1
|
Guo H, Yang Z, Sun L, Lu Z, Wei X, Wang M, Yu Z, Yang W. Imine-linked covalent organic framework with high crystallinity for constructing sensitive purine bases electrochemical sensor. J Colloid Interface Sci 2024; 659:639-649. [PMID: 38198941 DOI: 10.1016/j.jcis.2023.12.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
In this work, a covalent organic framework (TADM-COF) with high crystallinity and large specific surface area (2597 m2 g-1) has been successfully synthesized using 1,3,5-(4-aminophenyl) benzene (TAPB) and 2,5-dimethoxy-p-phenyldiformaldehyde (DMTP). The COF was grown in situ on oxide particles to form core-shell nanocomposites (SiO2@TADM COF, Fe3O4@TADM COF and Co3O4@TADM COF) to realize its function as a shell material. Among them, the Co3O4@TADM COF with the highest electrochemical response to purine bases was further cross-linked with multi-walled carbon nanotubes (MWCNT) to construct a novel electrochemical sensor (Co3O4@TADM COF/MWCNT/GCE) for detection of purine bases. In this nanocomposite, Co3O4 possesses rich catalytic active sites, MWCNT ensures superior electrical conductivity and COF provides a stable environment for electrocatalytic reactions as the shell. At the same time, regular pore structure of the COFs also offers smooth channels for the transfer of analytes to the catalytic site. The synergistic effect among the three components showed remarkable sensing performance for the simultaneous detection of guanine (G) and adenine (A) with a wide linear range of 0.6-180 μM and low limits of detection (LODs) of 0.020 μM for G and 0.024 μM for A (S/N = 3), respectively. The developed sensor platform was also successfully applied in the detection of purine bases in thermally denatured herring DNA extract. The work provided a general strategy for amplifying signal of COF and its composite in the electrochemical sensing.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Zeyun Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Lei Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Zongyan Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Xiaoqin Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Zhiguo Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
2
|
Chen J, Li S, Chen Y, Yang J, Dong J. Highly selective detection of adenine and guanine by NH 2-MIL-53(Fe)/CS/MXene nanocomposites with excellent electrochemical performance. Mikrochim Acta 2022; 189:328. [PMID: 35962293 DOI: 10.1007/s00604-022-05376-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Adenine (A) and guanine (G) are mainly found in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and play a crucial role in genetic information transfer and protein synthesis. In this study, NH2-MIL-53(Fe)/CS/MXene nanocomposites were prepared for detecting guanine and adenine. With high specific surface area, excellent water dispersion, and numerous active sites, MXene (transition metal carbides, nitrides, and carbonitrides) provides a good platform for loading primitive metal-organic frameworks (MOFs). At the same time, the problem of poor conductivity and dispersion of MOFs is solved. The electrochemical catalytic oxidation of adenine and guanine of NH2-MIL-53 (Fe)/CS/MXene nanocomposites was carried out by differential pulse voltammetry (DPV). Operating voltage of DPV: 0.7-0.9 V (vs. Ag/AgCl) for G, 1.0-1.2 V (vs. Ag/AgCl) for A, 0.8 V (vs. Ag/AgCl), and 1.1 V (vs. Ag/AgCl) for G and A. The concentration ranges for detecting A and G were 3-118 μM and 2-120 μM with detection limits of 0.57 μM and 0.17 μM (S/N = 3), respectively. The nanocomposite was used for detecting G and A in herring sperm DNA, and the content of G and A was found to be about 9 and 11 μM; the RSD values were 3.4 and 1.3%, respectively.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China.
| | - Shuying Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | | | - Jiao Yang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Jianbin Dong
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
3
|
Shantharaja, Nemakal M, Giddaerappa, Gopal Hegde S, Koodlur Sannegowda L. Novel biocompatible amide phthalocyanine for simultaneous electrochemical detection of adenine and guanine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Photoelectrochemical sensor for determination of naringin at low oxidation potential using a modified FTO electrode with cadmium sulfide and titanium dioxide sensitized with chloroprotoporphyrin IX iron(III). J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04568-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Nitrogen-doped reduced graphene oxide as a sensing platform for detection of guanine and application in cell necrosis. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-00856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Huang DL, Wang J, Yuan HQ, Guo HS, Ying X, Zhang H, Liu HY. Noncovalently copper-porphyrin functionalized reduced graphene oxide for sensitive electrochemical detection of dopamine. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nanocomposite of an electron-deficient flat tetrakis-(ethoxycarbonyl) porphyrin copper(II) (Cu-TECP) and reduced grapheme oxide (RGO) was prepared and used for electrochemical detection of dopamine (DA). The prepared nanocomposite was characterized by scanning electron microscopy, Raman spectroscopy, FT-IR spectroscopy, ultraviolet-visible spectroscopy and electrochemical impedance spectroscopy. Electrochemical studies of the modified glass carbon electrode (GCE) were carried out by the cyclic voltammetry and differential pulse voltammograms (DPV) methods. The RGO/Cu-TECP/GCE exhibited enhanced electrocatalytic activity towards the detection of dopamine (DA). The detection limit was 0.58 μM, while the linear range was from 2 to 200 μM ([Formula: see text] 0.997).
