1
|
Wu M, Sheng J, Xie Q, Qi Y, Zhao Y, Zhang S. Recent advances in stimuli-responsive hyaluronic acid-based nanodelivery systems for cancer treatment: A review. Int J Biol Macromol 2025; 316:144357. [PMID: 40403810 DOI: 10.1016/j.ijbiomac.2025.144357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
Cancer is a worldwide public health problem that poses a serious threat to human health. Drug therapy, as the mainstay of cancer treatment, relies on carriers for the in vivo delivery of chemotherapeutic or nucleic acid-based drugs. Traditional drug delivery carriers have shortcomings, however, including a lack of targeting, uncontrollable release of drugs, and low stability, potentially leading to toxic side effects and reducing their antitumor efficacy. Advances in nanotechnology and biomedicine have furthered the development of stimuli-responsive nanodelivery systems, which can be used to realize the accumulation and on-demand release of drugs and reduce the required drug dosage and toxicity. Hyaluronic acid (HA), as a natural anionic polysaccharide with excellent biocompatibility, an easily modified structure, and the ability to target cancer cells, is a US Food and Drug Administration-approved biomaterial that is ideal for the construction of stimuli-responsive nanodelivery systems. Herein, we review HA-based stimuli-responsive nanodelivery systems including various HA-modified structures. We summarize the feasibility and effectiveness of these systems in cancer therapy according to their roles as endogenous- (pH, redox, enzyme, and hypoxia) or exogenous- (light, temperature, ultrasound, and magnetism) stimuli-responsive systems. We also discuss the problems and challenges in the development of HA-based stimuli-responsive nanodelivery systems and the perspectives for future development. This review highlights the great potential of HA-based stimuli-responsive nanodelivery systems for use in precision cancer treatment and controlled drug release.
Collapse
Affiliation(s)
- Mengdi Wu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiabao Sheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; Faculty of Health and Medicine, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Qihan Xie
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
2
|
Wang Z, Ao J, Lai X, Liu G, Meng Y, Zhang Y, Shi J, Wu Y, Wang C. Decreasing the aggregation of photosensitizers to facilitate energy transfer for improved photodynamic therapy. NANOSCALE 2025; 17:5707-5714. [PMID: 39871776 DOI: 10.1039/d4nr04593a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The mode of energy transfer between photosensitizers and oxygen determines the yield of singlet oxygen (1O2), crucial for photodynamic therapy (PDT). However, the aggregation of photosensitizers promotes electron transfer while inhibiting pure energy transfer, resulting in the generation of the hypotoxic superoxide anion (O2-) and consumption of substantial oxygen. Herein, we achieve the reduction of the aggregation of photosensitizers to inhibit electron transfer through classical chemical crosslinking, thereby boosting the production of 1O2. Specifically, we constructed a cross-linked hydrogel-like nanophotosensitizer (HA-TPP NHs) via amidation reactions between hyaluronic acid (HA) and tetrakis(4-aminophenyl)porphyrin (TATPP). In HA-TPP NHs, porphyrin is anchored at the crosslinking sites, preventing their close proximity. Simultaneously, HA-TPP NHs swell in a physiological environment due to water absorption, further increasing the distance between porphyrin molecules to avoid their aggregation. Compared to porphyrin-hyaluronic acid assembling nanoparticles (HA-TPP NPs), we find that the 1O2 generation efficiency of HA-TPP NHs is elevated by over 80%. Furthermore, leveraging the targeting capabilities of hyaluronic acid, HA-TPP NHs demonstrate a remarkable anticancer effect in in vitro and in vivo experiments. This study offers a novel insight and method for improving the therapeutic efficacy of PDT.
Collapse
Affiliation(s)
- Zhenhua Wang
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Jianyang Ao
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Xiaoran Lai
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Gang Liu
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Yun Meng
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Yurong Zhang
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Jieyun Shi
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Yelin Wu
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Chaochao Wang
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| |
Collapse
|
3
|
Zheng Z, Huang X, Wang N, Wang T, Zhou L, Xu Z, Chen G, Cao W, Hao H. Hydration Mechanism and Its Effect on the Solubility of Aripiprazole. Pharm Res 2024; 41:113-127. [PMID: 37833571 DOI: 10.1007/s11095-023-03618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
PROPOSE The propose is to investigate the reasons for the insolubility of Form III in water and to explore the mechanism of the hydration process of Form III. METHODS The conformational and cohesive energies of Form III and Form H1 were calculated using Gaussian 16 and Crystal Explorer 17. Gaussian 16 and Multiwfn 3.8 was used to calculate the molecular surface electrostatic potential of Form III and Form H1 and to calculate the energies of the stronger intermolecular interactions in the crystal structure. The behaviors of Form III in water were simulated using Gromacs 2020.6. Finally, the hydration process from Form III to Form H1 was monitored in situ using Raman spectroscopy. RESULTS The conformational energies of Form III and H1 are almost the same. The cohesion energy of Form H1 is much larger than that of Form III because both number of hydrogen bonds and van der Waals interactions are higher in the Form H1. During the simulation, the supercell of APZ form a supramolecular cluster. Several molecules manually dismantled from the cluster spontaneously combine to form new molecular clusters. Both increases in temperature and external energy input accelerate the hydration process. CONCLUSIONS More hydrogen bonds and strong van der Waals interactions in Form H1 lead to a greater stability. The overall decrease in polarity and the strong binding effect on APZ molecule clusters due to intermolecular interactions lead to the water insolubility of Form III. The hydration process from Form III to Form H1 follows a novel, dandelion sowing-like hydration mechanism.
