1
|
Thakuria S, Paul S. Salt-bridge mediated conformational dynamics in the figure-of-eight knotted ketol acid reductoisomerase (KARI). Phys Chem Chem Phys 2024; 26:24963-24974. [PMID: 39297222 DOI: 10.1039/d4cp02677b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The utility of knotted proteins in biological activities has been ambiguous since their discovery. From their evolutionary significance to their functionality in stabilizing the native protein structure, a unilateral conclusion hasn't been achieved yet. While most studies have been performed to understand the stabilizing effect of the knotted fold on the protein chain, more ideas are yet to emerge regarding the interactions in stabilizing the knot. Using classical molecular dynamics (MD) simulations, we have explored the dynamics of the figure-of-eight knotted domain present in ketol acid reductoisomerase (KARI). Our main focus was on the presence of a salt bridge network evident within the knotted region and its role in shaping the conformational dynamics of the knotted chain. Through the potential of mean forces (PMFs) calculation, we have also marked the specific salt bridges that are pivotal in stabilizing the knotted structure. The correlated motions have been further monitored with the help of principal component analysis (PCA) and dynamic cross-correlation maps (DCCM). Furthermore, mutation of the specific salt bridges led to a change in their conformational stability, vindicating their importance.
Collapse
Affiliation(s)
- Sanjib Thakuria
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Bakker M, Svensson O, So̷rensen HV, Skepö M. Exploring the Functional Landscape of the p53 Regulatory Domain: The Stabilizing Role of Post-Translational Modifications. J Chem Theory Comput 2024; 20:5842-5853. [PMID: 38973087 PMCID: PMC11270737 DOI: 10.1021/acs.jctc.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
This study focuses on the intrinsically disordered regulatory domain of p53 and the impact of post-translational modifications. Through fully atomistic explicit water molecular dynamics simulations, we show the wealth of information and detailed understanding that can be obtained by varying the number of phosphorylated amino acids and implementing a restriction in the conformational entropy of the N-termini of that intrinsically disordered region. The take-home message for the reader is to achieve a detailed understanding of the impact of phosphorylation with respect to (1) the conformational dynamics and flexibility, (2) structural effects, (3) protein interactivity, and (4) energy landscapes and conformational ensembles. Although our model system is the regulatory domain p53 of the tumor suppressor protein p53, this study contributes to understanding the general effects of intrinsically disordered phosphorylated proteins and the impact of phosphorylated groups, more specifically, how minor changes in the primary sequence can affect the properties mentioned above.
Collapse
Affiliation(s)
- Michael
J. Bakker
- Faculty
of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Oskar Svensson
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Henrik V. So̷rensen
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- MAX
IV Laboratory, Fotongatan
2, 224 84 Lund, Sweden
| | - Marie Skepö
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
3
|
Sadaqat B, Dar MA, Sha C, Abomohra A, Shao W, Yong YC. Thermophilic β-mannanases from bacteria: production, resources, structural features and bioengineering strategies. World J Microbiol Biotechnol 2024; 40:130. [PMID: 38460032 DOI: 10.1007/s11274-024-03912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
β-mannanases are pivotal enzymes that cleave the mannan backbone to release short chain mannooligosaccharides, which have tremendous biotechnological applications including food/feed, prebiotics and biofuel production. Due to the high temperature conditions in many industrial applications, thermophilic mannanases seem to have great potential to overcome the thermal impediments. Thus, structural analysis of thermostable β-mannanases is extremely important, as it could open up new avenues for genetic engineering, and protein engineering of these enzymes with enhanced properties and catalytic efficiencies. Under this scope, the present review provides a state-of-the-art discussion on the thermophilic β-mannanases from bacterial origin, their production, engineering and structural characterization. It covers broad insights into various molecular biology techniques such as gene mutagenesis, heterologous gene expression, and protein engineering, that are employed to improve the catalytic efficiency and thermostability of bacterial mannanases for potential industrial applications. Further, the bottlenecks associated with mannanase production and process optimization are also discussed. Finally, future research related to bioengineering of mannanases with novel protein expression systems for commercial applications are also elaborated.
Collapse
Affiliation(s)
- Beenish Sadaqat
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
- Department of Biochemistry and Structural Biology, Lund University, Box 124, 22100, Lund, Sweden
| | - Mudasir A Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
| | - Chong Sha
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| | - Weilan Shao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China.
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China.
| |
Collapse
|
4
|
Basu D, Dastidar SG. Molecular Dynamics and Machine Learning reveal distinguishing mechanisms of Competitive Ligands to perturb α,β-Tubulin. Comput Biol Chem 2024; 108:108004. [PMID: 38157659 DOI: 10.1016/j.compbiolchem.2023.108004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
The mechanisms of action of ligands competing for the Colchicine Binding Site (CBS) of the α,β-Tubulin are non-standard compared to the commonly witnessed ligand-induced inhibition of proteins. This is because their potencies are not solely judged by the binding affinity itself, but also by their capacity to bias the conformational states of the dimer. Regarding the latter requirement, it is observed that ligands competing for the same pocket that binds colchicine exhibit divergence in potential clinical outcomes. Molecular dynamics-based ∼5.2 µs sampling of α,β-Tubulin complexed with four different ligands has revealed that each ligand has its customized way of influencing the complex. Primarily, it is the proportion of twisting and/or bending characteristic of modes of the intrinsic dynamics which is revealed to be 'fundamental' to tune this variation in the mechanism. The milder influence of 'bending' makes a ligand (TUB092), better classifiable under the group of vascular disrupting agents (VDAs), which are phenotypically effective on cytoskeletons; whereas a stronger impact of 'bending' makes the classical ligand Colchicine (COL) a better Anti-Mitotic agent (AMA). Two other ligands BAL27862 (2RR) and Nocodazole (NZO) fall in the intermediate zone as they fail to explicitly induce bending modes. Random Forest Classification method and K-means Clustering is applied to reveal the efficiency of Machine Learning methods in classifying the Tubulin conformations according to their ligand-specific perturbations and to highlight the significance of specific amino acid residues, mostly positioned in the α-β and β-β interfaces involved in the mechanism. These key residues responsible to yield discriminative actions of the ligands are likely to be highly useful in future endeavours to design more precise inhibitors.
