1
|
Gopika MG, Saraswathyamma B, Govindasamy M. CuSeO 3@f-CNFs: A superoxide nanozyme for the selective nanomolar determination of the key cardiovascular biomarker, Glutathione. Talanta 2025; 287:127621. [PMID: 39879799 DOI: 10.1016/j.talanta.2025.127621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO3) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH). The choice of this material is due to the well-known ability of GSH to form a complex with copper. When a Cu ion enters a healthy cell, it quickly forms a complex with GSH, which then moves to another storage molecule: either a metalloprotein or a chelator. CNF was functionalized using acid to generate functionalized-CNF to enhance biocompatibility and boost conductivity. This was done to provide many active sites for effective integration of CuSeO3 in the nanocomposite preparation. The glassy carbon electrode (GCE) surface was enhanced by introducing CuSeO3@f-CNF nanocomposite, resulting in a significant increase in the current response for GSH in comparison to prior research. CuSeO3@f-CNF/GCE sensor has shown excellent sensing properties, like enhanced stability, selectivity, sensitivity, and reproducibility, for detecting and quantifying GSH. The sensor demonstrated an extensive linear detection range from 62.5 nM to 7785.0 μM, signifying one of the most comprehensive ranges documented to date. It attained a remarkable detection limit (LOD) of 17.6 nM. The sensor's performance was further tested by analyzing genuine biological fluid samples. The nanozyme-modified GCE demonstrated exceptional electrocatalytic efficiency for GSH detection, making it extremely appropriate for real-time monitoring applications.
Collapse
Affiliation(s)
- M G Gopika
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala, 690525, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala, 690525, India.
| | - Mani Govindasamy
- International Ph. D Program in Innovative Technology of Biomedical Engineering & Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
2
|
Akyil D, Yeniyol E. Green synthesized zinc oxide nanoparticle with Mentha pulegium L. extracts in A549 cell line, characterization, biological activities, Genotoxicity in comet test and SMART assay in Drosophila melanogaster. Toxicol Res (Camb) 2025; 14:tfaf046. [PMID: 40190380 PMCID: PMC11969665 DOI: 10.1093/toxres/tfaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/30/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
In this study, zinc oxide nanoparticles (ZnO NPs) were obtained by green synthesis method using extracts prepared from Mentha pulegium L. species in order to investigate the cytotoxic, genotoxic and antimicrobial activities of nanoparticles. For the characterization of these nanoparticles, UV-Vis spectrophotometer, FT-IR, XRD and SEM analysis methods were used. For cell culture studies were carried out to determine the cytotoxic and genotoxic activities of ZnO NPs obtained by green synthesis with A549 cell line, which is a lung cancer cell. In the genotoxicity results determined by the Comet method, the highest DNA damage was seen at a concentration of 3.75 mg/mL. The genotoxic activity of different concentrations (0.1, 1, 5, 10 mM) of ZNO NPs were evaluated with SMART assay on Drosophila melanogaster. According to results ZNO NPs applications were found to be similar to the control group in all doses. On the other hand, in order to determine the antimicrobial activity, Escherichia coli (ATTC 25922), Staphylococcus aureus (ATTC 29213), Candida albicans (ATTC 90028), Klebsiella pneumoniae (ATTC 700603) and Salmonella enteritidis (ATTC 13076) microorganisms were cultured and disc diffusion test method was applied. In the disc diffusion test, dose application was made in the range of 15.6-500 mg/mL concentrations and it was observed that inhibition zone was formed at all concentrations.
Collapse
Affiliation(s)
- Dilek Akyil
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Edanur Yeniyol
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
3
|
Shojaei M, Taher MA, Karimi-Maleh H. Cu-BTC MOF/ionic liquid nanocomposite as novel catalyst to electrochemical monitoring of digoxin in pharmaceutical and environmental samples. CHEMOSPHERE 2023; 339:139722. [PMID: 37562507 DOI: 10.1016/j.chemosphere.2023.139722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
There is no effective environmental treatment strategy that does not include monitoring for pharmaceutical compounds in environmental and biological fluids. The widespread presence of pharmaceutical-based pollutants in water sources is a significant public health concern. The treatment process relies heavily on maintaining a stable digoxin concentration in bodily fluids. Finding the correct dose for this medication appears to be crucial. In this research, an easy and high sensibility electrochemical sensor was developed to determine digoxin based on a paste electrode (CPE) that was modified with Cu-BTC MOF and ion liquid ((IL); 1-Methyl-3-Butyl-imidazolinium bromide in this case) using voltammetric methods in 0.1 M phosphate buffer solution (PBS) at pH 5.0. The sensor's selectivity was significantly increased by using Cu-BTC MOF and IL to detect digoxin. The characteristics of the electrode modifiers were evaluated by SEM, XRD and EDS techniques. The LDR was found to be 0.1-40 μM and the LOD of 0.08 μM, respectively.
