1
|
Jones TE, Teschner D, Piccinin S. Toward Realistic Models of the Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2024; 124:9136-9223. [PMID: 39038270 DOI: 10.1021/acs.chemrev.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The electrocatalytic oxygen evolution reaction (OER) supplies the protons and electrons needed to transform renewable electricity into chemicals and fuels. However, the OER is kinetically sluggish; it operates at significant rates only when the applied potential far exceeds the reversible voltage. The origin of this overpotential is hidden in a complex mechanism involving multiple electron transfers and chemical bond making/breaking steps. Our desire to improve catalytic performance has then made mechanistic studies of the OER an area of major scientific inquiry, though the complexity of the reaction has made understanding difficult. While historically, mechanistic studies have relied solely on experiment and phenomenological models, over the past twenty years ab initio simulation has been playing an increasingly important role in developing our understanding of the electrocatalytic OER and its reaction mechanisms. In this Review we cover advances in our mechanistic understanding of the OER, organized by increasing complexity in the way through which the OER is modeled. We begin with phenomenological models built using experimental data before reviewing early efforts to incorporate ab initio methods into mechanistic studies. We go on to cover how the assumptions in these early ab initio simulations─no electric field, electrolyte, or explicit kinetics─have been relaxed. Through comparison with experimental literature, we explore the veracity of these different assumptions. We summarize by discussing the most critical open challenges in developing models to understand the mechanisms of the OER.
Collapse
Affiliation(s)
- Travis E Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
| | - Detre Teschner
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Trieste 34136, Italy
| |
Collapse
|
2
|
Chen Z, Yang H, Kang Z, Driess M, Menezes PW. The Pivotal Role of s-, p-, and f-Block Metals in Water Electrolysis: Status Quo and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108432. [PMID: 35104388 DOI: 10.1002/adma.202108432] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Indexed: 05/27/2023]
Abstract
Transition metals, in particular noble metals, are the most common species in metal-mediated water electrolysis because they serve as highly active catalytic sites. In many cases, the presence of nontransition metals, that is, s-, p-, and f-block metals with high natural abundance in the earth-crust in the catalytic material is indispensable to boost efficiency and durability in water electrolysis. This is why alkali metals, alkaline-earth metals, rare-earth metals, lean metals, and metalloids receive growing interest in this research area. In spite of the pivotal role of these nontransition metals in tuning efficiency of water electrolysis, there is far more room for developments toward a knowledge-based catalyst design. In this review, five classes of nontransition metals species which are successfully utilized in water electrolysis, with special emphasis on electronic structure-catalytic activity relationships and phase stability, are discussed. Moreover, specific fundamental aspects on electrocatalysts for water electrolysis as well as a perspective on this research field are also addressed in this account. It is anticipated that this review can trigger a broader interest in using s-, p-, and f-block metals species toward the discovery of advanced polymetal-containing electrocatalysts for practical water splitting.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Hongyuan Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
3
|
Samira S, Hong J, Camayang JCA, Sun K, Hoffman AS, Bare SR, Nikolla E. Dynamic Surface Reconstruction Unifies the Electrocatalytic Oxygen Evolution Performance of Nonstoichiometric Mixed Metal Oxides. JACS AU 2021; 1:2224-2241. [PMID: 34977894 PMCID: PMC8715492 DOI: 10.1021/jacsau.1c00359] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 05/26/2023]
Abstract
Compositionally versatile, nonstoichiometric, mixed ionic-electronic conducting metal oxides of the form A n+1B n O3n+1 (n = 1 → ∞; A = rare-earth-/alkaline-earth-metal cation; B = transition-metal (TM) cation) remain a highly attractive class of electrocatalysts for catalyzing the energy-intensive oxygen evolution reaction (OER). The current design strategies for describing their OER activities are largely derived assuming a static, unchanged view of their surfaces, despite reports of dynamic structural changes to 3d TM-based perovskites during OER. Herein, through variations in the A- and B-site compositions of A n+1B n O3n+1 oxides (n = 1 (A2BO4) or n = ∞ (ABO3); A = La, Sr, Ca; B = Mn, Fe, Co, Ni), we show that, in the absence of electrolyte impurities, surface restructuring is universally the source of high OER activity in these oxides and is dependent on the initial oxide composition. Oxide surface restructuring is induced by irreversible A-site cation dissolution, resulting in in situ formation of a TM oxyhydroxide shell on top of the parent oxide core that serves as the active surface for OER. The rate of surface restructuring is found to depend on (i) composition of A-site cations, with alkaline-earth-metal cations dominating lanthanide cation dissolution, (ii) oxide crystal phase, with n = 1 A2BO4 oxides exhibiting higher rates of A-site dissolution in comparison to n = ∞ ABO3 perovskites, (iii) lattice strain in the oxide induced by mixed rare-earth- and alkaline-earth-metal cations in the A-site, and (iv) oxide reducibility. Among the in situ generated 3d TM oxyhydroxide structures from A n+1B n O3n+1 oxides, Co-based structures are characterized by superior OER activity and stability, even in comparison to as-synthesized Co-oxyhydroxide, pointing to the generation of high active surface area structures through oxide restructuring. These insights are critical toward the development of revised design criteria to include surface dynamics for effectively describing the OER activity of nonstoichiometric mixed-metal oxides.
