapse
Affiliation(s)
- Colin E. Champ
- Cancer Prevention Project, Pittsburgh, PA, United States
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- *Correspondence: Colin E. Champ
| | | |
Collapse
|
7
|
Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh Kumar C. Syringic acid (SA) ‒ A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed Pharmacother 2018; 108:547-557. [PMID: 30243088 DOI: 10.1016/j.biopha.2018.09.069] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
The use of phytochemicals in control of human diseases have been considerable public and scientific interest in current days. Syringic acid (SA), a phenolic compound often found in fruits and vegetables and which is synthesized via shikimic acid pathway in plants. It shows a wide range of therapeutic applications in prevention of diabetes, CVDs, cancer, cerebral ischemia; as well as it possess anti-oxidant, antimicrobial, anti-inflammatory, antiendotoxic, neuro and hepatoprotective activities. It has an effective free radical scavenger and alleviates the oxidative stress markers. The therapeutic property of SA is attributed by the presence of methoxy groups onto the aromatic ring at positions 3 and 5. The strong antioxidant activity of SA may confer its beneficial effects for human health. SA has the potential to modulate enzyme activity, protein dynamics and diverse transcription factors involved in diabetes, inflammation, cancer and angiogenesis. In vivo experimental data and histopathological studies on SA activity has delineated its possible therapeutic mechanisms. Besides usage in biomedical field, SA has greater industrial applications in bioremediation, photocatalytic ozonation, and laccase based catalysis. The present review deals about SA natural sources, biosynthesis, bioavailability, biomedical applications (in vivo and in vito. The review addresses basic information about molecular mechanisms, therapeutic and industrial potential of SA.
Collapse
Affiliation(s)
| | - Mopuri Ramgopal
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapuramu 515003, A.P., India
| | - Golla Ramanjaneyulu
- Biochemistry division, CSIR-CIMAP Research Centre, GKVK post, Bangalore-65, K.A., India
| | - C M Anuradha
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapuramu 515003, A.P., India
| | - Chitta Suresh Kumar
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapuramu 515003, A.P., India
| |
Collapse
|
8
|
Anti-HCV effect of Lentinula edodes mycelia solid culture extracts and low-molecular-weight lignin. Biochem Biophys Res Commun 2015; 462:52-7. [PMID: 25935479 DOI: 10.1016/j.bbrc.2015.04.104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
Lentinula edodes mycelia solid culture extract (MSCE) contains several bioactive molecules, including some polyphenolic compounds, which exert immunomodulatory, antitumor, and hepatoprotective effects. In this study, we examined the anti-hepatitis C virus (HCV) activity of MSCE and low-molecular-weight lignin (LM-lignin), which is the active component responsible for the hepatoprotective effect of MSCE. Both MSCE and LM-lignin inhibited the entry of two HCV pseudovirus (HCVpv) types into Huh7.5.1 cells. LM-lignin inhibited HCVpv entry at a lower concentration than MSCE and inhibited the entry of HCV particles in cell culture (HCVcc). MSCE also inhibited HCV subgenome replication. LM-lignin had no effect on HCV replication, suggesting that MSCE contains additional active substances. We demonstrate here for the first time the anti-HCV effects of plant-derived LM-lignin and MSCE. The hepatoprotective effect of LM-lignin suggests that lignin derivatives, which can be produced in abundance from existing plant resources, may be effective in the treatment of HCV-related diseases.
Collapse
|
9
|
A review of polyphenolics in oak woods. Int J Mol Sci 2015; 16:6978-7014. [PMID: 25826529 PMCID: PMC4425000 DOI: 10.3390/ijms16046978] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/23/2022] Open
Abstract
Polyphenolics, which are ubiquitous in plants, currently are among the most studied phytochemicals because of their perceptible chemical properties and antioxidant activity. Oak barrels and their alternatives, which are widely used in winemaking nowadays, contribute polyphenolics to wines and are thought to play crucial roles in the development of wines during aging. This study summarizes the detailed information of polyphenolics in oak woods and their products by examining their structures and discussing their chemical reactions during wine aging. This paper evaluates the most recent developments in polyphenolic chemistry by summarizing their extraction, separation, and their identification by the use of chromatographic and spectral techniques. In addition, this paper also introduces polyphenol bioactive ingredients in other plant foods.
