1
|
Vallet A, Martin-Laffon J, Favier A, Revel B, Bonnot T, Vidaud C, Armengaud J, Gaillard JC, Delangle P, Devime F, Figuet S, Serre NBC, Erba EB, Brutscher B, Ravanel S, Bourguignon J, Alban C. The plasma membrane-associated cation-binding protein PCaP1 of Arabidopsis thaliana is a uranyl-binding protein. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130668. [PMID: 36608581 DOI: 10.1016/j.jhazmat.2022.130668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana. This procedure allowed the identification of 38 uranyl-binding proteins (UraBPs) from root and shoot extracts. Among them, UraBP25, previously identified as plasma membrane-associated cation-binding protein 1 (PCaP1), was further characterized as a protein interacting in vitro with U(VI) and other metals using spectroscopic and structural approaches, and in planta through analyses of the fate of U(VI) in Arabidopsis lines with altered PCaP1 gene expression. Our results showed that recombinant PCaP1 binds U(VI) in vitro with affinity in the nM range, as well as Cu(II) and Fe(III) in high proportions, and that Ca(II) competes with U(VI) for binding. U(VI) induces PCaP1 oligomerization through binding at the monomer interface, at both the N-terminal structured domain and the C-terminal flexible region. Finally, U(VI) translocation in Arabidopsis shoots was affected in pcap1 null-mutant, suggesting a role for this protein in ion trafficking in planta.
Collapse
Affiliation(s)
- Alicia Vallet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | | | - Adrien Favier
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | - Benoît Revel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Titouan Bonnot
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Claude Vidaud
- BIAM, CEA, CNRS, Univ. Aix-Marseille, 13108 Saint-Paul-lez-Durance, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, GRE-INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Sylvie Figuet
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Nelson B C Serre
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
2
|
Guéguen Y, Frerejacques M. Review of Knowledge of Uranium-Induced Kidney Toxicity for the Development of an Adverse Outcome Pathway to Renal Impairment. Int J Mol Sci 2022; 23:ijms23084397. [PMID: 35457214 PMCID: PMC9030063 DOI: 10.3390/ijms23084397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
An adverse outcome pathway (AOP) is a conceptual construct of causally and sequentially linked events, which occur during exposure to stressors, with an adverse outcome relevant to risk assessment. The development of an AOP is a means of identifying knowledge gaps in order to prioritize research assessing the health risks associated with exposure to physical or chemical stressors. In this paper, a review of knowledge was proposed, examining experimental and epidemiological data, in order to identify relevant key events and potential key event relationships in an AOP for renal impairment, relevant to stressors such as uranium (U). Other stressors may promote similar pathways, and this review is a necessary step to compare and combine knowledge reported for nephrotoxicants. U metal ions are filtered through the glomerular membrane of the kidneys, then concentrate in the cortical and juxtaglomerular areas, and bind to the brush border membrane of the proximal convoluted tubules. U uptake by epithelial cells occurs through endocytosis and the sodium-dependent phosphate co-transporter (NaPi-IIa). The identified key events start with the inhibition of the mitochondria electron transfer chain and the collapse of mitochondrial membrane potential, due to cytochrome b5/cytochrome c disruption. In the nucleus, U directly interacts with negatively charged DNA phosphate, thereby inducing an adduct formation, and possibly DNA strand breaks or cross-links. U also compromises DNA repair by inhibiting zing finger proteins. Thereafter, U triggers the Nrf2, NF-κB, or endoplasmic reticulum stress pathways. The resulting cellular key events include oxidative stress, DNA strand breaks and chromosomal aberrations, apoptosis, and pro-inflammatory effects. Finally, the main adverse outcome is tubular damage of the S2 and S3 segments of the kidneys, leading to tubular cell death, and then kidney failure. The attribution of renal carcinogenesis due to U is controversial, and specific experimental or epidemiological studies must be conducted. A tentative construction of an AOP for uranium-induced kidney toxicity and failure was proposed.
