1
|
Liu WL, Wen ZH, Li QY, Liu HB, Li QL, Chen HY, Tang AX, Liu YY. Simultaneously Enhancing the Catalytic Activity and Thermostability of Pseudomonas aeruginosa Aminopeptidase via Structure-based Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8598-8608. [PMID: 40163623 DOI: 10.1021/acs.jafc.4c12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Aminopeptidases are crucial hydrolases in the food and pharmaceutical industries. This study addresses the need to enhance the catalytic performance of Pseudomonas aeruginosa aminopeptidase (PaAps) through a multifaceted computational design strategy. We introduced single-site mutations followed by combinatorial mutations to develop a mutant library, identifying the optimal mutant S112D, which demonstrated a 5.19-fold increase in catalytic activity and nearly doubled the thermostability compared to the wild type. The kinetic parameters (kcat, kcat/Km, and Vmax) of S112D were found to be 4.36, 6.52, and 4.36 times greater than those of the wild type, respectively. Molecular dynamics (MD) simulations revealed that the S112D mutant induced global conformational changes, resulting in a more open active pocket that facilitated better binding with the substrate, thereby improving conformational stability. Additionally, the S112D mutant exhibited a closer nucleophilic attack distance and stronger hydrogen bonding interactions, further boosting catalytic efficiency. Remarkably, mutant S112D, as well as the wild type, showed hydrolytic activity on both corn and soybean proteins. The hydrolysis rate of corn protein by S112D was approximately 1.92 times that of PaAps, and for soybean protein, it is roughly 1.84 times. These findings offered valuable insights for developing more efficient enzyme modification strategies.
Collapse
Affiliation(s)
- Wen-Long Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zong-Hong Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Qing-Yun Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
- Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Qun-Liang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Hong-Yu Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Ai-Xing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
- Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China
| | - You-Yan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
- Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China
| |
Collapse
|
2
|
Zhang Z, Xu Y, Li X, Chi L, Li Y, Xu C, Mu G, Zhu X. Modulating Whey Proteins Antigenicity with Lactobacillus delbrueckii subsp. bulgaricus DLPU F-36 Metabolites: Insights from Spectroscopic and Molecular Docking Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15198-15212. [PMID: 38941263 DOI: 10.1021/acs.jafc.3c08874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Numerous studies have highlighted the potential of Lactic acid bacteria (LAB) fermentation of whey proteins for alleviating allergies. Nonetheless, the impact of LAB-derived metabolites on whey proteins antigenicity during fermentation remains uncertain. Our objective was to elucidate the impact of small molecular metabolites on the antigenicity of α-lactalbumin (α-LA) and β-lactoglobulin (β-LG). Through metabolomic analysis, we picked 13 bioactive small molecule metabolites from Lactobacillus delbrueckii subsp. bulgaricus DLPU F-36 for coincubation with α-LA and β-LG, respectively. The outcomes revealed that valine, arginine, benzoic acid, 2-keto butyric acid, and glutaric acid significantly diminished the sensitization potential of α-LA and β-LG, respectively. Moreover, chromatographic analyses unveiled the varying influence of small molecular metabolites on the structure of α-LA and β-LG, respectively. Notably, molecular docking underscored that the primary active sites of α-LA and β-LG involved in protein binding to IgE antibodies aligned with the interaction sites of small molecular metabolites. In essence, LAB-produced metabolites wield a substantial influence on the antigenic properties of whey proteins.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - YunPeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinling Li
- Xinjiang Tianrun Biol Technol Co., Ltd., Urumqi 830011, China
| | - Lei Chi
- Dalian Municipal Women and Children's Medical Center Group, Dalian 116012, China
| | - Yue Li
- Dalian Municipal Women and Children's Medical Center Group, Dalian 116012, China
| | - Chao Xu
- Dalian Municipal Women and Children's Medical Center Group, Dalian 116012, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Roterman I, Stapor K, Dułak D, Konieczny L. External Force Field for Protein Folding in Chaperonins-Potential Application in In Silico Protein Folding. ACS OMEGA 2024; 9:18412-18428. [PMID: 38680295 PMCID: PMC11044213 DOI: 10.1021/acsomega.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
The present study discusses the influence of the TRiC chaperonin involved in the folding of the component of reovirus mu1/σ3. The TRiC chaperone is treated as a provider of a specific external force field in the fuzzy oil drop model during the structural formation of a target folded protein. The model also determines the status of the final product, which represents the structure directed by an external force field in the form of a chaperonin. This can be used for in silico folding as the process is environment-dependent. The application of the model enables the quantitative assessment of the folding dependence of an external force field, which appears to have universal application.