Collapse
Affiliation(s)
- Samji Samira
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Jiyun Hong
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - John Carl A. Camayang
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Kai Sun
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam S. Hoffman
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R. Bare
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eranda Nikolla
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
Pittkowski RK, Abbott DF, Nebel R, Divanis S, Fabbri E, Castelli IE, Schmidt TJ, Rossmeisl J, Krtil P. Synergistic effects in oxygen evolution activity of mixed iridium-ruthenium pyrochlores. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Gu XK, Camayang JCA, Samira S, Nikolla E. Oxygen evolution electrocatalysis using mixed metal oxides under acidic conditions: Challenges and opportunities. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Shi Z, Wang X, Ge J, Liu C, Xing W. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. NANOSCALE 2020; 12:13249-13275. [PMID: 32568352 DOI: 10.1039/d0nr02410d] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxygen evolution reaction (OER), as the anodic reaction of water electrolysis (WE), suffers greatly from low reaction kinetics and thereby hampers the large-scale application of WE. Seeking active, stable, and cost-effective OER catalysts in acidic media is therefore of great significance. In this perspective, studying the reaction mechanism and exploiting advanced anode catalysts are of equal importance, where the former provides guidance for material structural engineering towards a better catalytic activity. In this review, we first summarize the currently proposed OER catalytic mechanisms, i.e., the adsorbate evolution mechanism (AEM) and lattice oxygen evolution reaction (LOER). Subsequently, we critically review several acidic OER electrocatalysts reported recently, with focus on structure-performance correlation. Finally, a few suggestions on exploring future OER catalysts are proposed.
Collapse
Affiliation(s)
- Zhaoping Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | |
Collapse
|
7
|
The influence of Ir content in (Ni0.4Co0.6)1-xIrx-oxide anodes on their electrocatalytic activity in oxygen evolution by acidic and alkaline water electrolysis. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Preparation and characterization of electrodeposited Ni-Ru alloys: morphological and catalytic study. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04374-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Nickel-ruthenium alloys with various compositions have been deposited by electrodeposition for the first time. Cyclic voltammetry and linear stripping voltammetry measurements show that codeposition of nickel with ruthenium is possible below the potential value of nickel reduction. High-quality alloys containing nickel and ruthenium can be plated at cathodic potentials ranging from − 0.5 to − 1.0 V vs SCE. Deposited coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The diffractograms obtained show that an increase of nickel concentration in alloy will lead to a change in the phase composition and formation of NiRu (100) and (101) phases which is observed to be 78 mas.% Ni. SEM studies confirm the surface homogeneity and presence of small, regular grains. AFM observation allows the estimation of the real surface area of obtained alloys which increase with more negative electrodeposition potentials. Ni-Ru alloys were found to be highly electroactive in the water splitting process, which can be connected with the presence of the NiRu phase and a well-developed electroactive area.