Collapse
Affiliation(s)
- Debadrita Basu
- Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Shubhra Ghosh Dastidar
- Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India.
| |
Collapse
|
5
|
Saikia B, Baruah A. Recent advances in de novo computational design and redesign of intrinsically disordered proteins and intrinsically disordered protein regions. Arch Biochem Biophys 2024; 752:109857. [PMID: 38097100 DOI: 10.1016/j.abb.2023.109857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
In the early 2000s, the concept of "unstructured biology" has emerged to be an important field in protein science by generating various new research directions. Many novel strategies and methods have been developed that are focused on effectively identifying/predicting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs), identifying their potential functions, disorder based drug design etc. Due to the range of functions of IDPs/IDPRs and their involvement in various debilitating diseases they are of contemporary interest to the scientific community. Recent researches are focused on designing/redesigning specific IDPs/IDPRs de novo. These de novo design/redesigns of IDPs/IDPRs are carried out by altering compositional biases and specific sequence patterning parameters. The main focus of these researches is to influence specific molecular functions, phase behavior, cellular phenotypes etc. In this review, we first provide the differences of natively folded and natively unfolded or IDPs with respect to their potential energy landscapes. Here, we provide current understandings on the different computational design strategies and methods that have been utilized in de novo design and redesigns of IDPs and IDPRs. Finally, we conclude the review by discussing the challenges that have been faced during the computational design/design attempts of IDPs/IDPRs.
Collapse
Affiliation(s)
- Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
6
|
Spassov DS, Atanasova M, Doytchinova I. A role of salt bridges in mediating drug potency: A lesson from the N-myristoyltransferase inhibitors. Front Mol Biosci 2023; 9:1066029. [PMID: 36703920 PMCID: PMC9871453 DOI: 10.3389/fmolb.2022.1066029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
The salt bridge is the strongest non-covalent interaction in nature and is known to participate in protein folding, protein-protein interactions, and molecular recognition. However, the role of salt bridges in the context of drug design has remained not well understood. Here, we report that a common feature in the mechanism of inhibition of the N-myristoyltransferases (NMT), promising targets for the treatment of protozoan infections and cancer, is the formation of a salt bridge between a positively charged chemical group of the small molecule and the negatively charged C-terminus of the enzyme. Substituting the inhibitor positively charged amine group with a neutral methylene group prevents the formation of the salt bridge and leads to a dramatic activity loss. Molecular dynamics simulations have revealed that salt bridges stabilize the NMT-ligand complexes by functioning as molecular clips that stabilize the conformation of the protein structure. As such, the creation of salt bridges between the ligands and their protein targets may find an application as a valuable tool in rational drug design.
Collapse
|
7
|
Mitra D, Pal AK, Das Mohapatra PK. Intra-protein interactions of SARS-CoV-2 and SARS: a bioinformatic analysis for plausible explanation regarding stability, divergency, and severity. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 2:653-664. [PMID: 38624777 PMCID: PMC8935616 DOI: 10.1007/s43393-022-00091-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
The current nightmare for the whole world is COVID-19. The occurrence of concentrated pneumonia cases in Wuhan city, Hubei province of China, was first reported on December 30, 2019. SARS-CoV first disclosed in 2002 but had not outspread worldwide. After 18 years, in 2020, it reemerged and outspread worldwide as SARS-CoV-2 (COVID-19), as the most dangerous virus-creating disease in the world. Is it possible to create a favorable evolution within the short time (18 years)? If possible, then what are those properties or factors that are changed in SARS-CoV-2 to make it undefeated? What are the fundamental differences between SARS-CoV-2 and SARS? The study is one of the initiatives to find out all those queries. Here, four types of protein sequences from SARS-CoV-2 and SARS were retrieved from the database to study their physicochemical and structural properties. Results showed that charged residues are playing a pivotal role in SARS-CoV-2 evolution and contribute to the helix stabilization. The formation of the cyclic salt bridge and other intra-protein interactions specially network aromatic-aromatic interaction also play the crucial role in SAS-CoV-2. This comparative study will help to understand the evolution from SARS to SARS-CoV-2 and helpful in protein engineering.