Collapse
Affiliation(s)
- Moein Shojaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | | | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, PR China; School of Resources and Environment, University of Electronic Science and Technology of China, PO Box 611731, Xiyuan Ave, Chengdu, PR China; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
4
|
Isik Z, Bouchareb R, Arslan H, Özdemir S, Gonca S, Dizge N, Balakrishnan D, Prasad SVS. Green synthesis of iron oxide nanoparticles derived from water and methanol extract of Centaurea solstitialis leaves and tested for antimicrobial activity and dye decolorization capability. ENVIRONMENTAL RESEARCH 2023; 219:115072. [PMID: 36529334 DOI: 10.1016/j.envres.2022.115072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In this research, nanoparticles derived from water extract of Centaurea solstitialis leaves were used as green adsorbent in Fenton reaction for Reactive Red 180 (RR180) and Basic Red 18 (BR18) dyes removal. At optimum operating conditions, nanoparticles proved high performance in the tested dyes removal with more than 98% of removal elimination. The free-radical scavenging, DNA nuclease, biofilm inhibition capability, antimicrobial activity, microbial cell viability, and antimicrobial photodynamic therapy activities of the iron oxide nanoparticles (FeO-NPs) derived from water and methanol extract of plant were investigated. Each of the following analysis: SEM-EDX, XRD, and Zeta potential was implemented for the prepared NPs characterization and to describe their morphology, composition and its behavior in an aqueous solution, respectively. It was found that, the DPPH scavenging activities increased when the amount of nanoparticles increased. The highest radical scavenging activity achieved with FeO-NPs derived from water extract of plant as 97.41% at 200 mg/L. The new green synthesized FeO-NPs demonstrated good DNA cleavage activity. FeO-NPs showed good in vitro antimicrobial activities against human pathogens. The results showed that both synthesized FeO-NPs displayed 100% antimicrobial photodynamic therapy activity after LED irradiation. The water extract of FeO-NPs and methanol extract of FeO-NPs also showed a significant biofilm inhibition.
Collapse
Affiliation(s)
- Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Raouf Bouchareb
- Department of Environmental Engineering, Process Engineering Faculty, Saleh Boubnider University, Constantine, 25000, Algeria
| | - Hudaverdi Arslan
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, 33343, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, 33343, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - Sista Venkata Surya Prasad
- Department of Electronics and Communication Engineering, MLR Institute of Technology, Hyderabad, 500043, India.
| |
Collapse
|
5
|
Beitollahi H, Garkani Nejad F, Dourandish Z, Tajik S. A novel voltammetric amaranth sensor based on screen printed electrode modified with polypyrrole nanotubes. ENVIRONMENTAL RESEARCH 2022; 214:113725. [PMID: 35732202 DOI: 10.1016/j.envres.2022.113725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/01/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Azo dyes are the most used type of dye in the textile industry. Some of these dyes have the potential to be extremely toxic to both human health and the environment. The purpose of this study was to develope an electrochemical sensor for detection of amaranth. The electrochemical sensor based on the modification of a screen-printed electrode via polypyrrole nanotubes (PPy NTs/SPE) for detection of amaranth was developed. The preparation of PPy NTs was performed through the pyrrole monomer oxidation with iron (III) chloride in exposure to methyl orange as structure-guiding agent. Findings exhibited an excellent electrocatalytic activity of as-fabricated sensor for amaranth detection. Our sensor under the optimized circumstances also had a broad linear dynamic range (between 0.03 μM and 290.0 μM) and a narrow limit of detection (0.01 μM) towards the amaranth detection. Moreover, the proposed sensor could practically and successfully determine the amaranth content present in the real food specimens, with acceptable recovery rates.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Karaman C, Karaman O, Show PL, Orooji Y, Karimi-Maleh H. Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: Equilibrium, kinetics, thermodynamics and artificial neural network modeling. ENVIRONMENTAL RESEARCH 2022; 207:112156. [PMID: 34599897 DOI: 10.1016/j.envres.2021.112156] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 05/17/2023]
Abstract