Collapse
Affiliation(s)
- Irena Roterman
- Department
of Bioinformatics and Telemedicine, Jagiellonian
University—Medical College, Medyczna 7, Kraków 30-688, Poland
| | - Katarzyna Stapor
- Faculty
of Automatic, Electronics and Computer Science, Department of Applied
Informatics, Silesian University of Technology, Akademicka 16, Gliwice 44-100, Poland
| | - Dawid Dułak
- ABB
Business Services Sp. z o.o, ul Żegańska 1, Warszawa 04-713, Poland
| | - Leszek Konieczny
- Chair
of Medical Biochemistry—Jagiellonian University—Medical
College, Kopernika 7, Kraków 31-034, Poland
| |
Collapse
|
4
|
Kim HI, Park J, Zhu Y, Wang X, Han Y, Zhang D. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp Mol Med 2024; 56:836-849. [PMID: 38556545 PMCID: PMC11059217 DOI: 10.1038/s12276-024-01201-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 04/02/2024] Open
Abstract
Exosomes, which are nanosized vesicles secreted by cells, are attracting increasing interest in the field of biomedical research due to their unique properties, including biocompatibility, cargo loading capacity, and deep tissue penetration. They serve as natural signaling agents in intercellular communication, and their inherent ability to carry proteins, lipids, and nucleic acids endows them with remarkable therapeutic potential. Thus, exosomes can be exploited for diverse therapeutic applications, including chemotherapy, gene therapy, and photothermal therapy. Moreover, their capacity for homotypic targeting and self-recognition provides opportunities for personalized medicine. Despite their advantages as novel therapeutic agents, there are several challenges in optimizing cargo loading efficiency and structural stability and in defining exosome origins. Future research should include the development of large-scale, quality-controllable production methods, the refinement of drug loading strategies, and extensive in vivo studies and clinical trials. Despite the unresolved difficulties, the use of exosomes as efficient, stable, and safe therapeutic delivery systems is an interesting area in biomedical research. Therefore, this review describes exosomes and summarizes cutting-edge studies published in high-impact journals that have introduced novel or enhanced therapeutic effects using exosomes as a drug delivery system in the past 2 years. We provide an informative overview of the current state of exosome research, highlighting the unique properties and therapeutic applications of exosomes. We also emphasize challenges and future directions, underscoring the importance of addressing key issues in the field. With this review, we encourage researchers to further develop exosome-based drugs for clinical application, as such drugs may be among the most promising next-generation therapeutics.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
- Sarcopenia Total Solution Center, Wonkwang University, Iksan, 54538, Republic of Korea.
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
5
|
López‐Pérez E, de Gómez‐Puyou MT, Nuñez CJ, Zapién DM, Guardado SA, Beltrán HI, Pérez‐Hernández G. Ordered-domain unfolding of thermophilic isolated β subunit ATP synthase. Protein Sci 2023; 32:e4689. [PMID: 37252686 PMCID: PMC10273367 DOI: 10.1002/pro.4689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
The flexibility of the ATP synthase's β subunit promotes its role in the ATP synthase rotational mechanism, but its domains stability remains unknown. A reversible thermal unfolding of the isolated β subunit (Tβ) of the ATP synthase from Bacillus thermophilus PS3, tracked through circular dichroism and molecular dynamics, indicated that Tβ shape transits from an ellipsoid to a molten globule through an ordered unfolding of its domains, preserving the β-sheet residual structure at high temperature. We determined that part of the stability origin of Tβ is due to a transversal hydrophobic array that crosses the β-barrel formed at the N-terminal domain and the Rossman fold of the nucleotide-binding domain (NBD), while the helix bundle of the C-terminal domain is the less stable due to the lack of hydrophobic residues, and thus the more flexible to trigger the rotational mechanism of the ATP synthase.