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, WB India
| | - Aditya K. Pal
- Department of Microbiology, Raiganj University, Raiganj, WB India
| | | |
Collapse
|
8
|
Capturing a Crucial ‘Disorder-to-Order Transition’ at the Heart of the Coronavirus Molecular Pathology—Triggered by Highly Persistent, Interchangeable Salt-Bridges. Vaccines (Basel) 2022; 10:vaccines10020301. [PMID: 35214759 PMCID: PMC8875383 DOI: 10.3390/vaccines10020301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023] Open
Abstract
The COVID-19 origin debate has greatly been influenced by genome comparison studies of late, revealing the emergence of the Furin-like cleavage site at the S1/S2 junction of the SARS-CoV-2 Spike (FLCSSpike) containing its 681PRRAR685 motif, absent in other related respiratory viruses. Being the rate-limiting (i.e., the slowest) step, the host Furin cleavage is instrumental in the abrupt increase in transmissibility in COVID-19, compared to earlier onsets of respiratory viral diseases. In such a context, the current paper entraps a ‘disorder-to-order transition’ of the FLCSSpike (concomitant to an entropy arrest) upon binding to Furin. The interaction clearly seems to be optimized for a more efficient proteolytic cleavage in SARS-CoV-2. The study further shows the formation of dynamically interchangeable and persistent networks of salt-bridges at the Spike–Furin interface in SARS-CoV-2 involving the three arginines (R682, R683, R685) of the FLCSSpike with several anionic residues (E230, E236, D259, D264, D306) coming from Furin, strategically distributed around its catalytic triad. Multiplicity and structural degeneracy of plausible salt-bridge network archetypes seem to be the other key characteristic features of the Spike–Furin binding in SARS-CoV-2, allowing the system to breathe—a trademark of protein disorder transitions. Interestingly, with respect to the homologous interaction in SARS-CoV (2002/2003) taken as a baseline, the Spike–Furin binding events, generally, in the coronavirus lineage, seems to have preference for ionic bond formation, even with a lesser number of cationic residues at their potentially polybasic FLCSSpike patches. The interaction energies are suggestive of characteristic metastabilities attributed to Spike–Furin interactions, generally to the coronavirus lineage, which appears to be favorable for proteolytic cleavages targeted at flexible protein loops. The current findings not only offer novel mechanistic insights into the coronavirus molecular pathology and evolution, but also add substantially to the existing theories of proteolytic cleavages.
Collapse
|
9
|
Kordes S, Romero-Romero S, Lutz L, Höcker B. A newly introduced salt bridge cluster improves structural and biophysical properties of de novo TIM barrels. Protein Sci 2021; 31:513-527. [PMID: 34865275 PMCID: PMC8820119 DOI: 10.1002/pro.4249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023]
Abstract
Protein stability can be fine‐tuned by modifying different structural features such as hydrogen‐bond networks, salt bridges, hydrophobic cores, or disulfide bridges. Among these, stabilization by salt bridges is a major challenge in protein design and engineering since their stabilizing effects show a high dependence on the structural environment in the protein, and therefore are difficult to predict and model. In this work, we explore the effects on structure and stability of an introduced salt bridge cluster in the context of three different de novo TIM barrels. The salt bridge variants exhibit similar thermostability in comparison with their parental designs but important differences in the conformational stability at 25°C can be observed such as a highly stabilizing effect for two of the proteins but a destabilizing effect to the third. Analysis of the formed geometries of the salt bridge cluster in the crystal structures show either highly ordered salt bridge clusters or only single salt bridges. Rosetta modeling of the salt bridge clusters results in a good prediction of the tendency on stability changes but not the geometries observed in the three‐dimensional structures. The results show that despite the similarities in protein fold, the salt bridge clusters differently influence the structural and stability properties of the de novo TIM barrel variants depending on the structural background where they are introduced. PDB Code(s): 7OSU, 7OT7, 7OSV, 7OT8 and 7P12;
Collapse
Affiliation(s)
- Sina Kordes
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | | | - Leonie Lutz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
10
|
Kokic Males V, Požar M. Why Should Metformin Not Be Given in Advanced Kidney Disease? Potential Leads from Computer Simulations. ACS OMEGA 2021; 6:15382-15391. [PMID: 34151116 PMCID: PMC8210427 DOI: 10.1021/acsomega.1c01744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Metformin is considered as the go-to drug in the treatment of diabetes. However, it is either prescribed in lower doses or not prescribed at all to patients with kidney problems. To find a potential explanation for this practice, we employed atomistic-level computer simulations to simulate the transport of metformin through multidrug and toxin extrusion 1 (MATE1), a protein known to play a key role in the expulsion of metformin into urine. Herein, we examine the hydrogen bonding between MATE1 and one or more metformin molecules. The simulation results indicate that metformin continuously forms and breaks off hydrogen bonds with MATE1 residues. However, the mean hydrogen bond lifetimes increase for an order of magnitude when three metformin molecules are inserted instead of one. This new insight into the metformin transport process may provide the molecular foundation behind the clinical practice of not prescribing metformin to kidney disease patients.
Collapse
Affiliation(s)
- Visnja Kokic Males
- University Department
for Health Studies, University of Split, Ruđera Boškovića
35, 21000 Split, Croatia
| | - Martina Požar
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| |
Collapse
|
11
|
Basu S, Chakravarty D, Bhattacharyya D, Saha P, Patra HK. Plausible blockers of Spike RBD in SARS-CoV2-molecular design and underlying interaction dynamics from high-level structural descriptors. J Mol Model 2021; 27:191. [PMID: 34057647 PMCID: PMC8165686 DOI: 10.1007/s00894-021-04779-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Abstract COVID-19 is characterized by an unprecedented abrupt increase in the viral transmission rate (SARS-CoV-2) relative to its pandemic evolutionary ancestor, SARS-CoV (2003). The complex molecular cascade of events related to the viral pathogenicity is triggered by the Spike protein upon interacting with the ACE2 receptor on human lung cells through its receptor binding domain (RBDSpike). One potential therapeutic strategy to combat COVID-19 could thus be limiting the infection by blocking this key interaction. In this current study, we adopt a protein design approach to predict and propose non-virulent structural mimics of the RBDSpike which can potentially serve as its competitive inhibitors in binding to ACE2. The RBDSpike is an independently foldable protein domain, resilient to conformational changes upon mutations and therefore an attractive target for strategic re-design. Interestingly, in spite of displaying an optimal shape fit between their interacting surfaces (attributed to a consequently high mutual affinity), the RBDSpike–ACE2 interaction appears to have a quasi-stable character due to a poor electrostatic match at their interface. Structural analyses of homologous protein complexes reveal that the ACE2 binding site of RBDSpike has an unusually high degree of solvent-exposed hydrophobic residues, attributed to key evolutionary changes, making it inherently “reaction-prone.” The designed mimics aimed to block the viral entry by occupying the available binding sites on ACE2, are tested to have signatures of stable high-affinity binding with ACE2 (cross-validated by appropriate free energy estimates), overriding the native quasi-stable feature. The results show the apt of directly adapting natural examples in rational protein design, wherein, homology-based threading coupled with strategic “hydrophobic ↔ polar” mutations serve as a potential breakthrough. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00894-021-04779-0.