Collapse
|
3
|
Lin YW. Uranyl Binding to Proteins and Structural-Functional Impacts. Biomolecules 2020; 10:biom10030457. [PMID: 32187982 PMCID: PMC7175365 DOI: 10.3390/biom10030457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/08/2020] [Accepted: 03/13/2020] [Indexed: 01/29/2023] Open
Abstract
The widespread use of uranium for civilian purposes causes a worldwide concern of its threat to human health due to the long-lived radioactivity of uranium and the high toxicity of uranyl ion (UO22+). Although uranyl–protein/DNA interactions have been known for decades, fewer advances are made in understanding their structural-functional impacts. Instead of focusing only on the structural information, this article aims to review the recent advances in understanding the binding of uranyl to proteins in either potential, native, or artificial metal-binding sites, and the structural-functional impacts of uranyl–protein interactions, such as inducing conformational changes and disrupting protein-protein/DNA/ligand interactions. Photo-induced protein/DNA cleavages, as well as other impacts, are also highlighted. These advances shed light on the structure-function relationship of proteins, especially for metalloproteins, as impacted by uranyl–protein interactions. It is desired to seek approaches for biological remediation of uranyl ions, and ultimately make a full use of the double-edged sword of uranium.
Collapse
Affiliation(s)
- Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; ; Tel.: +86-734-8578079
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| |
Collapse
|
4
|
Creff G, Zurita C, Jeanson A, Carle G, Vidaud C, Den Auwer C. What do we know about actinides-proteins interactions? RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Since the early 40s when the first research related to the development of the atomic bomb began for the Manhattan Project, actinides (An) and their association with the use of nuclear energy for civil applications, such as in the generation of electricity, have been a constant source of interest and fear. In 1962, the first Society of Toxicology (SOT), led by H. Hodge, was established at the University of Rochester (USA). It was commissioned as part of the Manhattan Project to assess the impact of nuclear weapons production on workers’ health. As a result of this initiative, the retention and excretion rates of radioactive heavy metals, their physiological impact in the event of acute exposure and their main biological targets were assessed. In this context, the scientific community began to focus on the role of proteins in the transportation and in vivo accumulation of An. The first studies focused on the identification of these proteins. Thereafter, the continuous development of physico-chemical characterization techniques has made it possible to go further and specify the modes of interaction with proteins from both a thermodynamic and structural point of view, as well as from the point of view of their biological activity. This article reviews the work performed in this area since the Manhattan Project. It is divided into three parts: first, the identification of the most affine proteins; second, the study of the affinity and structure of protein-An complexes; and third, the impact of actinide ligation on protein conformation and function.
Collapse
Affiliation(s)
- Gaëlle Creff
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| | - Cyril Zurita
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| | - Aurélie Jeanson
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| | - Georges Carle
- Université Côte d’Azur, CEA, UMR E-4320 TIRO-MATOs , 06100 Nice , France
| | - Claude Vidaud
- CEA DRF, CNRS, UMR 7265, Institut de Biosciences et Biotechnologies d’Aix-Marseille , 13108 Saint-Paul-lez-Durance , France
| | - Christophe Den Auwer
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| |
Collapse
|
5
|
Ai R, Laragione T, Hammaker D, Boyle DL, Wildberg A, Maeshima K, Palescandolo E, Krishna V, Pocalyko D, Whitaker JW, Bai Y, Nagpal S, Bachman KE, Ainsworth RI, Wang M, Ding B, Gulko PS, Wang W, Firestein GS. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat Commun 2018; 9:1921. [PMID: 29765031 PMCID: PMC5953939 DOI: 10.1038/s41467-018-04310-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Epigenetics contributes to the pathogenesis of immune-mediated diseases like rheumatoid arthritis (RA). Here we show the first comprehensive epigenomic characterization of RA fibroblast-like synoviocytes (FLS), including histone modifications (H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and H3K9me3), open chromatin, RNA expression and whole-genome DNA methylation. To address complex multidimensional relationship and reveal epigenetic regulation of RA, we perform integrative analyses using a novel unbiased method to identify genomic regions with similar profiles. Epigenomically similar regions exist in RA cells and are associated with active enhancers and promoters and specific transcription factor binding motifs. Differentially marked genes are enriched for immunological and unexpected pathways, with “Huntington’s Disease Signaling” identified as particularly prominent. We validate the relevance of this pathway to RA by showing that Huntingtin-interacting protein-1 regulates FLS invasion into matrix. This work establishes a high-resolution epigenomic landscape of RA and demonstrates the potential for integrative analyses to identify unanticipated therapeutic targets. Fibroblast-like synoviocytes (FLS) in the intimal layer of the synovium can become invasive and destroy cartilage in patients with rheumatoid arthritis (RA). Here the authors integrate a variety of epigenomic data to map the epigenome of FLS in RA and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Rizi Ai