Herein, it is aimed to develop a high-performance monolithic adsorbent to be utilized in methyl orange (MO) adsorption. Therefore, amino-functionalized three-dimensional graphene networks (3D-GNf) fulfilling the requirements of reusability and high capacity have been fabricated via hydrothermal self-assembly approach followed by a double-crosslinking strategy. The potential utilization of 3D-GNf as an adsorbent for removal MO has been assessed using both batch-adsorption studies and an artificial neural network (ANN) approach. Graphene oxide sheets have been amino-functionalized and cross-linked, by ethylenediamine (EDA) during hydrothermal treatment, following the glutaraldehyde has used as a double-crosslinking agent to facilitate the crosslinking of architecture. The successful fabrication of 3D-GNf has been confirmed by field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR), Raman and X-ray photoelectron spectroscopy (XPS). Moreover, N2 adsorption/desorption isotherms have revealed the high specific surface area (1015 m2 g-1) with high pore volume (1.054 cm3 g-1) and hierarchical porous structure of 3D-GNf. The effect of initial concentration, contact time, and temperature on adsorption capacity have been thoroughly studied, and the kinetics, isotherms, and thermodynamics of MO adsorption have been modelled. The MO adsorption has been well defined by the pseudo-second-order kinetic model and Langmuir isotherm model with a monolayer adsorption capacity of 270.27 mg g-1 at 25 °C. The thermodynamic findings have revealed MO adsorption has occurred spontaneously with an endothermic process. The Levenberg-Marquardt backpropagation algorithm has been implemented to train the ANN model, which has used the activation functions of tansig and purelin functions at the hidden and output layers, respectively. An optimum ANN model with high-performance metrics (coefficient of determination, R2 = 0.9995; mean squared error, MSE = 0.0008) composed of three hidden layers with 5 neurons in each layer was constructed to forecast MO adsorption. The findings have shown that experimental results are consistent with ANN-based data, implying that the suggested ANN model may be used to forecast cationic dye adsorption.
Collapse
Affiliation(s)
- Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey.
| | - Onur Karaman
- Akdeniz University, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya, 07070, Turkey.
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
7
|
Gur T, Meydan I, Seckin H, Bekmezci M, Sen F. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. ENVIRONMENTAL RESEARCH 2022; 204:111897. [PMID: 34418450 DOI: 10.1016/j.envres.2021.111897] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 05/12/2023]
Abstract
In this study, we tried to enlighten the structure of zinc oxide nanoparticles (ZnO NPs) obtained from Thymbra Spicata L. plant by using green synthesis method in various ways. Some properties of zinc oxide nanoparticles were determined by using the characterization methods that scanning electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX), fouirer transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ultraviolet visible spectroscopy (UV-Vis) spectroscopy methods. The detected Zn nanoparticle sizes were determined to be between 6.5 nm and 7.5 nm. In addition to these studies, we investigated the antimicrobial effects of zinc oxide nanoparticles obtained by green synthesis against some pathogens. According to the results, it was seen that zinc oxide nanoparticles formed zones with a diameter of 16.3 mm, 10.25 mm, 13 mm and 10.2 mm, respectively, against Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25952, Pseudomonas aeruginosa ATCC 27853 bacteria and Candida albicans ATTC 90028 fungus, respectively. However, the radical quenching activity (DPPH) of the nanoparticles (Ts-ZnONP (79.67%)) was determined to be quite good compared to the positive control BHA. In addition, it is seen that the protective effect of ZnO NPs against DNA damage increases depending on the concentration. At a concentration of 100 mg/L, the DNA damage inhibitory effect was found to be maximum. In line with the comprehensive results, it was determined that the zinc oxide nanoparticles obtained with the green synthesis method have the potential of use in a wide variety of fields.
Collapse
Affiliation(s)
- Tuğba Gur
- Van Vocational School of Health Services, Van Yüzüncü Yil University, Zeve Campus, 65080, Van, Turkey.
| | - Ismet Meydan
- Van Vocational School of Health Services, Van Yüzüncü Yil University, Zeve Campus, 65080, Van, Turkey
| | - Hamdullah Seckin
- Van Vocational School of Health Services, Van Yüzüncü Yil University, Zeve Campus, 65080, Van, Turkey
| | - Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Evliya Çelebi Campus, 43100, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey.
| |
Collapse
|
8
|
KARAMAN O. Three-dimensional graphene network supported Nickel-Cobalt bimetallic alloy nanocatalyst for hydrogen production by hydrolysis of sodium borohydride and developing of an artificial neural network modeling to forecast hydrogen production rate. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Kaimal R, Senthilkumar P, Aljafari B, Anandan S. A nanosecond pulsed laser-ablated MWCNT-Au heterostructure: an innovative ultra-sensitive electrochemical sensing prototype for the identification of glutathione. Analyst 2022; 147:3894-3907. [DOI: 10.1039/d2an00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a scheme that aptly describes the reduction of gold nanoparticles’ crystalline size on the surface of MWCNTs in an aqueous phase to generate a LAMWCNT-Au heterostructure, employing an Nd:YAG laser (energy = 505 mJ and λ = 1064 nm) is developed.