Collapse
Affiliation(s)
- Sankar Basu
- Department of Microbiology, Asutosh College (affiliated to University of Calcutta), Kolkata, 700026, West Bengal, India.
| | - Devlina Chakravarty
- Department of Chemistry, University of Rutgers-Camden, Camden, 08102, NJ, USA
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, 700064, West Bengal, India
| | - Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirak K Patra
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, NW3 2PF, UK
| |
Collapse
|
12
|
Cui H, Eltoukhy L, Zhang L, Markel U, Jaeger K, Davari MD, Schwaneberg U. Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angew Chem Int Ed Engl 2021; 60:11448-11456. [PMID: 33687787 PMCID: PMC8252522 DOI: 10.1002/anie.202101642] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/06/2022]
Abstract
Biocatalysis for the synthesis of fine chemicals is highly attractive but usually requires organic (co-)solvents (OSs). However, native enzymes often have low activity and resistance in OSs and at elevated temperatures. Herein, we report a smart salt bridge design strategy for simultaneously improving OS resistance and thermostability of the model enzyme, Bacillus subtilits Lipase A (BSLA). We combined comprehensive experimental studies of 3450 BSLA variants and molecular dynamics simulations of 36 systems. Iterative recombination of four beneficial substitutions yielded superior resistant variants with up to 7.6-fold (D64K/D144K) improved resistance toward three OSs while exhibiting significant thermostability (thermal resistance up to 137-fold, and half-life up to 3.3-fold). Molecular dynamics simulations revealed that locally refined flexibility and strengthened hydration jointly govern the highly increased resistance in OSs and at 50-100 °C. The salt bridge redesign provides protein engineers with a powerful and likely general approach to design OSs- and/or thermal-resistant lipases and other α/β-hydrolases.
Collapse
Affiliation(s)
- Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| | - Lobna Eltoukhy
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Lingling Zhang
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesWest 7th Avenue 32, Tianjin Airport Economic Area300308TianjinChina
| | - Ulrich Markel
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfWilhelm Johnen Strasse52426JülichGermany
- Institute of Bio-and Geosciences IBG 1: BiotechnologyForschungszentrum Jülich GmbHWilhelm Johnen Strasse52426JülichGermany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| |
Collapse
|
13
|
Cui H, Eltoukhy L, Zhang L, Markel U, Jaeger K, Davari MD, Schwaneberg U. Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haiyang Cui
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Lobna Eltoukhy
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Lingling Zhang
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences West 7th Avenue 32, Tianjin Airport Economic Area 300308 Tianjin China
| | - Ulrich Markel
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf Wilhelm Johnen Strasse 52426 Jülich Germany
- Institute of Bio-and Geosciences IBG 1: Biotechnology Forschungszentrum Jülich GmbH Wilhelm Johnen Strasse 52426 Jülich Germany
| | - Mehdi D. Davari
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| |
Collapse
|
14
|
Charged Residues Flanking the Transmembrane Domain of Two Related Toxin-Antitoxin System Toxins Affect Host Response. Toxins (Basel) 2021; 13:toxins13050329. [PMID: 34062876 PMCID: PMC8147318 DOI: 10.3390/toxins13050329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
A majority of toxins produced by type I toxin–antitoxin (TA-1) systems are small membrane-localized proteins that were initially proposed to kill cells by forming non-specific pores in the cytoplasmic membrane. The examination of the effects of numerous TA-1 systems indicates that this is not the mechanism of action of many of these proteins. Enterococcus faecalis produces two toxins of the Fst/Ldr family, one encoded on pheromone-responsive conjugative plasmids (FstpAD1) and the other on the chromosome, FstEF0409. Previous results demonstrated that overexpression of the toxins produced a differential transcriptomic response in E. faecalis cells. In this report, we identify the specific amino acid differences between the two toxins responsible for the differential response of a gene highly induced by FstpAD1 but not FstEF0409. In addition, we demonstrate that a transporter protein that is genetically linked to the chromosomal version of the TA-1 system functions to limit the toxicity of the protein.