Collapse
|
9
|
Wei C, Rao RR, Peng J, Huang B, Stephens IEL, Risch M, Xu ZJ, Shao-Horn Y. Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806296. [PMID: 30656754 DOI: 10.1002/adma.201806296] [Citation(s) in RCA: 441] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/09/2018] [Indexed: 05/25/2023]
Abstract
Electrochemical energy storage by making H2 an energy carrier from water splitting relies on four elementary reactions, i.e., the hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein, the central objective is to recommend systematic protocols for activity measurements of these four reactions and benchmark activities for comparison, which is critical to facilitate the research and development of catalysts with high activity and stability. Details for the electrochemical cell setup, measurements, and data analysis used to quantify the kinetics of the HER, HOR, OER, and ORR in acidic and basic solutions are provided, and examples of state-of-the-art specific and mass activity of catalysts to date are given. First, the experimental setup is discussed to provide common guidelines for these reactions, including the cell design, reference electrode selection, counter electrode concerns, and working electrode preparation. Second, experimental protocols, including data collection and processing such as ohmic- and background-correction and catalyst surface area estimation, and practice for testing and comparing different classes of catalysts are recommended. Lastly, the specific and mass activity activities of some state-of-the-art catalysts are benchmarked to facilitate the comparison of catalyst activity for these four reactions across different laboratories.
Collapse
Affiliation(s)
- Chao Wei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE way, Singapore, 138602, Singapore
- Solar Fuels Laboratory, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @ Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Reshma R Rao
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiayu Peng
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Botao Huang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ifan E L Stephens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Marcel Risch
- Institute of Materials Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE way, Singapore, 138602, Singapore
- Solar Fuels Laboratory, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @ Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Techno-logical Enterprise (CREATE), 138602, Singapore
| | - Yang Shao-Horn
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
Hayashi T, Bonnet-Mercier N, Yamaguchi A, Suetsugu K, Nakamura R. Electrochemical characterization of manganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190122. [PMID: 31218053 PMCID: PMC6549974 DOI: 10.1098/rsos.190122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/24/2019] [Indexed: 05/25/2023]
Abstract
The performance of four polymorphs of manganese (Mn) dioxides as the catalyst for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolysers was examined. The comparison of the activity between Mn oxides/carbon (Mn/C), iridium oxide/carbon (Ir/C) and platinum/carbon (Pt/C) under the same condition in PEM electrolysers showed that the γ-MnO2/C exhibited a voltage efficiency for water electrolysis comparable to the case with Pt/C, while lower than the case with the benchmark Ir/C OER catalyst. The rapid decrease in the voltage efficiency was observed for a PEM electrolyser with the Mn/C, as indicated by the voltage shift from 1.7 to 1.9 V under the galvanostatic condition. The rapid deactivation was also observed when Pt/C was used, indicating that the instability of PEM electrolysis with Mn/C is probably due to the oxidative decomposition of carbon supports. The OER activity of the four types of Mn oxides was also evaluated at acidic pH in a three-electrode system. It was found that the OER activity trends of the Mn oxides evaluated in an acidic aqueous electrolyte were distinct from those in PEM electrolysers, demonstrating the importance of the evaluation of OER catalysts in a real device condition for future development of noble-metal-free PEM electrolysers.