Collapse
Affiliation(s)
- Reshma Kaimal
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India
| | - Periyathambi Senthilkumar
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, and Research Institute, TANUVAS, Tirunelveli 627358, India
| | - Belqasem Aljafari
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India
| |
Collapse
|
10
|
Mousazadeh F, Mohammadi SZ, Akbari S, Mofidinasab N, Aflatoonian MR, Shokooh-Saljooghi A. Recent Advantages of Mediator Based Chemically Modified Electrodes;
Powerful Approach in Electroanalytical Chemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999201224124347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modified electrodes have advanced from the initial studies aimed at understanding
electron transfer in films to applications in areas such as energy production and analytical
chemistry. This review emphasizes the major classes of modified electrodes with mediators
that are being explored for improving analytical methodology. Chemically modified electrodes
(CMEs) have been widely used to counter the problems of poor sensitivity and selectivity faced in
bare electrodes. We have briefly reviewed the organometallic and organic mediators that have been
extensively employed to engineer adapted electrode surfaces for the detection of different compounds.
Also, the characteristics of the materials that improve the electrocatalytic activity of the
modified surfaces are discussed.
Objective:
Improvement and promotion of pragmatic CMEs have generated a diversity of novel
and probable strong detection prospects for electroanalysis. While the capability of handling the
chemical nature of the electrode/solution interface accurately and creatively increases , it is predictable
that different mediators-based CMEs could be developed with electrocatalytic activity and
completely new applications be advanced.
Collapse
Affiliation(s)
| | | | - Sedighe Akbari
- Islamic Azad University, Shahrbabak Branch, Shahrbabak,Iran
| | | | - Mohammad Reza Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | | |
Collapse
|
11
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
12
|
A novel, sensitive and selective nanosensor based on graphene nanoribbon–cobalt ferrite nanocomposite and 1-methyl-3-butylimidazolium bromide for detection of vanillin in real food samples. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Hojjati-Najafabadi A, Salmanpour S, Sen F, Asrami PN, Mahdavian M, Khalilzadeh MA. A Tramadol Drug Electrochemical Sensor Amplified by Biosynthesized Au Nanoparticle Using Mentha aquatic Extract and Ionic Liquid. Top Catal 2021. [DOI: 10.1007/s11244-021-01498-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Boosting Effect of Nitrogen and Phosphorous Co-doped Three-Dimensional Graphene Architecture: Highly Selective Electrocatalysts for Carbon Dioxide Electroreduction to Formate. Top Catal 2021. [DOI: 10.1007/s11244-021-01500-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Kesavan G, Gopi PK, Chen SM, Vinothkumar V. Iron vanadate nanoparticles supported on boron nitride nanocomposite: Electrochemical detection of antipsychotic drug chlorpromazine. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.114982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Velasco-Medina C, Espinoza-Montero PJ, Montero-Jimenez M, Alvarado J, Jadán M, Carrera P, Fernandez L. Development and Evaluation of Copper Electrodes, Modified with Bimetallic Nanoparticles, to be Used as Sensors of Cysteine-Rich Peptides Synthesized by Tobacco Cells Exposed to Cytotoxic Levels of Cadmium. Molecules 2019; 24:E2200. [PMID: 31212797 PMCID: PMC6631066 DOI: 10.3390/molecules24122200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022] Open
Abstract
We report on two new electrochemical sensors which, coupled to differential pulse voltammetry, constitutes a useful tool for diagnosis of heavy metal pollution. The electrochemical sensors AgHgNf/Cu and the AgBiNf/Cu were obtained by deposition of bimetallic particles of AgHg or AgBi on copper electrodes covered with a Nafion (Nf) film, respectively. Micrographs of the electrode's surface showed evenly scattered bimetallic particles, with an approximate diameter of 150 nm, embedded in the Nafion (Nf) film. In order to test the electrodes, the hydrogen evolution signal according to the Brdička reaction was measured for the determination of cysteine-rich peptides (CRp) produced by plants. To check the accuracy of the electrodes, real samples of Nicotiana tabacum cells exposed to cytotoxic levels of cadmium were tested. The AgHgNf/Cu electrode produced detection limits (DLs) of 0.088 µmol L-1 for Cysteine and 0.139µmol L-1 for Glutathione, while for the AgBiNf/Cu electrode DLs were 0.41 µmol L-1 for cysteine and 0.244 µmol L-1 for glutathione. Thus, the new electrodes could be a useful analytical electrochemical system very convenient for fieldwork. The electrodes were capable of direct, accurate, and sensitive detection of synthesized peptides, despite the complex matrix where the Nicotiana tabacum cells were grown.
Collapse
Affiliation(s)
- Carlos Velasco-Medina
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, P.O.Box 17-01-2184, Quito, Ecuador.
- Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador.
| | - Patricio J Espinoza-Montero
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, P.O.Box 17-01-2184, Quito, Ecuador.
| | - Marjorie Montero-Jimenez
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, P.O.Box 17-01-2184, Quito, Ecuador.
| | - José Alvarado
- Departamento de Química, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela.
| | - Mónica Jadán
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Laboratorio de Cultivo de Tejidos Vegetales, Grupo BIOCEMP, Av. General Rumiñahui s/n, Sangolqui, P.O.Box 171-5-231B, Ecuador.
| | | | - Lenys Fernandez
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, P.O.Box 17-01-2184, Quito, Ecuador.
- Departamento de Química, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela.
| |
Collapse
|
17
|
Abstract
Introduction:Schizophrenia is seizures accompanied by severe psychotic symptoms, and a steady state of continuation in the form of periods of stagnation. Antipsychotics are now the basis of treatment for schizophrenia and there is no other molecule that is antipsychotic priority in treatment. Antipsychotics can be classified into two groups; dopamine receptor antagonists such as promazine, fluphenazine etc. and serotonin-dopamine antagonists including risperidone, olanzapine, ziprasidone, aripiprazole etc.Materials and Methods:Electrochemical methods have been used for the determination of antipsychotic agent just as used in the determination of many drug agents. Nearly all of the antipsychotics are electroactive and can be analyzed by electrochemical methods. Electroanalytical methods offer generally high sensitivity, are compatible with modern techniques, have low cost, low requirements, and compact design. Among the most commonly used types, there are cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and linear sweep voltammetry.Conclusion:The aim of this review is to evaluate the main line and the advantages and uses of electroanalytical methods that employed for the determination of antipsychotic medication agents used in schizophrenia. Moreover, applications of the methods to pharmaceutical analysis of Antipsychotics upto- date is also summarized in a table.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Duru Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Sakthivel R, Kubendhiran S, Chen SM. Functionalization of a carbon nanofiber with a tetrasulfonatophenyl ruthenium(II)porphine complex for real-time amperometric sensing of chlorpromazine. Mikrochim Acta 2019; 186:285. [PMID: 30989391 DOI: 10.1007/s00604-019-3384-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/29/2019] [Indexed: 02/04/2023]
Abstract
A carbon nanofiber functionalized with ruthenium(II)-tetrasulfonato phenyl porphine (CNF/Ru-TSPP) is shown to be viable sensor for amperometric determination of the antipsychotic drug chlorpromazine (CPZ). The hollow platelet structured Ru-TSPP combines with the hollow cylindrical tube-like structure of the CNF via π stacking interaction. The morphological and electro conductive properties of the electrode were characterized by spectrophotometric techniques. The CNF/Ru-TSPP modified electrode displays a large surface-to-volume ratio, good electron transport and good electrocatalytic activity. The amperometric sensor, typically operated at a potential 0.63 V (vs. Ag/AgCl) exhibits a linear response in the 0.6 nM to 1.1 mM CPZ concentration range, has a 0.2 nM detection limit, and a remarkably good electrochemical sensitivity (2.405 μA μM-1 cm-2). The sensor is selective, repeatable and reproducible. It was successfully applied to the determination of CPZ in spiked serum samples. Graphical abstract Schematic presentation of carbon nanofiber/ tetrasulfonatophenyl Ruthenium(II)porphine (CNF/Ru-TSPP) nanocomposite synthesis and application for the electrochemical determination of chlorpromazine (CPZ).
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, Republic of China
| | - Subbiramaniyan Kubendhiran
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, Republic of China.
| |
Collapse
|
19
|
Vinoth Kumar J, Karthik R, Chen SM, Kokulnathan T, Sakthinathan S, Muthuraj V, Chiu TW, Chen TW. Highly selective electrochemical detection of antipsychotic drug chlorpromazine in drug and human urine samples based on peas-like strontium molybdate as an electrocatalyst. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00743d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical detection of antipsychotic drug chlorpromazine based on peas-like strontium molybdate as an electrocatalyst.