Collapse
|
15
|
Desikan R, Behera A, Maiti PK, Ayappa KG. Using multiscale molecular dynamics simulations to obtain insights into pore forming toxin mechanisms. Methods Enzymol 2021; 649:461-502. [PMID: 33712196 DOI: 10.1016/bs.mie.2021.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pore forming toxins (PFTs) are virulent proteins released by several species, including many strains of bacteria, to attack and kill host cells. In this article, we focus on the utility of molecular dynamics (MD) simulations and the molecular insights gleaned from these techniques on the pore forming pathways of PFTs. In addition to all-atom simulations which are widely used, coarse-grained MARTINI models and structure-based models have also been used to study PFTs. Here, the emphasis is on methods and techniques involved while setting up, monitoring, and evaluating properties from MD simulations of PFTs in a membrane environment. We draw from several case studies to illustrate how MD simulations have provided molecular insights into protein-protein and protein-lipid interactions, lipid dynamics, conformational transitions and structures of both the oligomeric intermediates and assembled pore structures.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Amit Behera
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
16
|
Davies JA, Mugglestone M, Yang S, Ellis AM. IR Spectroscopy of the Cesium Iodide-Water Complex. J Phys Chem A 2020; 124:6528-6535. [PMID: 32687359 DOI: 10.1021/acs.jpca.0c05224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There has been much interest in I-(H2O) as a simple model for a hydrated iodide ion. Here we explore how this fundamental ion-solvent interaction is modified by the presence of a counterion, specifically Cs+. This has been achieved by forming the CsI(H2O) complex in superfluid helium nanodroplets and then probing this system using infrared spectroscopy. The complex retains the ionic hydrogen bond between the I- and a water OH group seen in I-(H2O), but the Cs+ ion substantially alters the anion-water interaction through formation of a cyclic Cs+-O-H-I- bonding motif. As with I-(H2O), the OH stretching band derived from the hydrogen-bonded OH group shows substructure, splitting into a clear doublet. However, in contrast to I-(H2O), where a tunneling splitting arising from hydrogen atom exchange plays a role, the doublet we observe is attributed solely to an anharmonic vibrational coupling effect.
Collapse
Affiliation(s)
- Julia A Davies
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Martin Mugglestone
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Shengfu Yang
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Andrew M Ellis
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| |
Collapse
|
17
|
Zhang X, Cheng B, Liu X, Li Y, Hou J, Chen S, Chen J, Li S. Screening of α‐Glucosidase Inhibitors from
Houttuynia cordata
and Evaluation of the Binding Mechanisms. ChemistrySelect 2020. [DOI: 10.1002/slct.202001657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xueli Zhang
- Key Laboratory of Edible Wild Plants Conservation and UtilizationHubei Normal University Huangshi 435002 China
| | - Bingjie Cheng
- Key Laboratory of Edible Wild Plants Conservation and UtilizationHubei Normal University Huangshi 435002 China
| | - Xixia Liu
- Key Laboratory of Edible Wild Plants Conservation and UtilizationHubei Normal University Huangshi 435002 China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization TechnologyHubei Normal University Huangshi 435002 China
| | - Yani Li
- Key Laboratory of Edible Wild Plants Conservation and UtilizationHubei Normal University Huangshi 435002 China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization TechnologyHubei Normal University Huangshi 435002 China
| | - Jianjun Hou
- Key Laboratory of Edible Wild Plants Conservation and UtilizationHubei Normal University Huangshi 435002 China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization TechnologyHubei Normal University Huangshi 435002 China
| | - Sirui Chen
- Key Laboratory of Edible Wild Plants Conservation and UtilizationHubei Normal University Huangshi 435002 China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization TechnologyHubei Normal University Huangshi 435002 China
| | - Jiamin Chen
- Key Laboratory of Edible Wild Plants Conservation and UtilizationHubei Normal University Huangshi 435002 China
| | - Shuyue Li
- Key Laboratory of Edible Wild Plants Conservation and UtilizationHubei Normal University Huangshi 435002 China
| |
Collapse
|
18
|
Hernández-Segura T, Pastor N. Identification of an α-MoRF in the Intrinsically Disordered Region of the Escargot Transcription Factor. ACS OMEGA 2020; 5:18331-18341. [PMID: 32743208 PMCID: PMC7392517 DOI: 10.1021/acsomega.0c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Molecular recognition features (MoRFs) are common in intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). MoRFs are in constant order-disorder structural transitions and adopt well-defined structures once they are bound to their targets. Here, we study Escargot (Esg), a transcription factor in Drosophila melanogaster that regulates multiple cellular functions, and consists of a disordered N-terminal domain and a group of zinc fingers at its C-terminal domain. We analyzed the N-terminal domain of Esg with disorder predictors and identified a region of 45 amino acids with high probability to form ordered structures, which we named S2. Through 54 μs of molecular dynamics (MD) simulations using CHARMM36 and implicit solvent (generalized Born/surface area (GBSA)), we characterized the conformational landscape of S2 and found an α-MoRF of ∼16 amino acids stabilized by key contacts within the helix. To test the importance of these contacts in the stability of the α-MoRF, we evaluated the effect of point mutations that would impair these interactions, running 24 μs of MD for each mutation. The mutations had mild effects on the MoRF, and in some cases, led to gain of residual structure through long-range contacts of the α-MoRF and the rest of the S2 region. As this could be an effect of the force field and solvent model we used, we benchmarked our simulation protocol by carrying out 32 μs of MD for the (AAQAA)3 peptide. The results of the benchmark indicate that the global amount of helix in shorter peptides like (AAQAA)3 is reasonably predicted. Careful analysis of the runs of S2 and its mutants suggests that the mutation to hydrophobic residues may have nucleated long-range hydrophobic and aromatic interactions that stabilize the MoRF. Finally, we have identified a set of residues that stabilize an α-MoRF in a region still without functional annotations in Esg.