- Department of Chemistry and Biochemistry, 9500 Gilman Drive, UC San Diego, La Jolla, CA, 92093, USA
| | - Teresina Laragione
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Deepa Hammaker
- Division of Rheumatology, Allergy and Immunology, 9500 Gilman Drive, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - David L Boyle
- Division of Rheumatology, Allergy and Immunology, 9500 Gilman Drive, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Andre Wildberg
- Department of Chemistry and Biochemistry, 9500 Gilman Drive, UC San Diego, La Jolla, CA, 92093, USA
| | - Keisuke Maeshima
- Division of Rheumatology, Allergy and Immunology, 9500 Gilman Drive, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | | | - Vinod Krishna
- Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA, 19477, USA
| | - David Pocalyko
- Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA, 19477, USA
| | - John W Whitaker
- Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Yuchen Bai
- Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Sunil Nagpal
- Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Kurtis E Bachman
- Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Richard I Ainsworth
- Department of Chemistry and Biochemistry, 9500 Gilman Drive, UC San Diego, La Jolla, CA, 92093, USA
| | - Mengchi Wang
- Department of Chemistry and Biochemistry, 9500 Gilman Drive, UC San Diego, La Jolla, CA, 92093, USA
| | - Bo Ding
- Department of Chemistry and Biochemistry, 9500 Gilman Drive, UC San Diego, La Jolla, CA, 92093, USA
| | - Percio S Gulko
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Wei Wang
- Department of Chemistry and Biochemistry, 9500 Gilman Drive, UC San Diego, La Jolla, CA, 92093, USA. .,Department of Cellular and Molecular Medicine, 9500 Gilman Drive, UCSD School of Medicine, La Jolla, CA, 92093, USA.
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, 9500 Gilman Drive, UCSD School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Valkonen A, Lombardo GM, Rissanen K, Punzo F, Cametti M. X-Ray crystallographic and computational study on uranyl-salophen complexes bearing nitro groups. Dalton Trans 2017; 46:5240-5249. [PMID: 28374879 DOI: 10.1039/c6dt04773d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the solid state, salophen-UO2 complexes bearing one, two, or three NO2 groups lack the pronounced ligand curvature that represents a structural hallmark for this class of compounds. A detailed structural study based on single-crystal X-ray crystallography and computational methods, comprising molecular dynamics, gas-phase Hartree Fock, and DFT calculations, was carried out to investigate the coordination properties of the uranyl cation.
Collapse
Affiliation(s)
- Arto Valkonen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | | | | | | | | |
Collapse
|
7
|
Hu S, He B, Wang XJ, Gao SQ, Wen GB, Lin YW. Stabilization of cytochrome b 5 by a conserved tyrosine in the secondary sphere of heme active site: A spectroscopic and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:118-123. [PMID: 27888781 DOI: 10.1016/j.saa.2016.11.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Heme proteins perform a large array of biological functions, with the heme group bound non-covalently or covalently. To probe the stabilization role of conserved tyrosine residue in the secondary sphere of heme site in heme proteins, we herein used cytochrome b5 (Cyt b5) as a model protein, and mutated Tyr30 to Phe or His by removal of Tyr30 associated H-bond network and hydrophobic interaction. We performed thermal-induced unfolding studies for the two mutants, Y30F Cyt b5 and Y30H Cyt b5, as monitored by both UV-Vis and CD spectroscopy, as well as heme transfer studies from these proteins to apo-myoglobin, with wild-type Cyt b5 under the same conditions for comparison. The reduced stability of both mutants indicates that both the H-bonding and hydrophobic interactions associated with Tyr30 contribute to the protein stability. Moreover, we performed molecular modeling studies, which revealed that the hydrophobic interaction in the local region of Y30F Cyt b5 was well-remained, whereas Y30H Cyt b5 formed an H-bond network. These observations suggest that the conserved Tyr30 in Cyt b5 is not replaceable due to the presence of both the H-bond network and hydrophobic interaction in the secondary sphere of the heme active site. As demonstrated here for Cyt b5, it may be of practical importance for design of artificial heme proteins by engineering a Tyr in the secondary sphere with improved properties and functions.
