1
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Murcia ÁB, Torrestina-Sánchez B, Fernandez-Lafuente R. Peptides with biological and technofunctional properties produced by bromelain hydrolysis of proteins from different sources: A review. Int J Biol Macromol 2023; 253:127244. [PMID: 37806416 DOI: 10.1016/j.ijbiomac.2023.127244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | | | |
Collapse
|
2
|
Mousavi Maleki MS, Aghamirza Moghim Ali Abadi H, Vaziri B, Shabani AA, Ghavami G, Madanchi H, Sardari S. Bromelain and ficin proteolytic effects on gliadin cytotoxicity and expression of genes involved in cell-tight junctions in Caco-2 cells. Amino Acids 2023; 55:1601-1619. [PMID: 37803248 DOI: 10.1007/s00726-023-03333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
Enzyme therapy for celiac disease (CeD), which digests gliadin into non-immunogenic and non-toxic peptides, can be an appropriate treatment option for CeD. Here, we have investigated the effectiveness of bromelain and ficin on gliadin digestion using in vitro, such as SDS-PAGE, HPLC, and circular dichroism (CD). Furthermore, the cytotoxicity of gliadin and 19-mer peptide before and after digestion with these enzymes was evaluated using the MTT assay in the Caco-2 cell line. Finally, we examined the effect of these treatments along with Larazotide Acetate on the expression of genes involved in cell-tight junctions, such as Occludin, Claudin 3, tight junction protein-1, and Zonulin in the Caco-2 cell line. Our study demonstrated bromelain and ficin digestion effects on the commercial and wheat-extracted gliadin by SDS-PAGE, HPLC, and CD. Also, the cytotoxicity results on Caco-2 showed that toxicity of the gliadin and synthetic 19-mer peptide was decreased by adding bromelain and ficin. Furthermore, the proteolytic effects of bromelain and ficin on gliadin indicated the expression of genes involved in cell-tight junctions was improved. This study confirms that bromelain and ficin mixture could be effective in improving the symptoms of CeD.
Collapse
Affiliation(s)
- Masoumeh Sadat Mousavi Maleki
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Behrooz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ghazaleh Ghavami
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, 13198, Tehran, Iran
| | - Hamid Madanchi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, 13198, Tehran, Iran.
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, 13198, Tehran, Iran.
| |
Collapse
|
3
|
Huang X, Rao G, Peng X, Xue Y, Hu H, Feng N, Zheng D. Effect of plant growth regulators DA-6 and COS on drought tolerance of pineapple through bromelain and oxidative stress. BMC PLANT BIOLOGY 2023; 23:180. [PMID: 37020215 PMCID: PMC10074694 DOI: 10.1186/s12870-023-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Due to global warming, drought climates frequently occur on land, and despite being drought resistant, pineapples are still subjected to varying degrees of drought stress. Plant growth regulators can regulate the stress tolerance of plants through hormonal effects. This experiment aims to investigate the regulatory effects of different plant growth regulators on Tainong- 16 and MD-2 Pineapple when subjected to drought stress. RESULTS In this experiment, we examined the regulatory effects of two different plant growth regulators, sprayed on two pineapple varieties: MD-2 Pineapple and Tainong-16. The main component of T1 was diethyl aminoethyl hexanoate (DA-6) and that of T2 is chitosan oligosaccharide (COS). An environment similar to a natural drought was simulated in the drought stress treatments. Then, pineapples at different periods were sampled and a series of indicators were measured. The experimental results showed that the drought treatments treated with T1 and T2 plant growth regulators had a decrease in malondialdehyde, an increase in bromelain and antioxidant enzyme indicators, and an increase in phenotypic and yield indicators. CONCLUSION This experiment demonstrated that DA-6 and COS can enhance the drought resistance of pineapple plants to a certain extent through bromelain and oxidative stress. Therefore, DA-6 and COS have potential applications and this experiment lays the foundation for further research.