Collapse
Affiliation(s)
- Toru Hayashi
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nadège Bonnet-Mercier
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akira Yamaguchi
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Ryuhei Nakamura
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-0033, Japan
| |
Collapse
|
11
|
Zhou L, Shinde A, Montoya JH, Singh A, Gul S, Yano J, Ye Y, Crumlin EJ, Richter MH, Cooper JK, Stein HS, Haber JA, Persson KA, Gregoire JM. Rutile Alloys in the Mn–Sb–O System Stabilize Mn3+ To Enable Oxygen Evolution in Strong Acid. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02689] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lan Zhou
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Aniketa Shinde
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Joseph H. Montoya
- Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Arunima Singh
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yifan Ye
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Ethan J. Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Matthias H. Richter
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jason K. Cooper
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Helge S. Stein
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Joel A. Haber
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Kristin A. Persson
- Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - John M. Gregoire
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Affiliation(s)
- Emiliana Fabbri
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Thomas J. Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Beitollahi H, Yoonesfar R. Sensitive detection of sulfasalazine at a carbon paste electrode modified with NiO/CNT nanocomposite and ionic liquid in pharmaceutical and biological samples. INORG NANO-MET CHEM 2017. [DOI: 10.1080/24701556.2017.1357577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Roghayeh Yoonesfar
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
14
|
Yu A, Lee C, Kim MH, Lee Y. Nanotubular Iridium-Cobalt Mixed Oxide Crystalline Architectures Inherited from Cobalt Oxide for Highly Efficient Oxygen Evolution Reaction Catalysis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35057-35066. [PMID: 28920424 DOI: 10.1021/acsami.7b12247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we report the unique transformation of one-dimensional tubular mixed oxide nanocomposites of iridium (Ir) and cobalt (Co) denoted as IrxCo1-xOy, where x is the relative Ir atomic content to the overall metal content. The formation of a variety of IrxCo1-xOy (0 ≤ x ≤ 1) crystalline tubular nanocomposites was readily achieved by electrospinning and subsequent calcination process. Structural characterization clearly confirmed that IrxCo1-xOy polycrystalline nanocomposites had a tubular morphology consisting of Ir/IrO2 and Co3O4, where Ir, Co, and O were homogeneously distributed throughout the entire nanostructures. The facile formation of IrxCo1-xOy nanotubes was mainly ascribed to the inclination of Co3O4 to form the nanotubes during the calcination process, which could play a critical role in providing a template of tubular structure and facilitating the formation of IrO2 by being incorporated with Ir precursors. Furthermore, the electroactivity of obtained IrxCo1-xOy nanotubes was characterized for oxygen evolution reaction (OER) with rotating disk electrode voltammetry in 1 M NaOH aqueous solution. Among diverse IrxCo1-xOy, Ir0.46Co0.54Oy nanotubes showed the best OER activity (the least-positive onset potential, greatest current density, and low Tafel slope), which was even better than that of commercial Ir/C. The Ir0.46Co0.54Oy nanotubes also exhibited a high stability in alkaline electrolyte. Expensive Ir mixed with cheap Co at an optimum ratio showed a greater OER catalytic activity than pure Ir oxide, one of the most efficient OER catalysts.
Collapse
Affiliation(s)
- Areum Yu
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Chongmok Lee
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Myung Hwa Kim
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Youngmi Lee
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| |
Collapse
|
15
|
Spöri C, Kwan JTH, Bonakdarpour A, Wilkinson DP, Strasser P. Stabilitätsanforderungen von Elektrokatalysatoren für die Sauerstoffentwicklung: der Weg zu einem grundlegenden Verständnis und zur Minimierung der Katalysatordegradation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608601] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Camillo Spöri
- The Electrochemical Energy, Catalysis and Materials, Science Laboratory, Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Jason Tai Hong Kwan
- Department of Chemical and Biological Engineering; University of British Columbia; 2360 East Mall Vancouver B.C V6T 1Z3 Kanada
| | - Arman Bonakdarpour
- Department of Chemical and Biological Engineering; University of British Columbia; 2360 East Mall Vancouver B.C V6T 1Z3 Kanada
| | - David P. Wilkinson
- Department of Chemical and Biological Engineering; University of British Columbia; 2360 East Mall Vancouver B.C V6T 1Z3 Kanada
| | - Peter Strasser
- The Electrochemical Energy, Catalysis and Materials, Science Laboratory, Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 124 10623 Berlin Deutschland
- Ertl Center for Electrochemistry and Catalysis; Gwangju Institute of Science and Technology; Gwangju 500-712 Südkorea
| |
Collapse
|
16
|
Spöri C, Kwan JTH, Bonakdarpour A, Wilkinson DP, Strasser P. The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation. Angew Chem Int Ed Engl 2017; 56:5994-6021. [PMID: 27805788 DOI: 10.1002/anie.201608601] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 11/09/2022]
Abstract
This Review addresses the technical challenges, scientific basis, recent progress, and outlook with respect to the stability and degradation of catalysts for the oxygen evolution reaction (OER) operating at electrolyzer anodes in acidic environments with an emphasis on ion exchange membrane applications. First, the term "catalyst stability" is clarified, as well as current performance targets, major catalyst degradation mechanisms, and their mitigation strategies. Suitable in situ experimental methods are then evaluated to give insight into catalyst degradation and possible pathways to tune OER catalyst stability. Finally, the importance of identifying universal figures of merit for stability is highlighted, leading to a comprehensive accelerated lifetime test that could yield comparable performance data across different laboratories and catalyst types. The aim of this Review is to help disseminate and stress the important relationships between structure, composition, and stability of OER catalysts under different operating conditions.