Collapse
Affiliation(s)
- Teresa Hernández-Segura
- Laboratorio
de Dinámica de Proteínas, Centro de Investigación
en Dinámica Celular-IICBA, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, México
- Doctorado
en Ciencias CIDC-IICBA, Universidad Autónoma
del Estado de Morelos, Cuernavaca 62209, Morelos, México
| | - Nina Pastor
- Laboratorio
de Dinámica de Proteínas, Centro de Investigación
en Dinámica Celular-IICBA, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, México
| |
Collapse
|
19
|
Bandyopadhyay A, Basu S. Criticality in the conformational phase transition among self-similar groups in intrinsically disordered proteins: Probed by salt-bridge dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140474. [PMID: 32579908 DOI: 10.1016/j.bbapap.2020.140474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
Intrinsically disordered proteins (IDP) serve as one of the key components in the global proteome. In contrast to globular proteins, they harbor an enormous amount of physical flexibility enforcing them to be retained in conformational ensembles rather than stable folds. Previous studies in an aligned direction have revealed the importance of transient dynamical phenomena like that of salt-bridge formation in IDPs to support their physical flexibility and have further highlighted their functional relevance. For this characteristic flexibility, IDPs remain amenable and accessible to different ordered binding partners, supporting their potential multi-functionality. The current study further addresses this complex structure-functional interplay in IDPs using phase transition dynamics to conceptualize the underlying (avalanche type) mechanism of their being distributed across and hopping around degenerate structural states (conformational ensembles). For this purpose, extensive molecular dynamics simulations have been done and the data analyzed from a statistical physics perspective. Investigation of the plausible scope of 'self-organized criticality' (SOC) to fit into the complex dynamics of IDPs was found to be assertive, relating the conformational degeneracy of these proteins to their functional multiplicity. In accordance with the transient nature of 'salt-bridge dynamics', the study further uses it as a probe to explain the structural basis of the proposed criticality in the conformational phase transition among self-similar groups in IDPs. The analysis reveal scale-invariant self-similar fractal geometries in the structural conformations of different IDPs. The insights from the study has the potential to be extended further to benefit structural tinkering of IDPs in their functional characterization and drugging.
Collapse
Affiliation(s)
- Abhirup Bandyopadhyay
- Theoretical Neurosciences Group, Institute De Neurosciences Des Systems, Aix-Marseille University, France
| | - Sankar Basu
- Department of Microbiology, Asutosh College (affiliated to University of Calcutta), Kolkata 700026, India.
| |
Collapse
|
20
|
Ramírez L, Sanguineti N, Scaglia P, Keselman A, Ballerini MG, Karabatas L, Landi E, Castro J, Domené S, Pennisi P, Jasper H, Rey RA, Vázquez M, Domené H, Bergadá I, Gutiérrez M. A novel heterozygous STAT5B variant in a patient with short stature and partial growth hormone insensitivity (GHI). Growth Horm IGF Res 2020; 50:61-70. [PMID: 31902742 DOI: 10.1016/j.ghir.2019.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The most frequent monogenic causes of growth hormone insensitivity (GHI) include defects in genes encoding the GH receptor itself (GHR), the signal transducer and activator of transcription (STAT5B), the insulin like-growth factor type I (IGF1) and the acid-labile subunit (IGFALS). GHI is characterized by a continuum of mild to severe post-natal growth failure. OBJECTIVE To characterize the molecular defect in a patient with short stature and partial GHI. PATIENT AND METHODS The boy was born at term adequate for gestational age from non-consanguineous normal-stature parents. At 2.2 years, he presented proportionate short stature (height -2.77 SDS), wide forehead and normal mental development. Whole-exome analysis and functional characterization (site-directed mutagenesis, dual luciferase reporter assay, immunofluorescence and western immunoblot) were performed. RESULTS Biochemical and endocrinological evaluation revealed partial GH insensitivity with normal stimulated GH peak (7.8 ng/mL), undetectable IGF1 and low IGFBP3 levels. Two heterozygous variants in the GH-signaling pathway were found: a novel heterozygous STAT5B variant (c.1896G>T, p.K632N) and a hypomorphic IGFALS variant (c.1642C>T, p.R548W). Functional in vitro characterization demonstrated that p.K632N-STAT5b is an inactivating variant that impairs STAT5b activity through abolished phosphorylation. Remarkably, the patient's immunological evaluation displayed only a mild hypogammaglobulinemia, while a major characteristic of STAT5b deficient patients is severe immunodeficiency. CONCLUSIONS We reported a novel pathogenic inactivating STAT5b variant, which may be associated with partial GH insensitivity and can present without severe immunological complications in heterozygous state. Our results contribute to expand the spectrum of phenotypes associated to GHI.
Collapse
Affiliation(s)
- Laura Ramírez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Nora Sanguineti
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Gabriela Ballerini
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Liliana Karabatas
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Estefanía Landi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Julia Castro
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Patricia Pennisi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Héctor Jasper
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | - Horacio Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Desikan R, Maiti PK, Ayappa KG. Predicting interfacial hot-spot residues that stabilize protein-protein interfaces in oligomeric membrane-toxin pores through hydrogen bonds and salt bridges. J Biomol Struct Dyn 2020; 39:20-34. [DOI: 10.1080/07391102.2020.1711806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Prabal K. Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - K. Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
22
|
Centeno PP, Herberger A, Mun HC, Tu C, Nemeth EF, Chang W, Conigrave AD, Ward DT. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun 2019; 10:4693. [PMID: 31619668 PMCID: PMC6795806 DOI: 10.1038/s41467-019-12399-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular phosphate regulates its own renal excretion by eliciting concentration-dependent secretion of parathyroid hormone (PTH). However, the phosphate-sensing mechanism remains unknown and requires elucidation for understanding the aetiology of secondary hyperparathyroidism in chronic kidney disease (CKD). The calcium-sensing receptor (CaSR) is the main controller of PTH secretion and here we show that raising phosphate concentration within the pathophysiologic range for CKD significantly inhibits CaSR activity via non-competitive antagonism. Mutation of residue R62 in anion binding site-1 abolishes phosphate-induced inhibition of CaSR. Further, pathophysiologic phosphate concentrations elicit rapid and reversible increases in PTH secretion from freshly-isolated human parathyroid cells consistent with a receptor-mediated action. The same effect is seen in wild-type murine parathyroid glands, but not in CaSR knockout glands. By sensing moderate changes in extracellular phosphate concentration, the CaSR represents a phosphate sensor in the parathyroid gland, explaining the stimulatory effect of phosphate on PTH secretion. Elevated inorganic phosphate levels promote excessive parathyroid hormone secretion, which contributes to the aetiology of secondary hyperparathyroidism. Here, the authors show that phosphate directly inhibits the calcium-sensing receptor, the main regulator of parathyroid hormone secretion.