Collapse
Affiliation(s)
- Zhixin Zheng
- The National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Huang
- The National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| | - Na Wang
- The National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Ting Wang
- The National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Lina Zhou
- The National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhao Xu
- The National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Guibin Chen
- Zhejiang Sundoc Pharmaceutical Science and Tech Co., Ltd, Hangzhou, China, 310051, Zhejiang
| | - Wan Cao
- Zhejiang Sundoc Pharmaceutical Science and Tech Co., Ltd, Hangzhou, China, 310051, Zhejiang
| | - Hongxun Hao
- The National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
4
|
Nguyen TH, Nguyen TH, Le TTT, Vu Dang H, Nguyen HMT. Interactions between Paracetamol and Formaldehyde: Theoretical Investigation and Topological Analysis. ACS OMEGA 2023; 8:11725-11735. [PMID: 37033805 PMCID: PMC10077466 DOI: 10.1021/acsomega.2c05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 06/19/2023]
Abstract
In this work, noncovalent interactions including hydrogen bonds, C···C, N···O, and van der Waals forces between paracetamol and formaldehyde were investigated using the second-order perturbation theory MP2 in conjunction with the correlation consistent basis sets (aug-cc-pVDZ and aug-cc-pVTZ). Two molecular conformations of paracetamol were considered. Seven equilibrium geometries of dimers were found from the result of the interactions with formaldehyde for each conformation of paracetamol. Interaction energies of complexes with both ZPE and BSSE corrections range from -7.0 to -21.7 kJ mol-1. Topological parameters (such as electron density, its Laplacian, and local electron energy density at the bond critical points) of the bonds from atoms in molecules theory were analyzed in detail. The natural bond orbital analysis showed that the stability of complexes was controlled by noncovalent interactions including O-H···O, N-H···O, C-H···O, C-H···N, C-H···H-C, C···C, and N···O. The red- and blue-shifted hydrogen bonds could both be observed in these complexes. The properties of these interactions were also further examined in water using a polarized continuum model. In water, the stability of the complex was slightly reduced as compared to that in the gas phase.
Collapse
Affiliation(s)
- Tho Huu Nguyen
- Faculty
of Natural Sciences Pedagogy, Saigon University, 273 An Duong Vuong, Ward 3, District
5, Ho Chi Minh City 700000, Vietnam
| | - Tri Huu Nguyen
- Faculty
of Natural Sciences Pedagogy, Saigon University, 273 An Duong Vuong, Ward 3, District
5, Ho Chi Minh City 700000, Vietnam
| | - Thi Thanh Thuy Le
- Faculty
of Natural Sciences Pedagogy, Saigon University, 273 An Duong Vuong, Ward 3, District
5, Ho Chi Minh City 700000, Vietnam
| | - Hoang Vu Dang
- Department
of Analytical Chemistry and Toxicology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Hue Minh Thi Nguyen
- Faculty
of Chemistry and Center for Computational Science, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
5
|
Parlak C, Alver Ö, Ouma CNM, Rhyman L, Ramasami P. Interaction between favipiravir and hydroxychloroquine and their combined drug assessment: in silico investigations. ACTA ACUST UNITED AC 2021; 76:1471-1478. [PMID: 34744292 PMCID: PMC8562770 DOI: 10.1007/s11696-021-01946-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Hydroxychloroquine (HCQ) and favipiravir (FPV) are known to be effective antivirals, and there are reports about their use to fight the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) despite that these are not conclusive. The use of combined drugs is common in drug discovery, and thus, we investigated HCQ and FPV as a combined drug. The density functional theory method was used for the optimization of geometries, spectroscopic analysis and calculation of reactivity parameters. The quantum theory of atoms in molecules was applied to explain the nature of the hydrogen bonds and confirm the higher stability of the combined drug. We also evaluated the absorption, distribution, metabolism and excretion (ADME) parameters to assess their drug actions jointly using SwissADME. The preliminary findings of our theoretical study are promising for further investigations of more potent and selective antiviral drugs.
Collapse
Affiliation(s)
- Cemal Parlak
- Department of Physics, Science Faculty, Ege University, Izmir, 35100 Turkey
| | - Özgür Alver
- Department of Physics, Science Faculty, Eskisehir Technical University, Eskisehir, Turkey
| | - Cecil Naphtaly Moro Ouma
- HySA-Infrastructure CoC, Faculty of Engineering, North-West University, Private Bag X6001, Potchefstroom, 2531 South Africa
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837 Mauritius.,Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028 South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837 Mauritius.,Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028 South Africa
| |
Collapse
|