Collapse
Affiliation(s)
| | - Raj Karthik
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Thangavelu Kokulnathan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering
- National Taipei University of Technology
- Taipei 106
- Taiwan, Republic of China
| | | | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering
- National Taipei University of Technology
- Taipei 106
- Taiwan, Republic of China
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
20
|
Ensafi AA, Rezaloo F, Rezaei B. Electrochemical Determination of Fenitrothion Organophosphorus Pesticide Using Polyzincon Modified-glassy Carbon Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ali Aasghar Ensafi
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Fatemeh Rezaloo
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Behzad Rezaei
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| |
Collapse
|
21
|
Ensafi AA, Gorgabi-Khorzoughi M, Rezaei B, Jafari-Asl M. Electrochemical behavior of polyoxometalates decorated on poly diallyl dimethyl ammonium chloride-MWCNTs: A highly selective electrochemical sensor for determination of guanine and adenine. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Vinoth V, Rozario TMD, Wu JJ, Anandan S, Ashokkumar M. Graphene Quantum Dots Anchored Gold Nanorods for Electrochemical Detection of Glutathione. ChemistrySelect 2017. [DOI: 10.1002/slct.201700845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Victor Vinoth
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry; National Institute of Technology; Tiruchirappalli- 620 015 India
| | - Tanya Maria D' Rozario
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry; National Institute of Technology; Tiruchirappalli- 620 015 India
| | - Jerry J Wu
- Department of Environmental Engineering and Science; Feng Chia University; Taichung 407 Taiwan
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry; National Institute of Technology; Tiruchirappalli- 620 015 India
- Department of Environmental Engineering and Science; Feng Chia University; Taichung 407 Taiwan
| | | |
Collapse
|
23
|
Salimi A, Amini N, Naderi K, Ghafuori H. Experimental and theoretical studies on electrocatalytic oxidation of arsenic (III) and iron (II) using chlorpromazine: Electrochemical and mechanistic study by digital simulation in liquid phase. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Electrocatalytic and new electrochemical properties of chloropromazine in to silicaNPs/chloropromazine/Nafion nanocomposite: Application to nitrite detection at low potential. Microchem J 2017. [DOI: 10.1016/j.microc.2016.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Rahman MM, Hussein MA, Abdel Salam M, Asiri AM. Fabrication of anl-glutathione sensor based on PEG-conjugated functionalized CNT nanocomposites: a real sample analysis. NEW J CHEM 2017. [DOI: 10.1039/c7nj01704a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three series of polyethylene glycol–carbon nanotube nanocomposites in the form of PEG/CNTa–e, PEG/f-CNT.Oxia–e, and PEG/CNT.C18a–ehave been fabricated using a dissolution stirring ultra-sonication method.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohamed Abdel Salam
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
26
|
A glutathione biosensor based on a glassy carbon electrode modified with CdO nanoparticle-decorated carbon nanotubes in a nafion matrix. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1987-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Resmi K, Haruna K, Mary YS, Panicker CY, Saleh TA, Al-Saadi AA, Van Alsenoy C. Conformational, NBO, NLO, HOMO-LUMO, NMR, electronic spectral study and molecular docking study of N,N-Dimethyl-3-(10H-phenothiazin-10-yl)-1-propanamine. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Ahmadzadeh S, Karimi F, Atar N, Sartori ER, Faghih-Mirzaei E, Afsharmanesh E. Synthesis of CdO nanoparticles using direct chemical precipitation method: Fabrication of novel voltammetric sensor for square wave voltammetry determination of chlorpromazine in pharmaceutical samples. INORG NANO-MET CHEM 2016. [DOI: 10.1080/15533174.2016.1186049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Saeid Ahmadzadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Necip Atar
- Department of Chemical Engineering, Pamukkale University, Denizli, Turkey
| | - Elen Romao Sartori
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Ehsan Faghih-Mirzaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman, University of Medical Sciences, Kerman, Iran
| | - Elahe Afsharmanesh
- Ibn Shahr Ashob Student Research Center, Education Administration, District 1, Sari, Iran
| |
Collapse
|
29
|
Santos ACF, Moura FA, Tanaka AA, Luz RCS, Damos FS, Kubota LT, Goulart MOF. Sensitive Electroanalytical Detection on GCE: the Case of Lipoic Acid and its Interaction with N
-acetylcysteine and Glutathione. ELECTROANAL 2016. [DOI: 10.1002/elan.201600205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Fabiana A. Moura
- Universidade Federal de Alagoas; Av. Lourival Melo Mota s/n, Maceió-AL 57072-970 Brazil
| | | | | | | | - Lauro T. Kubota
- Instituto de Química; UNICAMP; C. Postal 6154 13084-971 Campinas, SP Brazil
| | - Marilia O. F. Goulart
- Universidade Federal de Alagoas; Av. Lourival Melo Mota s/n, Maceió-AL 57072-970 Brazil
| |
Collapse
|
30
|
Arabali V, Ebrahimi M, Karimi-Maleh H. Highly sensitive determination of promazine in pharmaceutical and biological samples using a ZnO nanoparticle-modified ionic liquid carbon paste electrode. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Liu B, Wang M, Xiao B. Application of carbon nanotube–ionic liquid–epinephrine composite gel modified electrode as a sensor for glutathione. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
32
|
Abstract
Glutathione is an endogenous peptide with antioxidant and other metabolic functions. The nomenclature, formulae, elemental composition, and appearance and uses of the drug are included. The methods used for the synthesis and biosynthesis of glutathione are described. This profile contains the physical characteristics of the drug including: solubility, X-ray powder diffraction pattern, crystal structure, melting point, and differential scanning calorimetry. The spectral methods that were used for both the identification and analysis of glutathione include ultraviolet spectrum, vibrational spectrum, 1H and 13C nuclear magnetic resonance spectra, and mass spectrum. The profile also includes the compendial methods of analysis and the other methods of analysis that are reported in the literature. These other methods of e-analysis are: potentiometric, voltammetric, amperometric, spectrophotometric, specrtofluorometric, chemiluminescence, chromatographic and immunoassay methods. The stability of and several reviews on drug are also provided. More than 170 references are listed at the end this comprehensive profile on glutathione.