Collapse
Affiliation(s)
- Patricia P Centeno
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Amanda Herberger
- UCSF Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Hee-Chang Mun
- Charles Perkins Centre, University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - Chialing Tu
- UCSF Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Edward F Nemeth
- MetisMedica, 13 Poplar Plains Road, Toronto, ON, M4V 2M7, Canada
| | - Wenhan Chang
- UCSF Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Arthur D Conigrave
- Charles Perkins Centre, University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - Donald T Ward
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
23
|
Muttathukattil AN, Srinivasan S, Halder A, Reddy G. Role of Guanidinium-Carboxylate Ion Interaction in Enzyme Inhibition with Implications for Drug Design. J Phys Chem B 2019; 123:9302-9311. [DOI: 10.1021/acs.jpcb.9b06130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Aswathy N. Muttathukattil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sriraksha Srinivasan
- Department of Chemistry, St. Joseph’s College, Bangalore, Karnataka 560027, India
| | - Antarip Halder
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
24
|
Luo M, Dommer AC, Schiffer JM, Rez DJ, Mitchell AR, Amaro RE, Grassian VH. Surfactant Charge Modulates Structure and Stability of Lipase-Embedded Monolayers at Marine-Relevant Aerosol Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9050-9060. [PMID: 31188612 DOI: 10.1021/acs.langmuir.9b00689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipases, as well as other enzymes, are present and active within the sea surface microlayer (SSML). Upon bubble bursting, lipases partition into sea spray aerosol (SSA) along with surface-active molecules such as lipids. Lipases are likely to be embedded in the lipid monolayer at the SSA surface and thus have the potential to influence SSA interfacial structure and chemistry. Elucidating the structure of the lipid monolayer at SSA interfaces and how this structure is altered upon interaction with a protein system like lipase is of interest, given the importance of how aerosols interact with sunlight, influence cloud formation, and provide surfaces for chemical reactions. Herein, we report an integrated experimental and computational study of Burkholderia cepacia lipase (BCL) embedded in a lipid monolayer and highlight the important role of electrostatic, rather than hydrophobic, interactions as a driver for monolayer stability. Specifically, we combine Langmuir film experiments and molecular dynamics (MD) simulations to examine the detailed interactions between the zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayer and BCL. Upon insertion of BCL from the underlying subphase into the lipid monolayer, it is shown that BCL permeates and largely disorders the monolayer while strongly interacting with zwitterionic DPPC molecules, as experimentally observed by Langmuir adsorption curves and infrared reflectance absorbance spectroscopy. Explicitly solvated, all-atom MD is then used to provide insights into inter- and intramolecular interactions that drive these observations, with specific attention to the formation of salt bridges or ionic-bonding interactions. We show that after insertion into the DPPC monolayer, lipase is maintained at high surface pressures and in large BCL concentrations by forming a salt-bridge-stabilized lipase-DPPC complex. In comparison, when embedded in an anionic monolayer at low surface pressures, BCL preferentially forms intramolecular salt bridges, reducing its total favorable interactions with the surfactant and partitioning out of the monolayer shortly after injection. Overall, this study shows that the structure and dynamics of lipase-embedded SSA surfaces vary based on surface charge and pressure and that these variations have the potential to differentially modulate the properties of marine aerosols.
Collapse
Affiliation(s)
- Man Luo
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Abigail C Dommer
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Jamie M Schiffer
- Janssen Pharmaceuticals , 3210 Merryfield Row , San Diego , California 92093 , United States
| | - Donald J Rez
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Andrew R Mitchell
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
- Scripps Institution of Oceanography , University of California , San Diego , California 92037 , United States
| |
Collapse
|
25
|
Kannan S, Shankar R, Kolandaivel P. Insights into structural and inhibitory mechanisms of low pH-induced conformational change of influenza HA2 protein: a computational approach. J Mol Model 2019; 25:99. [PMID: 30904969 DOI: 10.1007/s00894-019-3982-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/05/2019] [Indexed: 01/26/2023]
Abstract
Though oseltamivir and zanamivir are the active anti-influenza drugs, the emergence of different strains of influenza A virus with mutations creates drug-resistance to these drugs. Therefore, it is essential to find a suitable approach to stop the viral infection. The present study focuses on understanding the conformational changes of the HA2 protein at different pH levels (pH 7, pH 6, pH 5) and on blocking the low pH-induced conformational changes of the HA2 protein with a suitable ligand using molecular docking and molecular dynamics (MD) simulation methods. As the pH value decreases to pH 5, the protein undergoes large conformational changes with less stability in the order of pH 7 > pH 6 > pH 5. The fusion peptide (residues 1-20) and the extended loop (residues 58-75) deviate more at pH 5. The ligand stachyflin bound between the N- and C-terminal helix regions retains the stability of the HA2 protein at pH 5 and blocks the low pH-induced conformational transition. The performance of stachyflin is increased when it directly interacts with residues at the intramonomer binding site rather than the intermonomer binding site. The susceptibility of the HA2 protein of different subtypes to stachyflin is in the order of H1 > H7 > H5 > H2 > H3. Stachflin has a higher binding affinity for H1 (at pH 7, pH 6, pH 5) and H7 subtypes than others. Lys47, Lys58, and Glu103 are the key residues that favor the binding and highly stabilize the HA2 protein at low pH. Graphical abstract Low pH-induced conformational change of influenza HA2 protein.