Collapse
Affiliation(s)
- Shan Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Zhai T, Gao C, Huo R, Sheng H, Sun S, Xie J, He Y, Gao H, Li H, Zhang J, Li H, Sun Y, Lin J, Shen B, Xiao L, Li N. Cyr61 participates in the pathogenesis of rheumatoid arthritis via promoting MMP-3 expression by fibroblast-like synoviocytes. Mod Rheumatol 2016; 27:466-475. [PMID: 27585710 DOI: 10.1080/14397595.2016.1220447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effect and potential mechanism of Cysteine-rich 61 (Cyr61) on stimulating MMP-3 expression by fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients. METHODS Primarily cultured RA FLS were treated with exogenous Cyr61 protein or Cyr61-siRNA, then, MMP-3 expression was analyzed by real-time PCR, western blotting and ELISA. Signal transduction pathways in Cyr61-induced MMP-3 production were examined by real-time PCR, western blotting, confocal microscopy, luciferase reporter assay. Mice with collagen-induced arthritis (CIA) were treated with anti-Cyr61 monoclonal antibodies (mAb), or IgG1 as control and MMP-3 in the joint was detected by IHC, real-time PCR and western blotting. RESULTS High expressed MMP-3 and Cyr61 were positively correlated in RA ST; Cyr61 stimulated MMP-3 production in FLS of RA patients in an IL-1β and TNF-α independent manner. Cyr61 induced MMP-3 could further enhance the invasive ability of RA FLS. Mechanistically, we found that Cyr61 promoted MMP-3 production via the P38, JNK-dependent AP-1 signaling pathway. Blockage of Cyr61 function with monoclonal antibody could decrease MMP-3 expression in the joints of CIA mice. CONCLUSION This study provides new evidence that Cyr61 participates in RA pathogenesis not only as a pro-inflammatory factor but also plays a key role in bone erosion via promoting MMP-3 expression. We suggest that targeting of Cyr61 may represent a potential strategy in RA treatment.
Collapse
Affiliation(s)
- Tianhang Zhai
- a Department of Autoimmune Disease, Shanghai Institute of Immunology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Chenxin Gao
- b Department of Bone Surgery, Institute of Arthritis Research , Shanghai Academy of Chinese Medical Sciences , Shanghai , China
| | - Rongfen Huo
- a Department of Autoimmune Disease, Shanghai Institute of Immunology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Huiming Sheng
- c Department of Laboratory Medicine , Affiliated Tongren Hospital of Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Songtao Sun
- b Department of Bone Surgery, Institute of Arthritis Research , Shanghai Academy of Chinese Medical Sciences , Shanghai , China
| | - Jun Xie
- b Department of Bone Surgery, Institute of Arthritis Research , Shanghai Academy of Chinese Medical Sciences , Shanghai , China
| | - Yong He
- b Department of Bone Surgery, Institute of Arthritis Research , Shanghai Academy of Chinese Medical Sciences , Shanghai , China
| | - Huali Gao
- b Department of Bone Surgery, Institute of Arthritis Research , Shanghai Academy of Chinese Medical Sciences , Shanghai , China
| | - Huidan Li
- a Department of Autoimmune Disease, Shanghai Institute of Immunology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jie Zhang
- a Department of Autoimmune Disease, Shanghai Institute of Immunology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Haichuan Li
- a Department of Autoimmune Disease, Shanghai Institute of Immunology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yue Sun
- a Department of Autoimmune Disease, Shanghai Institute of Immunology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,d Department of Rheumatoloy , Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine , Shanghai , China , and
| | - Jinpiao Lin
- a Department of Autoimmune Disease, Shanghai Institute of Immunology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,e Department of Laboratory Medicine , The First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Baihua Shen
- a Department of Autoimmune Disease, Shanghai Institute of Immunology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Lianbo Xiao
- b Department of Bone Surgery, Institute of Arthritis Research , Shanghai Academy of Chinese Medical Sciences , Shanghai , China
| | - Ningli Li
- a Department of Autoimmune Disease, Shanghai Institute of Immunology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
9
|
Liu X, Zhang H, Chang X, Shen J, Zheng W, Xu Y, Wang J, Gao W, He S. Upregulated expression of CCR3 in rheumatoid arthritis and CCR3-dependent activation of fibroblast-like synoviocytes. Cell Biol Toxicol 2016; 33:15-26. [PMID: 27495116 DOI: 10.1007/s10565-016-9356-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022]
Abstract