Collapse
|
33
|
Shabani-Nooshabadi M, Tahernejad-Javazmi F. Rapid and fast strategy for the determination of glutathione in the presence of vitamin B6in biological and pharmaceutical samples using a nanostructure based electrochemical sensor. RSC Adv 2015. [DOI: 10.1039/c5ra08433d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we describe the simultaneous determination of glutathione and vitamin B6in pharmaceutical and biological samples for the first time.
Collapse
|
34
|
Amini N, Shamsipur M, Gholivand MB. Electrocatalytic oxidation of sulfide and electrochemical behavior of chloropromazine based on organic–inorganic hybrid nanocomposite. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2014.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Karimi-Maleh H, Tahernejad-Javazmi F, Ensafi AA, Moradi R, Mallakpour S, Beitollahi H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens Bioelectron 2014; 60:1-7. [DOI: 10.1016/j.bios.2014.03.055] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/11/2014] [Accepted: 03/26/2014] [Indexed: 11/16/2022]
|
36
|
Ensafi AA, Monsef M, Rezaei B, Karimi-Maleh H. Nanostructure-based electrochemical sensor for determination of glutathione in hemolysed erythrocytes and urine. JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1134/s1061934814090068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Karimi-Maleh H, Tahernejad-Javazmi F, Gupta VK, Ahmar H, Asadi MH. A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.03.049] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
In situ monitoring of chlorpromazine radical intermediate by spectroelectrochemistry. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Soliman RM, Hadad GM, Abdel Salam RA, Mesbah MK. QUANTITATIVE DETERMINATION OF GLUTATHIONE IN PRESENCE OF ITS DEGRADANT IN A PHARMACEUTICAL PREPARATION USING HPLC-DAD AND IDENTIFICATION BY LC-ESI-MS. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.749497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rabab M. Soliman
- a Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Umm Al-Qura University , Makkah , Saudi Arabia
- b Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Sinai University , El Arish , North Sinai , Egypt
| | - Ghada M. Hadad
- c Department of Pharmaceutical Analytical Chemistry , Faculty of Pharmacy, Suez Canal University , Ismailia , Egypt
| | - Randa A. Abdel Salam
- c Department of Pharmaceutical Analytical Chemistry , Faculty of Pharmacy, Suez Canal University , Ismailia , Egypt
| | - Mostafa K. Mesbah
- d Department of Pharmacognosy , Faculty of Pharmacy, Suez Canal University , Ismailia , Egypt
| |
Collapse
|
40
|
Multiwall carbon nanotube paste electrode with 3,4-dihydroxy-cinnamic acid as mediator for the determination of glutathione in pharmaceutical and urine samples. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.1016/s1872-2067(12)60661-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Moradi R, Sebt SA, Karimi-Maleh H, Sadeghi R, Karimi F, Bahari A, Arabi H. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Phys Chem Chem Phys 2013; 15:5888-97. [PMID: 23486920 DOI: 10.1039/c3cp00033h] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report the synthesis and application of a FePt/CNTs nanocomposite as a highly sensitive sensor and novel amide ligand (9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4-ethylbenzene-1,2-diol as a mediator for the determination of glutathione (GSH), nicotinamide adenine dinucleotide (NADH) and tryptophan (Trp). The synthesized materials were characterized with different methods such as NMR, IR spectroscopy, TEM, XRD, FESEM, cyclic voltammetry, electrochemical impedance spectroscopy and square wave voltammetry (SWV). The modified electrode exhibited a potent and persistent electron mediating behavior followed by well-separated oxidation peaks of GSH, NADH and Trp. The peak currents were linearly dependent on GSH, NADH and Trp concentrations in the range of 0.08-220, 1.0-400 and 5.0-500 μmol L(-1), with detection limits of 0.05, 0.8 and 1.0 μmol L(-1), respectively. The modified electrode was used for the determination of these compounds in real samples.
