1
|
Jia S, Li Y, Chen Y, Wu Y, Zhou T, Chi N, He G, Zhang W, Luo W, Li H, Deng Y. Ultrasensitive simultaneous detection of lead and cadmium in water using gold nanocluster-modified gold electrodes. RSC Adv 2025; 15:17535-17547. [PMID: 40433036 PMCID: PMC12107533 DOI: 10.1039/d5ra02612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Heavy metals (HMs) pose significant environmental risks due to their widespread presence. In particular, lead (Pb) and cadmium (Cd) can accumulate in the human body through prolonged exposure or bioaccumulation via the food chain, presenting substantial threats to human health and ecosystems. This study developed a novel electrochemical sensing platform for simultaneous detection of trace Pb2+ and Cd2+ using a bare gold electrode modified with gold nanoclusters (GNPs-Au) through a potentiostatic method. Through systematic optimization of deposition parameters including 2 mmol per L HAuCl4, 0.2 V deposition potential, and 80 s deposition time, the modified electrode exhibited 7.2-fold increased surface area compared to the bare gold electrode, as confirmed by field emission scanning electron microscopy (FESEM) and electrochemical characterization. The enhanced surface area provided abundant electrochemical reaction sites, significantly improving detection sensitivity. Under optimal detection conditions comprising pH 3.3, -4 V enrichment potential, and 390 s enrichment time, the modified electrode demonstrated linear responses for Pb2+ and Cd2+ in the range of 1-250 μg L-1 with a detection limit of 1 ng L-1. The spike-recovery test yielded quantitative recoveries ranging from 90.86% to 113.47%. The interference experiment confirmed Cu2+ has a significant effect on the measurement. Moreover, the method successfully detected Pb2+ and Cd2+ in real water samples, with results showing minor errors compared to atomic absorption spectroscopy (AAS). These findings demonstrate the robust potential of GNPs-Au for trace heavy metal ion detection in environmental monitoring.
Collapse
Affiliation(s)
- Shunyao Jia
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education Changsha 410082 China
| | - Yanting Wu
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Tianyun Zhou
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Nianping Chi
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - GuoWen He
- School of Materials and Chemical Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Wei Zhang
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Wenqiang Luo
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Hao Li
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Yumei Deng
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| |
Collapse
|
2
|
Obeng E, Feng J, Wang D, Zheng D, Xiang B, Shen J. Multifunctional phototheranostic agent ZnO@Ag for anti-infection through photothermal/photodynamic therapy. Front Chem 2022; 10:1054739. [PMID: 36438866 PMCID: PMC9682125 DOI: 10.3389/fchem.2022.1054739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 08/22/2023] Open
Abstract
To overcome the limitations of traditional therapeutics, nanotechnology offers a synergistic therapeutic approach for the treatment of bacterial infection and biofilms that has attracted attention. Herein, we report on a ZnO@Ag nanocomposite with good biocompatibility synthesized by doping ZnO NPs with silver nanoparticles (Ag NPs). ZnO@Ag nanocomposites were synthesized with varying ratios of Ag NPs (0.5%, 2%, 8%). Under the same experimental conditions, ZnO@8%Ag exhibited outstanding properties compared to the other nanocomposites and the pristine ZnO NPs. ZnO@8%Ag demonstrated excellent photothermal and photodynamic properties. Also, ZnO@8%Ag demonstrated over 99% inhibition of Staphylococcus aureus (S. aureus) under photothermal therapy (PTT) or photodynamics therapy (PDT) as a result of the excessive generation of reactive oxygen species (ROS) by the Ag+ released, while the pristine ZnO showed an insignificant inhibition rate compared to the PBS group (control). Furthermore, ZnO@8%Ag completely disrupted S. aureus biofilm under a combined PTT/PDT treatment, a synergetic trimodal therapy, although the molecular mechanism of biofilm inhibition remains unclear. Hence, the excellent photothermal, photodynamic, biocompatibility, and bactericidal properties of ZnO@8%Ag present it as an appropriate platform for bacterial and biofilm treatment or other biomedically related applications.
Collapse
Affiliation(s)
- Enoch Obeng
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayao Feng
- Ningbo Eye Hospital, Ningbo, Zhejiang, China
| | - Danyan Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Dongyang Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bailin Xiang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, China
| | - Jianliang Shen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
3
|
Jin Mei C, Ainliah Alang Ahmad S. A review on the determination heavy metals ions using calixarene-based electrochemical sensors. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
4
|
Electrochemical Determination of Lead & Copper Ions Using Thiolated Calix[4]arene-Modified Screen-Printed Carbon Electrode. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study used a thiolated calix[4]arene derivative modified on gold nanoparticles and a screen-printed carbon electrode (TC4/AuNPs/SPCE) for Pb2+ and Cu2+ determination. The surface of the modified electrode was characterised via Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used for the detection of Pb2+ and Cu2+ under optimum conditions. The limit of detection (LOD) for detecting Pb2+ and Cu2+ was 0.7982 × 10−2 ppm and 1.3358 × 10−2 ppm, respectively. Except for Zn2+ and Hg2+, the presence of competitive ions caused little effect on the current response when detecting Pb2+. However, all competitive ions caused a significant drop in the current response when detecting Cu2+, except Ca2+ and Mg2+, suggesting the sensing platform is more selective toward Pb2+ ions rather than copper (Cu2+) ions. The electrochemical sensor demonstrated good reproducibility and excellent stability with a low relative standard deviation (RSD) value in detecting lead and copper ions. Most importantly, the result obtained in the analysis of Pb2+ and Cu2+ had good recovery in river water, demonstrating the applicability of the developed sensor for real samples.