Collapse
Affiliation(s)
- Dong-Lan Huang
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Jian Wang
- Department of Applied Physics, South China University of Technology, Guangzhou 510641, China
| | - Hui-Qing Yuan
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Hui-Shi Guo
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Xiao Ying
- Department of Applied Physics, South China University of Technology, Guangzhou 510641, China
| | - Hao Zhang
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Hai-Yang Liu
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Ermakova EV, Ezhov AA, Baranchikov AE, Gorbunova YG, Kalinina MA, Arslanov VV. Interfacial self-assembly of functional bilayer templates comprising porphyrin arrays and graphene oxide. J Colloid Interface Sci 2018; 530:521-531. [PMID: 29990788 DOI: 10.1016/j.jcis.2018.06.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 01/27/2023]
Abstract
Fabricating of solid-supported hybrid nanostructures remains a challenging problem because it is difficult to control all interfacial interactions influencing the structure and stability of these systems. The most widely used approach to solving this problem is a bottom-up assembly on the surface templates such as self-assembled monolayers (SAMs). Herein we suggest an alternative approach to tailoring solid surfaces by a formation of an interlayer anchoring the nanostructured film to the solid substrate. We formed a multifunctional bilayer template (MBT), comprising an adhesive monolayer of graphene oxide and a functional ordered monolayer of metal organic compound (Zinc-tetra(4-pyridyl)porphyrin) directing further bottom-up growth of the nanostructures. The one-step assembly of MBT proceeded spontaneously at the air/water interface and was monitored by an in-situ fiber optic absorption and fluorescence spectroscopy in a Langmuir trough. Dilatation surface rheology was applied to study the evolution of molecular organization of the monolayers upon adding the zinc ions, GO and their mixture into the subphase. The MBT templates were used for the assembly of porphyrin-based SURMOFs with two different structures. Our strategy makes it possible to assemble surface-anchored nanostructures avoiding the use of SAMs and it can be extended to other types of ultrathin hybrid systems.
Collapse
Affiliation(s)
- Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Alexander A Ezhov
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskiye Gory 1-2, GSP-1, Moscow 119991, Russia; A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Pr. 29, Moscow 119991, Russia
| | - Alexander E Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119991, Russia
| | - Yuliya G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119991, Russia
| | - Maria A Kalinina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Vladimir V Arslanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia.
| |
Collapse
|
8
|
Aktürk M, Karabiberoğlu ŞU, Dursun Z. Fabrication of Cu−CeO2
Coated Multiwall Carbon Nanotube Composite Electrode for Simultaneous Determination of Guanine and Adenine. ELECTROANAL 2017. [DOI: 10.1002/elan.201700590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Merve Aktürk
- Ege University, Faculty of Science, Department of Chemistry; 35100 Bornova, İzmir TurkeyTel: +90 23 2388 4000/2365Fax: +90 23 2388 8264
| | - Şükriye Ulubay Karabiberoğlu
- Ege University, Faculty of Science, Department of Chemistry; 35100 Bornova, İzmir TurkeyTel: +90 23 2388 4000/2365Fax: +90 23 2388 8264
| | - Zekerya Dursun
- Ege University, Faculty of Science, Department of Chemistry; 35100 Bornova, İzmir TurkeyTel: +90 23 2388 4000/2365Fax: +90 23 2388 8264
| |
Collapse
|
9
|
Sasmal S, Haldar D. Sonication-Assisted Synthesis of Hydantoin Derivative-Decorated Graphene Oxide-Based Sensor for Guanine. ChemistrySelect 2017. [DOI: 10.1002/slct.201701218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Supriya Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata; Mohanpur-741246, West Bengal India
| | - Debasish Haldar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata; Mohanpur-741246, West Bengal India
| |
Collapse
|
10
|
Modified electrode with reduced graphene oxide/poly(3-hydroxyphenylacetic acid): a new platform for oligonucleotide hybridization. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3601-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Chen Y, Mei T, Chen Y, Wang J, Li J, Wang X. 8-aminoquinoline functionalized graphene oxide for simultaneous determination of guanine and adenine. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-016-3492-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|