Collapse
Affiliation(s)
- R Moradi
- Department of Physics, Science and Research Branch, Islamic Azad University, P.O. Box 14665-678, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
42
|
Pandey PC, Pandey AK. Cyclohexanone and 3-aminopropyltrimethoxysilane mediated controlled synthesis of mixed nickel-iron hexacyanoferrate nanosol for selective sensing of glutathione and hydrogen peroxide. Analyst 2013; 138:952-9. [DOI: 10.1039/c2an36228g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Ensafi AA, Karimi-Maleh H, Mallakpour S. A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode. Colloids Surf B Biointerfaces 2012; 104:186-93. [PMID: 23314609 DOI: 10.1016/j.colsurfb.2012.12.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 11/29/2022]
Abstract
A novel electrochemical sensor for the simultaneous determination of glutathione (GSH) and nicotinamide adenine dinucleotide (NADH) is described. The sensor is based on a carbon paste electrode (CPE) modified with benzamide derivative and multiwall carbon nanotubes. This mixture makes a modified electrode that is sensitive for the electrochemical detection of these compounds. Under optimum conditions and at pH 7.0, oxidation of GSH occurs at a potential of about 330 mV less positive than that at an unmodified CPE. The voltammetric peak currents are linearly dependent on GSH and NADH concentrations in the ranges 0.09-300 μmol L(-1) GSH and 5.0-600 μmol L(-1) NADH. The detection limits found for GSH and NADH were 0.05 μmol L(-1) and 1.0 μmol L(-1), respectively. The electrochemical sensor was also used for the determination of GSH in urine, pharmaceutical and hemolysed erythrocyte samples.
Collapse
Affiliation(s)
- A A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | | | | |
Collapse
|
44
|
References. Anal Chem 2012. [DOI: 10.1201/b11478-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Simultaneous Determination of Ascorbic Acid, Acetaminophen, and Tryptophan by Square Wave Voltammetry Using N-(3,4-Dihydroxyphenethyl)-3,5-Dinitrobenzamide-Modified Carbon Nanotubes Paste Electrode. ELECTROANAL 2012. [DOI: 10.1002/elan.201100465] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Harfield JC, Batchelor-McAuley C, Compton RG. Electrochemical determination of glutathione: a review. Analyst 2012; 137:2285-96. [DOI: 10.1039/c2an35090d] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Ensafi AA, Dadkhah-Tehrani S, Karimi-Maleh H. Voltammetric determination of glutathione in haemolysed erythrocyte and tablet samples using modified-multiwall carbon nanotubes paste electrode. Drug Test Anal 2011; 4:978-85. [DOI: 10.1002/dta.347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Ali A. Ensafi
- Department of Chemistry; Isfahan University of Technology; Isfahan; 84156-83111; Iran
| | | | - Hassan Karimi-Maleh
- Department of Chemistry; Isfahan University of Technology; Isfahan; 84156-83111; Iran
| |
Collapse
|
48
|
Ensafi AA, Karimi-Maleh H. Determination of 6-mercaptopurine in the presence of uric acid using modified multiwall carbon nanotubes-TiO2 as a voltammetric sensor. Drug Test Anal 2011; 4:970-7. [PMID: 21538998 DOI: 10.1002/dta.286] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 11/08/2022]
Abstract
In this work, a multiwall carbon nanotubes modified electrode (prepared by incorporating TiO(2) nanoparticles with p-aminophenol as a mediator) was used as voltammetric sensor for the determination of 6-mercaptopurine (6-MP) in the presence of uric acid (UA). The voltammograms of 6-MP and UA in a mixture can be separated from each other by differential pulse voltammetry with a potential difference of 380 mV at a scan rate of 10 mV s(-1). These conditions are sufficient to allow for the determination of 6-MP and UA both individually and simultaneously. The electrocatalytic currents increase linearly with 6-MP concentration in the ranges of 0.09-350 µmol L(-1) (two linear segments with different slopes). The detection limit for 6-MP was 0.065 µmol L(-1) . The RSD% for 1.0 and 15.0 µmol L(-1) 6-MP were 0.7%, and 1.2%, respectively. The kinetic parameters of the system were determined using electrochemical approaches. The method was successfully applied for the determination of 6-MP in drug sample, and 6-MP plus UA in urine samples.
Collapse
Affiliation(s)
- Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Iran.
| | | |
Collapse
|
49
|
|
50
|
Ensafi AA, Karimi-Maleh H. Voltammetric determination of isoproterenol using multiwall carbon nanotubes-ionic liquid paste electrode. Drug Test Anal 2011; 3:325-30. [DOI: 10.1002/dta.232] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/16/2010] [Accepted: 10/19/2010] [Indexed: 11/06/2022]
|