Collapse
Affiliation(s)
- Camillo Spöri
- The Electrochemical Energy, Catalysis and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Jason Tai Hong Kwan
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C, V6T 1Z3, Canada
| | - Arman Bonakdarpour
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C, V6T 1Z3, Canada
| | - David P Wilkinson
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C, V6T 1Z3, Canada
| | - Peter Strasser
- The Electrochemical Energy, Catalysis and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany.,Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology, Gwangju, 500-712, South Korea
| |
Collapse
|
17
|
Frydendal R, Seitz LC, Sokaras D, Weng TC, Nordlund D, Chorkendorff I, Stephens IE, Jaramillo TF. Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Xu S, Liu Y, Tong J, Hu W, Xia Q. Iridium–nickel composite oxide catalysts for oxygen evolution reaction in acidic water electrolysis. RUSS J ELECTROCHEM+ 2016. [DOI: 10.1134/s1023193516110124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Fine-tuning the activity of oxygen evolution catalysts: The effect of oxidation pre-treatment on size-selected Ru nanoparticles. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Karlsson RKB, Cornell A. Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes. Chem Rev 2016; 116:2982-3028. [PMID: 26879761 DOI: 10.1021/acs.chemrev.5b00389] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlorine gas and sodium chlorate are two base chemicals produced through electrolysis of sodium chloride brine which find uses in many areas of industrial chemistry. Although the industrial production of these chemicals started over 100 years ago, there are still factors that limit the energy efficiencies of the processes. This review focuses on the unwanted production of oxygen gas, which decreases the charge yield by up to 5%. Understanding the factors that control the rate of oxygen production requires understanding of both chemical reactions occurring in the electrolyte, as well as surface reactions occurring on the anodes. The dominant anode material used in chlorate and chlor-alkali production is the dimensionally stable anode (DSA), Ti coated by a mixed oxide of RuO2 and TiO2. Although the selectivity for chlorine evolution on DSA is high, the fundamental reasons for this high selectivity are just now becoming elucidated. This review summarizes the research, since the early 1900s until today, concerning the selectivity between chlorine and oxygen evolution in chlorate and chlor-alkali production. It covers experimental as well as theoretical studies and highlights the relationships between process conditions, electrolyte composition, the material properties of the anode, and the selectivity for oxygen formation.
Collapse
Affiliation(s)
- Rasmus K B Karlsson
- Applied Electrochemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | - Ann Cornell
- Applied Electrochemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| |
Collapse
|
21
|
Reier T, Pawolek Z, Cherevko S, Bruns M, Jones T, Teschner D, Selve S, Bergmann A, Nong HN, Schlögl R, Mayrhofer KJJ, Strasser P. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER). J Am Chem Soc 2015; 137:13031-40. [DOI: 10.1021/jacs.5b07788] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tobias Reier
- Department
of Chemistry, Chemical and Materials Engineering Division, The Electrochemical
Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Zarina Pawolek
- Department
of Chemistry, Chemical and Materials Engineering Division, The Electrochemical
Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Serhiy Cherevko
- Department
of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Michael Bruns
- Institute
for Applied Materials and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Travis Jones
- Department
of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Detre Teschner
- Department
of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Sören Selve
- Zentraleinrichtung
Elektronenmikroskopie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Arno Bergmann
- Department
of Chemistry, Chemical and Materials Engineering Division, The Electrochemical
Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Hong Nhan Nong
- Department
of Chemistry, Chemical and Materials Engineering Division, The Electrochemical
Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Robert Schlögl
- Department
of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Karl J. J. Mayrhofer
- Department
of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Peter Strasser
- Department
of Chemistry, Chemical and Materials Engineering Division, The Electrochemical
Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
22
|
Paoli EA, Masini F, Frydendal R, Deiana D, Schlaup C, Malizia M, Hansen TW, Horch S, Stephens IEL, Chorkendorff I. Oxygen evolution on well-characterized mass-selected Ru and RuO 2 nanoparticles. Chem Sci 2015; 6:190-196. [PMID: 28553467 PMCID: PMC5424673 DOI: 10.1039/c4sc02685c] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 01/30/2023] Open
Abstract
Oxygen evolution was investigated on model, mass-selected RuO2 nanoparticles in acid, prepared by magnetron sputtering. Our investigations include electrochemical measurements, electron microscopy, scanning tunneling microscopy and X-ray photoelectron spectroscopy. We show that the stability and activity of nanoparticulate RuO2 is highly sensitive to its surface pretreatment. At 0.25 V overpotential, the catalysts show a mass activity of up to 0.6 A mg-1 and a turnover frequency of 0.65 s-1, one order of magnitude higher than the current state-of-the-art.