Collapse
Affiliation(s)
- Edgar López‐Pérez
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Marietta Tuena de Gómez‐Puyou
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Concepción José Nuñez
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Denise Martínez Zapién
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Salomón Alas Guardado
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Hiram Isaac Beltrán
- División de Ciencias Básicas e Ingeniería, Departamento de Ciencias BásicasUniversidad Autónoma Metropolitana, Unidad AzcapotzalcoCiudad de MéxicoMexico
| | - Gerardo Pérez‐Hernández
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| |
Collapse
|
6
|
Conformational changes in the catalytic region are responsible for heat-induced activation of hyperthermophilic homoserine dehydrogenase. Commun Biol 2022; 5:704. [PMID: 35835834 PMCID: PMC9283420 DOI: 10.1038/s42003-022-03656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
When overexpressed as an immature enzyme in the mesophilic bacterium Escherichia coli, recombinant homoserine dehydrogenase from the hyperthermophilic archaeon Sulfurisphaera tokodaii (StHSD) was markedly activated by heat treatment. Both the apo- and holo-forms of the immature enzyme were successively crystallized, and the two structures were determined. Comparison among the structures of the immature enzyme and previously reported structures of mature enzymes revealed that a conformational change in a flexible part (residues 160-190) of the enzyme, which encloses substrates within the substrate-binding pocket, is smaller in the immature enzyme. The immature enzyme, but not the mature enzyme, formed a complex that included NADP+, despite its absence during crystallization. This indicates that the opening to the substrate-binding pocket in the immature enzyme is not sufficient for substrate-binding, efficient catalytic turnover or release of NADP+. Thus, specific conformational changes within the catalytic region appear to be responsible for heat-induced activation.
Collapse
|
7
|
Biswas G, Ghosh S, Basu S, Bhattacharyya D, Datta AK, Banerjee R. Can the jigsaw puzzle model of protein folding re‐assemble a hydrophobic core? Proteins 2022; 90:1390-1412. [DOI: 10.1002/prot.26321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Gargi Biswas
- Saha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| | | | - Sankar Basu
- Saha Institute of Nuclear Physics Kolkata India
| | | | | | - Rahul Banerjee
- Saha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
8
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Downhill, Ultrafast and Fast Folding Proteins Revised. Int J Mol Sci 2020; 21:ijms21207632. [PMID: 33076540 PMCID: PMC7589632 DOI: 10.3390/ijms21207632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Research on the protein folding problem differentiates the protein folding process with respect to the duration of this process. The current structure encoded in sequence dogma seems to be clearly justified, especially in the case of proteins referred to as fast-folding, ultra-fast-folding or downhill. In the present work, an attempt to determine the characteristics of this group of proteins using fuzzy oil drop model is undertaken. According to the fuzzy oil drop model, a protein is a specific micelle composed of bi-polar molecules such as amino acids. Protein folding is regarded as a spherical micelle formation process. The presence of covalent peptide bonds between amino acids eliminates the possibility of free mutual arrangement of neighbors. An example would be the construction of co-micelles composed of more than one type of bipolar molecules. In the case of fast folding proteins, the amino acid sequence represents the optimal bipolarity system to generate a spherical micelle. In order to achieve the native form, it is enough to have an external force field provided by the water environment which directs the folding process towards the generation of a centric hydrophobic core. The influence of the external field can be expressed using the 3D Gaussian function which is a mathematical model of the folding process orientation towards the concentration of hydrophobic residues in the center with polar residues exposed on the surface. The set of proteins under study reveals a hydrophobicity distribution compatible with a 3D Gaussian distribution, taken as representing an idealized micelle-like distribution. The structure of the present hydrophobic core is also discussed in relation to the distribution of hydrophobic residues in a partially unfolded form.