It is recognized that CC chemokine receptor 3 (CCR3) is associated with numerous inflammatory conditions and fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA). However, little is known of the expression and action of CCR3 on FLS in RA. In the present study, we investigated the expression of CCR3 on dispersed synovial tissue and peripheral blood cells in RA and influence of eotaxin-1 on FLS functions by using flow cytometry analysis, FLS challenge, and real-time PCR techniques. The results showed that approximately 7.0 % dispersed synovial cells are CCR3+ cells. Among those CCR3+ cells, 38.1, 23.8, and 20.6 % cells are CD90+CD14-CD3- (representing FLS), CD14+, and CD8+ cells, respectively, indicating that FLS is one of the major populations of CCR3+ cells in the synovial tissue of RA. In peripheral blood, CD14+ CCR3+ cells are elevated, but CD8+CCR3+ cells are reduced in RA. It was found that eotaxin-1 induced upregulated expression of CCR3 and matrix metalloproteinase (MMP)-9 messenger RNAs (mRNAs) in FLS. Since an antagonist of CCR3 suppressed the action of eotaxin-1, the event appeared CCR3 dependent. Moreover, we observed that interleukin (IL)-1β induced markedly enhanced eotaxin-1 release from FLS, but TNF-α reduced eotaxin-1 release at 12 and 24 h following incubation. In conclusion, enhanced expression of CCR3 on synovial cells and increased levels of eotaxin-1 in plasma and synovial fluid (SF) of RA indicate that CCR3-mediated mechanisms may play an important role in RA. Blockage of eotaxin-1 provoked CCR3 and MMP-9 expression in FLS by antagonist of CCR3, implicating that anti-CCR3 agents may have therapeutic use for RA.
Collapse
Affiliation(s)
- Xin Liu
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Huiyun Zhang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China.
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jirong Shen
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu, 210029, China
| | - Wenjiao Zheng
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Yanan Xu
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Junling Wang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Wei Gao
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
10
|
Liu F, Du KJ, Fang Z, You Y, Wen GB, Lin YW. Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:207-216. [PMID: 25636514 DOI: 10.1007/s00411-015-0588-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
Uranium release into the environment is a threat to human health, and the mechanisms of cytotoxicity caused by uranium are not well-understood. To improve our understanding in this respect, we herein evaluated the effects of uranium exposure on normal rat hepatic BRL cells. As revealed by scanning electron microscopy and transmission electron microscope analysis, uranyl nitrate was found to be transformed into uranyl phosphate particles in the medium and taken up by BRL cells in an endocytotic uptake manner, which presumably initiates apoptosis of the cell, although soluble uranyl ion may also be toxic. The apoptosis of BRL cells upon uranium exposure was also confirmed by both the acridine orange and ethidium bromide double staining assay and the Annexin V/propidium iodide double staining assay. Further studies revealed that uranium induced the loss of mitochondrial membrane potential in a dose-dependent manner. Moreover, the uranium-induced apoptosis was found to be associated with the activation of caspase-3, caspase-8 and caspase-9, indicating both a mitochondria-dependent signaling pathway and a death receptor pathway by a crosstalk. This study provides new chemical and biological insights into the mechanism of uranium toxicity toward hepatic cells, which will help seek approaches for biological remediation of uranium.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Hengyang, 421001, China
| | | | | | | | | | | |
Collapse
|
11
|
Sun MH, Liu SQ, Du KJ, Nie CM, Lin YW. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:130-137. [PMID: 24051281 DOI: 10.1016/j.saa.2013.08.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 06/02/2023]
Abstract
Uranium is harmful to human health due to its radiation damage and the ability of uranyl ion (UO2(2+)) to interact with various proteins and disturb their biological functions. Cytochrome b5 (cyt b5) is a highly negatively charged heme protein and plays a key role in mediating cytochrome c (cyt c) signaling in apoptosis by forming a dynamic cyt b5-cyt c complex. In previous molecular modeling study in combination with UV-Vis studies, we found that UO2(2+) is capable of binding to cyt b5 at surface residues, Glu37 and Glu43. In this study, we further investigated the structural consequences of cyt b5 and cyt c, as well as cyt b5-cyt c complex, upon uranyl binding, by fluorescence spectroscopic and circular dichroism techniques. Moreover, we proposed a uranyl binding site for cyt c at surface residues, Glu66 and Glu69, by performing a molecular modeling study. It was shown that uranyl binds to cyt b5 (KD=10 μM), cyt c (KD=87 μM), and cyt b5-cyt c complex (KD=30 μM) with a different affinity, which slightly alters the protein conformation and disturbs the interaction of cyt b5-cyt c complex. Additionally, we investigated the functional consequences of uranyl binding to the protein surface, which decreases the inherent peroxidase activity of cyt c. The information of uranyl-cyt b5/cyt c interactions gained in this study likely provides a clue for the mechanism of uranyl toxicity.