Collapse
Affiliation(s)
- XiaoKui Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - GangShun Rao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - XiaoDu Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - YingBin Xue
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - HanQiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - NaiJie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518000, Guangdong, China
| | - DianFeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China.
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
4
|
Amores-Monge V, Goyanes S, Ribba L, Lopretti M, Sandoval-Barrantes M, Camacho M, Corrales-Ureña Y, Vega-Baudrit JR. Pineapple Agro-Industrial Biomass to Produce Biomedical Applications in a Circular Economy Context in Costa Rica. Polymers (Basel) 2022; 14:4864. [PMID: 36432989 PMCID: PMC9697275 DOI: 10.3390/polym14224864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pineapple is a highly demanded fruit in international markets due to its unique appearance and flavor, high fiber content, vitamins, folic acid, and minerals. It makes pineapple production and processing a significant source of income for producing countries, such as Costa Rica. This review collects bibliographic information dating back to the beginnings of pineapple production in Costa Rica to the state of the market today. It details the impacts of its production chain and proposes a biorefinery as a solution to environmental problems. Besides the potentiality of new sustainable markets to contribute to the post-COVID-19 economy in Costa Rica is highlighted. The general characteristics of pineapple by-products -cellulose, hemicellulose, lignin, and other high-value products like bromelain y saponin- are described, as well as the primary processes for their ex-traction via biorefinery and main applications in the medical field. Finally, a brief description of the main works in the literature involving modeling and simulation studies of pineapple by-products properties is included.
Collapse
Affiliation(s)
| | - Silvia Goyanes
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1053, Argentina
- Instituto de Física de Buenos Aires (IFIBA)CONICET, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Laura Ribba
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1053, Argentina
- Dirección de Materiales Avanzados, Áreas del Conocimiento, INTI-CONICET, Buenos Aires 5445, Argentina
| | - Mary Lopretti
- Departamento de Técnicas Nucleares Aplicadas en Bioquímica y Biotecnología, CIN, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | | | - Melissa Camacho
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT, San José 1200, Costa Rica
| | | | - José Roberto Vega-Baudrit
- School of Chemistry, Universidad Nacional, Campus Omar Dengo, Heredia 3000, Costa Rica
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT, San José 1200, Costa Rica
| |
Collapse
|
5
|
The Efficacy of Plant Enzymes Bromelain and Papain as a Tool for Reducing Gluten Immunogenicity from Wheat Bran. Processes (Basel) 2022. [DOI: 10.3390/pr10101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gluten-free products made from naturally gluten-free raw materials have an inferior taste and can cause deficiencies in various nutrients, especially non-starch polysaccharides. To address this problem, scientists are searching for new strategies to eliminate harmful gluten from wheat, rye, and barley and to produce balanced products with good organoleptic properties. This study evaluated the possibility of hydrolysing gluten in wheat bran, a by-product obtained after the dry fractionation of wheat, using plant enzymes. The gluten content of wheat bran after treatment with papain, bromelain, and their combination under different hydrolysis conditions was investigated. The amount of gluten was determined using an enzyme-linked immunosorbent assay ELISA R5 and the reduction in immunogenic gliadins was analysed using high-performance reverse phase liquid chromatography. The results of the study showed that 4 h hydrolysis with bromelain and papain reduced the levels of gluten immunogenic compounds in bran from 58,650.00 to 2588.20–3544.50 mg/kg; however, they did not reach the gluten-free limit. A higher hydrolysis efficiency of 95.59% was observed after treatment with papain, while the combination of both enzymes and bromelain alone were less effective. The results presented in this article will be helpful to other researchers and manufacturers of wheat-based products when selecting methods to reduce gluten immunogenicity and contribute to the development of sustainable technologies.
Collapse
|
6
|
Hikisz P, Bernasinska-Slomczewska J. Beneficial Properties of Bromelain. Nutrients 2021; 13:4313. [PMID: 34959865 PMCID: PMC8709142 DOI: 10.3390/nu13124313] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022] Open
Abstract
Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|