Collapse
|
10
|
The Structure of Amyloid Versus the Structure of Globular Proteins. Int J Mol Sci 2020; 21:ijms21134683. [PMID: 32630137 PMCID: PMC7370054 DOI: 10.3390/ijms21134683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/19/2022] Open
Abstract
The issue of changing the structure of globular proteins into an amyloid form is in the focus of researchers' attention. Numerous experimental studies are carried out, and mathematical models to define the essence of amyloid transformation are sought. The present work focuses on the issue of the hydrophobic core structure in amyloids. The form of ordering the hydrophobic core in globular proteins is described by a 3D Gaussian distribution analog to the distribution of hydrophobicity in a spherical micelle. Amyloid fibril is a ribbon-like micelle made up of numerous individual chains, each representing a flat structure. The distribution of hydrophobicity within a single chain included in the fibril describes the 2D Gaussian distribution. Such a description expresses the location of polar residues on a circle with a center with a high level of hydrophobicity. The presence of this type of order in the amyloid forms available in Preotin Data Bank (PDB) (both in proto- and superfibrils) is demonstrated in the present work. In this system, it can be assumed that the amyloid transformation is a chain transition from 3D Gauss ordering to 2D Gauss ordering. This means changing the globular structure to a ribbon-like structure. This observation can provide a simple mathematical model for simulating the amyloid transformation of proteins.
Collapse
|
11
|
Das N, Sen P. Shape-Dependent Macromolecular Crowding on the Thermodynamics and Microsecond Conformational Dynamics of Protein Unfolding Revealed at the Single-Molecule Level. J Phys Chem B 2020; 124:5858-5871. [DOI: 10.1021/acs.jpcb.0c03897] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP India
| |
Collapse
|
12
|
Szekeres GP, Montes-Bayón M, Bettmer J, Kneipp J. Fragmentation of Proteins in the Corona of Gold Nanoparticles As Observed in Live Cell Surface-Enhanced Raman Scattering. Anal Chem 2020; 92:8553-8560. [DOI: 10.1021/acs.analchem.0c01404] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gergo Peter Szekeres
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Straße 5-9, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Maria Montes-Bayón
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Straße 5-9, 12489 Berlin, Germany
- Department of Physical and Analytical Chemistry, Faculty of Chemistry and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, C/Julian Clavería 8, 33006 Oviedo, Spain
| | - Jörg Bettmer
- Department of Physical and Analytical Chemistry, Faculty of Chemistry and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, C/Julian Clavería 8, 33006 Oviedo, Spain
| | - Janina Kneipp
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Straße 5-9, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
13
|
Banach M, Fabian P, Stapor K, Konieczny L, Roterman I. Structure of the Hydrophobic Core Determines the 3D Protein Structure-Verification by Single Mutation Proteins. Biomolecules 2020; 10:E767. [PMID: 32423068 PMCID: PMC7281683 DOI: 10.3390/biom10050767] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Four de novo proteins differing in single mutation positions, with a chain length of 56 amino acids, represent diverse 3D structures: monomeric 3α and 4β + α folds. The reason for this diversity is seen in the different structure of the hydrophobic core as a result of synergy leading to the generation of a system in which the polypeptide chain as a whole participates. On the basis of the fuzzy oil drop model, where the structure of the hydrophobic core is expressed by means of the hydrophobic distribution function in the form of a 3D Gaussian distribution, it has been shown that the composition of the hydrophobic core in these two structural forms is different. In addition, the use of a model to determine the structure of the early intermediate in the folding process allows to indicate differences in the polypeptide chain geometry, which, combined with the construction of a common hydrophobic nucleus as an effect of specific synergy, may indicate the reason for the diversity of the folding process of the polypeptide chain. The results indicate the need to take into account the presence of an external force field originating from the water environment and that its active impact on the formation of a hydrophobic core whose participation in the stabilization of the tertiary structure is fundamental.
Collapse
Affiliation(s)
- Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Lazarza 16, 31-533 Krakow, Poland;
| | - Piotr Fabian
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (P.F.); (K.S.)
| | - Katarzyna Stapor
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (P.F.); (K.S.)
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, 31-034 Krakow, Poland;
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Lazarza 16, 31-533 Krakow, Poland;
| |
Collapse
|
14
|
Abstract
Proteins with a high degree of sequence similarity representing different structures provide a key to understand how protein sequence codes for 3D structure. An analysis using the fuzzy oil drop model was carried out on two pairs of proteins with different secondary structures and with high sequence identities. It has been shown that distributions of hydrophobicity for these proteins are approximated well using single 3D Gaussian function. In other words, the similar sequences fold into different 3D structures, however, alternative structures also have symmetric and monocentric hydrophobic cores. It should be noted that a significant change in the helical to beta-structured form in the N-terminal section takes places in the fragment much preceding the location of the mutated regions. It can be concluded that the final structure is the result of a complicated synergy effect in which the whole chain participates simultaneously.