Collapse
Affiliation(s)
- Elisa A Paoli
- Center for Individual Nanoparticle Functionality (CINF) , Department of Physics , Kgs. Lyngby DK-2800 , Denmark .
| | - Federico Masini
- Center for Individual Nanoparticle Functionality (CINF) , Department of Physics , Kgs. Lyngby DK-2800 , Denmark .
| | - Rasmus Frydendal
- Center for Individual Nanoparticle Functionality (CINF) , Department of Physics , Kgs. Lyngby DK-2800 , Denmark .
| | - Davide Deiana
- Center for Electron Nanoscopy (CEN) , Kgs. Lyngby DK-2800 , Denmark
| | - Christian Schlaup
- Center for Individual Nanoparticle Functionality (CINF) , Department of Physics , Kgs. Lyngby DK-2800 , Denmark .
| | - Mauro Malizia
- Center for Individual Nanoparticle Functionality (CINF) , Department of Physics , Kgs. Lyngby DK-2800 , Denmark .
| | - Thomas W Hansen
- Center for Electron Nanoscopy (CEN) , Kgs. Lyngby DK-2800 , Denmark
| | - Sebastian Horch
- Center for Individual Nanoparticle Functionality (CINF) , Department of Physics , Kgs. Lyngby DK-2800 , Denmark .
| | - Ifan E L Stephens
- Center for Individual Nanoparticle Functionality (CINF) , Department of Physics , Kgs. Lyngby DK-2800 , Denmark .
| | - Ib Chorkendorff
- Center for Individual Nanoparticle Functionality (CINF) , Department of Physics , Kgs. Lyngby DK-2800 , Denmark .
| |
Collapse
|
23
|
Fang YH, Liu ZP. Tafel Kinetics of Electrocatalytic Reactions: From Experiment to First-Principles. ACS Catal 2014. [DOI: 10.1021/cs501312v] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ya-Hui Fang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Department
of Chemistry, Key Laboratory of Computational Physical Science (Ministry
of Education), Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Department
of Chemistry, Key Laboratory of Computational Physical Science (Ministry
of Education), Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Enhancing Activity for the Oxygen Evolution Reaction: The Beneficial Interaction of Gold with Manganese and Cobalt Oxides. ChemCatChem 2014. [DOI: 10.1002/cctc.201402756] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I. Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses. ChemElectroChem 2014. [DOI: 10.1002/celc.201402262] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ. Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angew Chem Int Ed Engl 2013; 53:102-21. [DOI: 10.1002/anie.201306588] [Citation(s) in RCA: 1039] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Indexed: 11/09/2022]
|
27
|
Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ. Die Elektrochemie des Sauerstoffs als Meilenstein für eine nachhaltige Energieumwandlung. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306588] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Petrykin V, Macounová K, Okube M, Mukerjee S, Krtil P. Local structure of Co doped RuO2 nanocrystalline electrocatalytic materials for chlorine and oxygen evolution. Catal Today 2013. [DOI: 10.1016/j.cattod.2012.03.075] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Enhanced electrolytic generation of oxygen gas at binary nickel oxide–cobalt oxide nanoparticle-modified electrodes. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1938-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Chen D, Fang YH, Liu ZP. Searching for active binary rutile oxide catalyst for water splitting from first principles. Phys Chem Chem Phys 2012; 14:16612-7. [PMID: 22941355 DOI: 10.1039/c2cp42149f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water electrolysis is an important route to large-scale hydrogen production using renewable energy, in which the oxygen evolution reaction (OER: 2H(2)O → O(2) + 4H(+) + 4e(-)) causes the largest energy loss in traditional electrocatalysts involving Ru-Ir mixed oxides. Following our previous mechanistic studies on the OER on