Collapse
|
5
|
Saisree S, Aswathi R, Arya Nair JS, Sandhya KY. Radical sensitivity and selectivity in the electrochemical sensing of cadmium ions in water by polyaniline-derived nitrogen-doped graphene quantum dots. NEW J CHEM 2021. [DOI: 10.1039/d0nj03988h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the present work, the sensing capability of nitrogen-doped graphene quantum dots (N-GQDs) was explored for the first time toward hazardous heavy metal ions and they were found to be able to selectively detect cadmium ions (Cd(ii)).
Collapse
Affiliation(s)
- S. Saisree
- Department of Chemistry
- Indian Institute of Space Science and Technology Valiyamala
- Thiruvananthapuram 695547
- India
| | - R. Aswathi
- Department of Chemistry
- Indian Institute of Space Science and Technology Valiyamala
- Thiruvananthapuram 695547
- India
| | - J. S. Arya Nair
- Department of Chemistry
- Indian Institute of Space Science and Technology Valiyamala
- Thiruvananthapuram 695547
- India
| | - K. Y. Sandhya
- Department of Chemistry
- Indian Institute of Space Science and Technology Valiyamala
- Thiruvananthapuram 695547
- India
| |
Collapse
|
6
|
Narayanan S, Tamizhdurai P, Mangesh VL, Ragupathi C, Santhana Krishnan P, Ramesh A. Recent advances in the synthesis and applications of mordenite zeolite - review. RSC Adv 2020; 11:250-267. [PMID: 35423021 PMCID: PMC8691069 DOI: 10.1039/d0ra09434j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022] Open
Abstract
Among the many industrially important zeolites, mordenite is found to be interesting because of its unique and exceptional physical and chemical properties. Mordenite (high silica zeolite) is generally prepared by the hydrothermal method using TEA+ cations. TEA+ cations are the best templating agent, though they can create a number of issues, for instance, generating poison and high manufacturing cost, wastewater contamination, and environmental pollution. Hence, it is necessary to find a mordenite synthesis method without using an organic template or low-cost template. In this review, a number of unique sources were used in the preparation of mordenite zeolite, for instance, silica sources (rice husk ash, silica gel, silica fumes), alumina sources (metakaolin, faujasite zeolite) and sources containing both silica and alumina (waste coal fly ash). These synthesis approaches are also based on the absence of a template or low-cost mixed organic templates (for instance, glycerol (GL), ethylene glycol (EG), and polyethylene glycol 200 (PEG)) or pyrrolidine-based mesoporogen (N-cetyl-N-methylpyrrolidinium) modifying the mordenite framework which can create unique properties. The framework properties and optical properties (indium-exchanged mordenite zeolite) have been discussed. Mordenite is generally used in alkylation, dewaxing, reforming, hydrocracking, catalysis, separation, and purification reactions because of its large pore size, strong acidity, and high thermal and chemical stability, although the applications are not limited for mordenite zeolite. Recently, several applications such as electrochemical detection, isomerization, carbonylation, hydrodeoxygenation, adsorption, biomass conversion, biological applications (antibacterial activity), photocatalysis, fuel cells and polymerization reactions using mordenite zeolite were explored which have been described in detail in this review.