Collapse
|
15
|
Hattori LT, Gutoski M, Vargas Benítez CM, Nunes LF, Lopes HS. A benchmark of optimally folded protein structures using integer programming and the 3D-HP-SC model. Comput Biol Chem 2020; 84:107192. [PMID: 31918170 DOI: 10.1016/j.compbiolchem.2019.107192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023]
Abstract
The Protein Structure Prediction (PSP) problem comprises, among other issues, forecasting the three-dimensional native structure of proteins using only their primary structure information. Most computational studies in this area use synthetic data instead of real biological data. However, the closer to the real-world, the more the impact of results and their applicability. This work presents 17 real protein sequences extracted from the Protein Data Bank for a benchmark to the PSP problem using the tri-dimensional Hydrophobic-Polar with Side-Chains model (3D-HP-SC). The native structure of these proteins was found by maximizing the number of hydrophobic contacts between the side-chains of amino acids. The problem was treated as an optimization problem and solved by means of an Integer Programming approach. Although the method optimally solves the problem, the processing time has an exponential trend. Therefore, due to computational limitations, the method is a proof-of-concept and it is not applicable to large sequences. For unknown sequences, an upper bound of the number of hydrophobic contacts (using this model) can be found, due to a linear relationship with the number of hydrophobic residues. The comparison between the predicted and the biological structures showed that the highest similarity between them was found with distance thresholds around 5.2-8.2 Å. Both the dataset and the programs developed will be freely available to foster further research in the area.
Collapse
Affiliation(s)
- Leandro Takeshi Hattori
- Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil.
| | - Matheus Gutoski
- Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil
| | - César Manuel Vargas Benítez
- Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil
| | - Luiz Fernando Nunes
- Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil.
| | - Heitor Silvério Lopes
- Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil.
| |
Collapse
|
16
|
The Amyloid as a Ribbon-Like Micelle in Contrast to Spherical Micelles Represented by Globular Proteins. Molecules 2019; 24:molecules24234395. [PMID: 31816829 PMCID: PMC6930452 DOI: 10.3390/molecules24234395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/18/2023] Open
Abstract
Selected amyloid structures available in the Protein Data Bank have been subjected to a comparative analysis. Classification is based on the distribution of hydrophobicity in amyloids that differ with respect to sequence, chain length, the distribution of beta folds, protofibril structure, and the arrangement of protofibrils in each superfibril. The study set includes the following amyloids: Aβ (1-42), which is listed as Aβ (15-40) and carries the D23N mutation, and Aβ (11-42) and Aβ (1-40), both of which carry the E22Δ mutation, tau amyloid, and α-synuclein. Based on the fuzzy oil drop model (FOD), we determined that, despite their conformational diversity, all presented amyloids adopt a similar structural pattern that can be described as a ribbon-like micelle. The same model, when applied to globular proteins, results in structures referred to as "globular micelles," emerging as a result of interactions between the proteins' constituent residues and the aqueous solvent. Due to their composition, amyloids are unable to attain entropically favorable globular forms and instead attempt to limit contact between hydrophobic residues and water by producing elongated structures. Such structures typically contain quasi hydrophobic cores that stretch along the fibril's long axis. Similar properties are commonly found in ribbon-like micelles, with alternating bands of high and low hydrophobicity emerging as the fibrils increase in length. Thus, while globular proteins are generally consistent with a 3D Gaussian distribution of hydrophobicity, the distribution instead conforms to a 2D Gaussian distribution in amyloid fibrils.