RuO(2)(110) (J. Am. Chem. Soc. 2010, 132, 18214), this work aims to provide further insight into the key parameters relevant to the activity of OER catalysts by investigating a group of rutile-type binary metal oxides, including RuNiO(2), RuCoO(2), RuRhO(2), RuIrO(2) and OsIrO(2). Two key aspects are focused on, namely the surface O coverage at the relevant potential conditions and the kinetics of H(2)O activation on the O-covered surfaces. The O coverage for all the oxides investigated here is found to be 1 ML at the concerned potential (1.23 V) with all the exposed metal cations being covered by terminal O atoms. The calculated free energy barrier for the H(2)O dissociation on the O covered surfaces varies significantly on different surfaces. The highest OER activity occurs at RuCoO(2) and RuNiO(2) oxides with a predicted activity about 500 times higher than pure RuO(2). On these oxides, the surface bridging O near the terminal O atom has a high activity for accepting the H during H(2)O splitting. It is concluded that while the differential adsorption energy of the terminal O atom influences the OER activity to the largest extent, the OER activity can still be tuned by modifying the electronic structure of surface bridging O.
Collapse
Affiliation(s)
- Dong Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
31
|
Over H. Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chem Rev 2012; 112:3356-426. [DOI: 10.1021/cr200247n] [Citation(s) in RCA: 509] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Valdés Á, Brillet J, Grätzel M, Gudmundsdóttir H, Hansen HA, Jónsson H, Klüpfel P, Kroes GJ, Le Formal F, Man IC, Martins RS, Nørskov JK, Rossmeisl J, Sivula K, Vojvodic A, Zäch M. Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. Phys Chem Chem Phys 2012; 14:49-70. [DOI: 10.1039/c1cp23212f] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Man IC, Su H, Calle‐Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem 2011. [DOI: 10.1002/cctc.201000397] [Citation(s) in RCA: 2470] [Impact Index Per Article: 176.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Isabela C. Man
- Center for Atomic‐Scale Materials Design, Department of Physics, Technical University of Denmark, DK‐2800 Kgs. Lyngby (Denmark), Fax: (+45) 4593‐2399
| | - Hai‐Yan Su
- Center for Atomic‐Scale Materials Design, Department of Physics, Technical University of Denmark, DK‐2800 Kgs. Lyngby (Denmark), Fax: (+45) 4593‐2399
| | - Federico Calle‐Vallejo
- Center for Atomic‐Scale Materials Design, Department of Physics, Technical University of Denmark, DK‐2800 Kgs. Lyngby (Denmark), Fax: (+45) 4593‐2399
| | - Heine A. Hansen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Ilinois 60208 (USA)
| | - José I. Martínez
- Dpto. de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E‐28049 Madrid (Spain)
| | - Nilay G. Inoglu
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (USA)
| | - John Kitchin
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (USA)
| | | | - Jens K. Nørskov
- SLAC National Accelerator Laboratory, Stanford, California, 94025‐7015 (USA), Department of Chemical Engineering, Stanford, California, 94305‐5025 (USA)
| | - Jan Rossmeisl
- Center for Atomic‐Scale Materials Design, Department of Physics, Technical University of Denmark, DK‐2800 Kgs. Lyngby (Denmark), Fax: (+45) 4593‐2399
| |
Collapse
|
34
|
Fang YH, Liu ZP. Mechanism and Tafel Lines of Electro-Oxidation of Water to Oxygen on RuO2(110). J Am Chem Soc 2010; 132:18214-22. [DOI: 10.1021/ja1069272] [Citation(s) in RCA: 424] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ya-Hui Fang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Key Laboratory of Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhi-Pan Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Key Laboratory of Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|