Collapse
Affiliation(s)
- Mei-Hui Sun
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | | | | | | | | |
Collapse
|
12
|
Julovi SM, Shen K, Mckelvey K, Minhas N, March L, Jackson CJ. Activated protein C inhibits proliferation and tumor necrosis factor α-stimulated activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in rheumatoid synovial fibroblasts. Mol Med 2013; 19:324-31. [PMID: 24096826 DOI: 10.2119/molmed.2013.00034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/19/2013] [Indexed: 11/06/2022] Open
Abstract
Synovial fibroblast proliferation is a hallmark of the invasive pannus in the rheumatoid joint. Activated protein C (APC) is a natural anticoagulant that exerts antiinflammatory and cyto-protective effects in various diseases via endothelial protein C receptor (EPCR) and proteinase-activated receptor (PAR)-mediated pathways. In this study, we investigated the effect and the underlying cellular signaling mechanisms of APC on proliferation of human rheumatoid synovial fibroblasts (RSFs). We found that APC stimulated proliferation of mouse dermal fibroblasts (MDFs) and normal human dermal fibroblasts (HDFs) by up to 60%, but robustly downregulated proliferation of RSFs. APC induced the phosphorylation of extracellular signal-regulated protein kinase (ERK) and enhanced expression of p21 and p27 in a dose-dependent manner in RSFs. The latter effect was inhibited by pre-treatment with the ERK inhibitors PD98059 and U0126 but not by p38 inhibitor SB203580. In addition, APC significantly downregulated tumor necrosis factor (TNF)α-stimulated cell proliferation and activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in RSFs. These results provide the first evidence that APC selectively inhibits proliferation and the inflammatory signaling pathways of RSFs. Thus, APC may reduce synovial hyperplasia and pannus invasion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Sohel M Julovi
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia.,Department of Surgery, Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Kaitlin Shen
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Kelly Mckelvey
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Nikita Minhas
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
13
|
Steffensen KR, Jakobsson T, Gustafsson JÅ. Targeting liver X receptors in inflammation. Expert Opin Ther Targets 2013; 17:977-90. [PMID: 23738533 DOI: 10.1517/14728222.2013.806490] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The two oxysterol receptors, 'liver X receptors (LXRs)' LXRα and LXRβ, are amongst the emerging newer drug targets within the nuclear receptor family and targeting LXRs represents novel strategies needed for prevention and treatment of diseases where current therapeutics is inadequate. AREAS COVERED This review discusses the current understanding of LXR biology with an emphasis on the molecular aspects of LXR signalling establishing their potential as drug targets. Recent advances of their transcriptional mechanisms in inflammatory pathways and their physiological roles in inflammation and immunity are described. EXPERT OPINION The new discoveries of LXR-regulated inflammatory pathways have ignited new promises for LXRs as drug targets. The broad physiological roles of LXRs involve a high risk of unwanted side effects. Recent insights into LXR biology of the brain indicate a highly important role in neuronal development and a clinical trial testing an LXR agonist reported adverse neurological side effects. This suggests that drug development must focus on limiting the range of LXR signalling - possibly achieved through subtype, tissue specific, promoter specific or pathway specific activation of LXRs where a successful candidate drug must be carefully studied for its effect in the central nervous system.
Collapse
Affiliation(s)
- Knut R Steffensen
- Karolinska Institutet, Center for Biosciences, Department of Biosciences and Nutrition, S-14183 Stockholm, Sweden.
| | | | | |
Collapse
|
14
|
Lombardo GM, Thompson AL, Ballistreri FP, Pappalardo A, Sfrazzetto GT, Tomaselli GA, Toscano RM, Punzo F. An integrated X-ray and molecular dynamics study of uranyl-salen structures and properties. Dalton Trans 2012; 41:1951-60. [DOI: 10.1039/c1dt11758k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|