Collapse
|
17
|
Kumar D, Kumar P. Aβ, Tau, and α-Synuclein aggregation and integrated role of PARK2 in the regulation and clearance of toxic peptides. Neuropeptides 2019; 78:101971. [PMID: 31540705 DOI: 10.1016/j.npep.2019.101971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's and Parkinson's diseases are one of the world's leading causes of death. >50 million people throughout the world are suffering with these diseases. They are two distinct progressive neurodegenerative disorders affecting different regions of the brain with diverse symptoms, including memory and motor loss respectively, but with the advancement of diseases, both affect the whole brain and exhibit some common biological symptoms. For instance, >50% PD patients develop dementia in their later stages, though it is a hallmark of Alzheimer's disease. In fact, latest research has suggested the involvement of some common pathophysiological and genetic links between these diseases, including the deposition of pathological Aβ, Tau, and α-synuclein in both the cases. Therefore, it is pertinent to diagnose the shared biomarkers, their aggregation mechanism, their intricate relationships in the pathophysiology of disease and therapeutic markers to target them. This would enable us to identify novel markers for the early detection of disease and targets for the future therapies. Herein, we investigated molecular aspects of Aβ, Tau, and α-Synuclein aggregation, and characterized their functional partners involved in the pathology of AD and PD. Moreover, we identified the molecular-crosstalk between AD and PD associated with their pathogenic proteins- Aβ, Tau, and α-Synuclein. Furthermore, we characterized their ubiquitinational enzymes and associated interaction network regulating the proteasomal clearance of these pathological proteins.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
18
|
Fabian P, Stapor K, Banach M, Ptak-Kaczor M, Konieczny L, Roterman I. Different Synergy in Amyloids and Biologically Active Forms of Proteins. Int J Mol Sci 2019; 20:E4436. [PMID: 31505841 PMCID: PMC6769701 DOI: 10.3390/ijms20184436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 11/16/2022] Open
Abstract
Protein structure is the result of the high synergy of all amino acids present in the protein. This synergy is the result of an overall strategy for adapting a specific protein structure. It is a compromise between two trends: The optimization of non-binding interactions and the directing of the folding process by an external force field, whose source is the water environment. The geometric parameters of the structural form of the polypeptide chain in the form of a local radius of curvature that is dependent on the orientation of adjacent peptide bond planes (result of the respective Phi and Psi rotation) allow for a comparative analysis of protein structures. Certain levels of their geometry are the criteria for comparison. In particular, they can be used to assess the differences between the structural form of biologically active proteins and their amyloid forms. On the other hand, the application of the fuzzy oil drop model allows the assessment of the role of amino acids in the construction of tertiary structure through their participation in the construction of a hydrophobic core. The combination of these two models-the geometric structure of the backbone and the determining of the participation in the construction of the tertiary structure that is applied for the comparative analysis of biologically active and amyloid forms-is presented.
Collapse
Affiliation(s)
- Piotr Fabian
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Katarzyna Stapor
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Łazarza 16, 31-530 Kraków, Poland
| | - Magdalena Ptak-Kaczor
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Łazarza 16, 31-530 Kraków, Poland
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University-Medical College, 31-034 Krakow, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Łazarza 16, 31-530 Kraków, Poland.
| |
Collapse
|
19
|
Banach M, Wiśniowski Z, Ptak M, Roterman I. Aggregation-promoting conditions necessary to create the complexes by acylphosphatase from the hyperthermophile Sulfolobus solfataricus. BIO-ALGORITHMS AND MED-SYSTEMS 2019. [DOI: 10.1515/bams-2019-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The structural transition from the globular to the amyloid form of proteins requires aggregation-promoting conditions. The protein example of this category is acylphosphatase from the hyperthermophile Sulfolobus solfataricus. This protein represents a structure with a well-defined hydrophobic core. This is why the complexation (including oligomerization) of this protein is of low probability. The chain fragment participating in aggregation in comparison to the status with respect to the fuzzy oil drop model is discussed in this paper.
Collapse
|
20
|
Lashkov AA, Rubinsky SV, Eistrikh-Heller PA. Application of the DBSCAN Algorithm to Detect Hydrophobic Clusters in Protein Structures. CRYSTALLOGR REP+ 2019. [DOI: 10.1134/s1063774519030179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Banach M, Konieczny L, Roterman I. Secondary and Supersecondary Structure of Proteins in Light of the Structure of Hydrophobic Cores. Methods Mol Biol 2019; 1958:347-378. [PMID: 30945229 DOI: 10.1007/978-1-4939-9161-7_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The traditional classification of protein structures (with regard to their supersecondary and tertiary conformation) is based on an assessment of conformational similarities between various polypeptide chains and particularly on the presence of specific secondary structural motifs. Mutual relations between secondary folds determine the overall shape of the protein and may be used to assign proteins to specific families (such as the immunoglobulin-like family). An alternative means of conducting structural assessment focuses on the structure of the protein's hydrophobic core. In this case, the protein is treated as a quasi-micelle, which exposes hydrophilic residues on its surface while internalizing hydrophobic residues. The accordance between the actual distribution of hydrophobicity in a protein and its corresponding theoretical ("idealized") distribution can be determined quantitatively, which, in turn, enables comparative analysis of structures regarded as geometrically similar (as well as geometrically divergent structures which are nevertheless regarded as similar in the sense of the fuzzy oil drop model). In this scope, the protein may be compared to an "intelligent micelle," where local disorder is often intentional and related to biological function-unlike traditional surfactant micelles which remain highly symmetrical throughout and do not carry any encoded information.