Collapse
Affiliation(s)
- S Kannan
- Department of Physics, Bharathiar University, Coimbatore, 641 046, India
| | - R Shankar
- Department of Physics, Bharathiar University, Coimbatore, 641 046, India
| | - P Kolandaivel
- Department of Physics, Bharathiar University, Coimbatore, 641 046, India. .,Periyar University, Salem, 636 011, India.
| |
Collapse
|
26
|
Sun X, Yan X, Zhuo W, Gu J, Zuo K, Liu W, Liang L, Gan Y, He G, Wan H, Gou X, Shi H, Hu J. PD-L1 Nanobody Competitively Inhibits the Formation of the PD-1/PD-L1 Complex: Comparative Molecular Dynamics Simulations. Int J Mol Sci 2018; 19:E1984. [PMID: 29986511 PMCID: PMC6073277 DOI: 10.3390/ijms19071984] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
The anti-PD-L1 monoclonal antibody (mAb) targeting PD-1/PD-L1 immune checkpoint has achieved outstanding results in clinical application and has become one of the most popular anti-cancer drugs. The mechanism of molecular recognition and inhibition of PD-L1 mAbs is not yet clear, which hinders the subsequent antibody design and modification. In this work, the trajectories of PD-1/PD-L1 and nanobody/PD-L1 complexes were obtained via comparative molecular dynamics simulations. Then, a series of physicochemical parameters including hydrogen bond, dihedral angle distribution, pKa value and binding free energy, and so forth, were all comparatively analyzed to investigate the recognition difference between PD-L1 and PD-1 and nanobody. Both LR113 (the amino acid residues in PD-L1 are represented by the lower left sign of L) and LR125 residues of PD-L1 undergo significant conformational change after association with mAbs, which dominates a strong electrostatic interaction. Solvation effect analysis revealed that solvent-water enhanced molecular recognition between PD-L1 and nanobody. By combining the analyses of the time-dependent root mean squared fluctuation (RMSF), free energy landscape, clustering and energy decomposition, the potential inhibition mechanism was proposed that the nanobody competitively and specifically bound to the β-sheet groups of PD-L1, reduced the PD-L1’s flexibility and finally blocked the formation of PD-1/PD-L1 complex. Based on the simulation results, site-directed mutagenesis of ND99 (the amino acid residues in Nano are displayed by the lower left sign of N) and NQ116 in the nanobody may be beneficial for improving antibody activity. This work offers some structural guidance for the design and modification of anticancer mAbs based on the structure of the PD-1/PD-L1 complex.
Collapse
Affiliation(s)
- Xin Sun
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Xiao Yan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Wei Zhuo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Ke Zuo
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Wei Liu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Li Liang
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Ya Gan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Gang He
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaojun Gou
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Hubing Shi
- Laboratory of tumor targeted and immune therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
27
|
Basu S, Biswas P. Salt-bridge dynamics in intrinsically disordered proteins: A trade-off between electrostatic interactions and structural flexibility. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:624-641. [DOI: 10.1016/j.bbapap.2018.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/13/2018] [Accepted: 03/07/2018] [Indexed: 12/29/2022]
|
28
|
Basu S. CP dock: the complementarity plot for docking of proteins: implementing multi-dielectric continuum electrostatics. J Mol Model 2017; 24:8. [PMID: 29218430 DOI: 10.1007/s00894-017-3546-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023]
Abstract
The complementarity plot (CP) is an established validation tool for protein structures, applicable to both globular proteins (folding) as well as protein-protein complexes (binding). It computes the shape and electrostatic complementarities (Sm, Em) for amino acid side-chains buried within the protein interior or interface and plots them in a two-dimensional plot having knowledge-based probabilistic quality estimates for the residues as well as for the whole structure. The current report essentially presents an upgraded version of the plot with the implementation of the advanced multi-dielectric functionality (as in Delphi version 6.2 or higher) in the computation of electrostatic complementarity to make the validation tool physico-chemically more realistic. The two methods (single- and multi-dielectric) agree decently in their resultant Em values, and hence, provisions for both methods have been kept in the software suite. So to speak, the global electrostatic balance within a well-folded protein and/or a well-packed interface seems only marginally perturbed by the choice of different internal dielectric values. However, both from theoretical as well as practical grounds, the more advanced multi-dielectric version of the plot is certainly recommended for potentially producing more reliable results. The report also presents a new methodology and a variant plot, namely CPdock, based on the same principles of complementarity specifically designed to be used in the docking of proteins. The efficacy of the method to discriminate between good and bad docked protein complexes has been tested on a recent state-of-the-art docking benchmark. The results unambiguously indicate that CPdock can indeed be effective in the initial screening phase of a docking scoring pipeline before going into more sophisticated and computationally expensive scoring functions. CPdock has been made available at https://github.com/nemo8130/CPdock . Graphical Abstract An example showing the efficacy of CPdock to be used in the initial screening phase of a protein-protein docking scoring pipeline.
Collapse
Affiliation(s)
- Sankar Basu
- Department of Chemistry, University of Delhi, New Delhi, India.
| |
Collapse
|