Collapse
|
10
|
Richards-Henderson NK, Pham AT, Kirk BB, Anastasio C. Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:268-76. [PMID: 25426693 DOI: 10.1021/es503656m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Vegetation emits a class of oxygenated hydrocarbons--the green leaf volatiles (GLVs)--under stress or damage. Under foggy conditions GLVs might be a source of secondary organic aerosol (SOA) via aqueous reactions with hydroxyl radical (OH), singlet oxygen ((1)O2*), and excited triplet states ((3)C*). To examine this, we determined the aqueous kinetics and SOA mass yields for reactions of (3)C* and (1)O2* with five GLVs: methyl jasmonate (MeJa), methyl salicylate (MeSa), cis-3-hexenyl acetate (HxAc), cis-3-hexen-1-ol (HxO), and 2-methyl-3-butene-2-ol (MBO). Second-order rate constants with (3)C* and (1)O2* range from (0.13-22) × 10(8) M(-1) s(-1) and (8.2-60) × 10(5) M(-1) s(-1) at 298 K, respectively. Rate constants with (3)C* are independent of temperature, while values with (1)O2* show significant temperature dependence (Ea = 20-96 kJ mol(-1)). Aqueous SOA mass yields for oxidation by (3)C* are (84 ± 7)%, (80 ± 9)%, and (38 ± 18)%, for MeJa, MeSa, and HxAc, respectively; we did not measure yields for other conditions because of slow kinetics. The aqueous production of SOA from GLVs is dominated by (3)C* and OH reactions, which form low volatility products at a rate that is approximately half that from the parallel gas-phase reactions of GLVs.
Collapse
Affiliation(s)
- Nicole K Richards-Henderson
- Department of Land, Air and Water Resources, University of California - Davis , 1 Shields Avenue, Davis, California 95616, United States
| | | | | | | |
Collapse
|
11
|
Nićiforović N, Abramovič H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr Rev Food Sci Food Saf 2013; 13:34-51. [DOI: 10.1111/1541-4337.12041] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/22/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Neda Nićiforović
- Dept. of Food Science and Technology; Biotechnical Faculty, Univ. of Ljubljana; 1000 Ljubljana Slovenia
| | - Helena Abramovič
- Dept. of Food Science and Technology; Biotechnical Faculty, Univ. of Ljubljana; 1000 Ljubljana Slovenia
| |
Collapse
|
12
|
Nenadis N, Tsimidou MZ. Contribution of DFT computed molecular descriptors in the study of radical scavenging activity trend of natural hydroxybenzaldehydes and corresponding acids. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Lee SS, Monnappa AK, Mitchell RJ. Biological activities of lignin hydrolysate-related compounds. BMB Rep 2012; 45:265-74. [DOI: 10.5483/bmbrep.2012.45.5.265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
14
|
Low-molecular-weight lignin-rich fraction in the extract of cultured Lentinula edodes mycelia attenuates carbon tetrachloride-induced toxicity in primary cultures of rat hepatocytes. J Nat Med 2011; 66:185-91. [PMID: 21904796 DOI: 10.1007/s11418-011-0580-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023]
Abstract
The extract of cultured Lentinula edodes mycelia (LEM) is a medicinal food ingredient that has hepatoprotective effects. In this study, we fractionated the LEM extract to explore novel active compounds related to hepatoprotection by using primary cultures of rat hepatocytes exposed to carbon tetrachloride (CCl(4)). The LEM extract and the fractions markedly inhibited the release of alanine aminotransferase (ALT) from hepatocytes damaged by CCl(4) into the culture medium. The strongest hepatocyte-protective activity was seen in a fraction (Fr. 2) in which a 50% ethanol extract was further eluted with 50% methanol and separated using reverse-phase HPLC. Fr. 2 had an average molecular weight of 2753, and the main components are lignin (49%) and saccharides (36%, of which xylose comprises 41%). Therefore, Fr. 2 was presumed to be a low-molecular-weight compound consisting mainly of lignin and xylan-like polysaccharides. The hepatocyte-protective activity was observed even after digestion of xylan-like polysaccharides in Fr.2 and confirmed with low-molecular-weight lignin (LM-lignin) alone. In addition, Fr. 2, the xylan-digested Fr. 2 and LM-lignin showed higher superoxide dismutase (SOD)-like activity than the LEM extract. These results suggested that the effective fraction in the LEM extract related to hepatocyte protection consisted mainly of LM-lignin, and its antioxidant activity partially contributes to the hepatocyte-protective activity of the LEM extract.
Collapse
|