Collapse
Affiliation(s)
- Mateusz Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Kraków, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kraków, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Kraków, Poland.
| |
Collapse
|
22
|
Gadzała M, Dułak D, Kalinowska B, Baster Z, Bryliński M, Konieczny L, Banach M, Roterman I. The aqueous environment as an active participant in the protein folding process. J Mol Graph Model 2018; 87:227-239. [PMID: 30580160 DOI: 10.1016/j.jmgm.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/27/2023]
Abstract
Existing computational models applied in the protein structure prediction process do not sufficiently account for the presence of the aqueous solvent. The solvent is usually represented by a predetermined number of H2O molecules in the bounding box which contains the target chain. The fuzzy oil drop (FOD) model, presented in this paper, follows an alternative approach, with the solvent assuming the form of a continuous external hydrophobic force field, with a Gaussian distribution. The effect of this force field is to guide hydrophobic residues towards the center of the protein body, while promoting exposure of hydrophilic residues on its surface. This work focuses on the following sample proteins: Engrailed homeodomain (RCSB: 1enh), Chicken villin subdomain hp-35, n68h (RCSB: 1yrf), Chicken villin subdomain hp-35, k65(nle), n68h, k70(nle) (RCSB: 2f4k), Thermostable subdomain from chicken villin headpiece (RCSB: 1vii), de novo designed single chain three-helix bundle (a3d) (RCSB: 2a3d), albumin-binding domain (RCSB: 1prb) and lambda repressor-operator complex (RCSB: 1lmb).
Collapse
Affiliation(s)
| | - Dawid Dułak
- ABB Business Services Sp. z o.o. ul. Żegańska 1, 04-713, Warszawa, Poland.
| | - Barbara Kalinowska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza Street, Kraków, Poland; Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Łazarza 16, 31-530, Kraków, Poland
| | - Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy, Applied Computer Science Jagiellonian University, 11 Łojasiewicza Street, Kraków, Poland; Markey Cancer Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, USA
| | - Michał Bryliński
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA; Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University - Medical College, Kopernika 7E, 31-034, Kraków, Poland
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Łazarza 16, 31-530, Kraków, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Łazarza 16, 31-530, Kraków, Poland.
| |
Collapse
|
23
|
Dułak D, Gadzała M, Banach M, Ptak M, Wiśniowski Z, Konieczny L, Roterman I. Filamentous Aggregates of Tau Proteins Fulfil Standard Amyloid Criteria Provided by the Fuzzy Oil Drop (FOD) Model. Int J Mol Sci 2018; 19:E2910. [PMID: 30257460 PMCID: PMC6213535 DOI: 10.3390/ijms19102910] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 01/02/2023] Open
Abstract
Abnormal filamentous aggregates that are formed by tangled tau protein turn out to be classic amyloid fibrils, meeting all the criteria defined under the fuzzy oil drop model in the context of amyloid characterization. The model recognizes amyloids as linear structures where local hydrophobicity minima and maxima propagate in an alternating manner along the fibril's long axis. This distribution of hydrophobicity differs greatly from the classic monocentric hydrophobic core observed in globular proteins. Rather than becoming a globule, the amyloid instead forms a ribbonlike (or cylindrical) structure.
Collapse
Affiliation(s)
- Dawid Dułak
- ABB Business Services Sp. z o.o. ul. Żegańska 1, 04-713 Warszawa, Poland.
| | | | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland.
| | - Magdalena Ptak
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland.
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Zdzisław Wiśniowski
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland.
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, 31-034 Kraków, Poland.
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland.
| |
Collapse
|