Collapse
Affiliation(s)
- S Narayanan
- Sriram College of Arts and Science Perumalpattu, Veppampattu Tiruvallur Tamilnadu 602024 India +91-9566225479
| | - P Tamizhdurai
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras Chennai-600036 India +91-9677146579
| | - V L Mangesh
- Department of Marine Engineering, Coimbatore Marine College Coimbatore-641035 India
| | - C Ragupathi
- Sriram College of Arts and Science Perumalpattu, Veppampattu Tiruvallur Tamilnadu 602024 India +91-9566225479
| | - P Santhana Krishnan
- Department of Chemistry, College of Engineering, Guindy, Anna University Chennai 600025 India
| | - A Ramesh
- Department of Chemistry, College of Engineering, Guindy, Anna University Chennai 600025 India
| |
Collapse
|
7
|
Zhu F, Shi H, Yu Z, Wang C, Cheng W, Zhou X, Yang F, Zhang Y, Zhang X. Acid-etched Fe/Fe 2O 3 nanoparticles encapsulated into carbon cloth as a novel voltammetric sensor for the simultaneous detection of Cd 2+ and Pb 2. Analyst 2020; 146:691-697. [PMID: 33210665 DOI: 10.1039/d0an01861a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A portable electrode with usability, availability, and high-sensitivity is of great significance for effective on-site detection in practical situations. In this paper, a novel flexible, disposable sensor for Cd2+ and Pb2+ with ultrahigh sensitivity and a fast response, based on acid-etched Fe/Fe2O3 encapsulated into a disposable carbon cloth electrode, has been successfully fabricated. Differential pulse anode stripping voltammetry (DPASV) was used to investigate the stripping behavior of Cd2+ and Pb2+, achieving high sensitivity for Cd2+ and Pb2+ (338.7 and 408.0 μA mM-1 cm-2) with limits of detection (LODs) of 0.42 ppb and 0.50 ppb, respectively. Meanwhile, remarkable stability and reproducibility were obtained. Such an electrode can detect Cd2+ and Pb2+ in actual water samples so this is a good candidate to act as a simple and convenient sensor for general applications. More importantly, the novel disposable electrode exhibited the unique advantages of convenience, portability, and reliability compared to a conventional electrode, which may make it an alternative advantageous choice for practical on-site detection.
Collapse
Affiliation(s)
- Fudan Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Idris AO, Oseghe EO, Msagati TAM, Kuvarega AT, Feleni U, Mamba B. Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5743. [PMID: 33050361 PMCID: PMC7600177 DOI: 10.3390/s20205743] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022]
Abstract
Graphitic carbon nitride (g-C3N4) is a two-dimensional conjugated polymer that has attracted the interest of researchers and industrial communities owing to its outstanding analytical merits such as low-cost synthesis, high stability, unique electronic properties, catalytic ability, high quantum yield, nontoxicity, metal-free, low bandgap energy, and electron-rich properties. Notably, graphitic carbon nitride (g-C3N4) is the most stable allotrope of carbon nitrides. It has been explored in various analytical fields due to its excellent biocompatibility properties, including ease of surface functionalization and hydrogen-bonding. Graphitic carbon nitride (g-C3N4) acts as a nanomediator and serves as an immobilization layer to detect various biomolecules. Numerous reports have been presented in the literature on applying graphitic carbon nitride (g-C3N4) for the construction of electrochemical sensors and biosensors. Different electrochemical techniques such as cyclic voltammetry, electrochemiluminescence, electrochemical impedance spectroscopy, square wave anodic stripping voltammetry, and amperometry techniques have been extensively used for the detection of biologic molecules and heavy metals, with high sensitivity and good selectivity. For this reason, the leading drive of this review is to stress the importance of employing graphitic carbon nitride (g-C3N4) for the fabrication of electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- Azeez O. Idris
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (E.O.O.); (T.A.M.M.); (A.T.K.); (U.F.); (B.M.)
| | | | | | | | | | | |
Collapse
|
9
|
Patri SB, Adarakatti PS, Malingappa P. Silver Nanoparticles-Chitosan Composite Embedded Graphite Screen-Printed Electrodes as a Novel Electrochemical Platform in the Measurement of Trace Level Nitrite: Application to Milk Powder Samples. CURR ANAL CHEM 2018. [DOI: 10.2174/1573411014666180703142146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:Nitrites can exert acute toxic effects in humans. It is widely used as a preservative in dairy and meat products. The nitrites form N-nitrosamines, which are potential carcinogens and cause detrimental health effects. Herein we report a disposable graphite screen-printed sensor developed using silver metal nano particle embedded chitosan composite in the quantification of nitrite at trace level.Methods:Conventional methods possess various limitations. Electrochemical methods provide an ideal platform for trace nitrite analysis. The prepared composite has been characterized by UV-Visible spectrometry, SEM, EDS and XRD techniques. The proposed sensor has been fabricated by using graphite screen-printed electrodes through drop coating of the composite material. The redox behavior and its application of the fabricated electrode have been studied using cyclic and anodic stripping voltammetric methods.Results:Graphite screen-printed electrodes after modification have been used to identify the electrocatalytic behavior of nitrite oxidation in an aqueous medium. All the parameters influencing the analytical signal have been optimized and incorporated in the recommended procedure. The proposed sensor has been used to measure the nitrite levels from commercially available milk powder samples and the results have been compared with the standard protocol. The results of the proposed sensor are in good agreement with the standard protocol.Conclusion:Ag metal nanoparticles have been embedded in chitosan matrix and used as a composite material in the chemical modification of graphite screen-printed electrodes. GSPEs are easy to fabricate. They provide wide linear working range i.e. 30 - 1140 µM of nitrite. The sensor is highly stable, reproducible and provides a very low detection limit of 1.84 µM. The method has been applied to measure trace level nitrite from milk powder samples.
Collapse
Affiliation(s)
- Suma B. Patri
- Department of Chemistry, Bangalore University, Central College Campus, Bengaluru - 560 001, India
| | | | - Pandurangappa Malingappa
- Department of Chemistry, Bangalore University, Central College Campus, Bengaluru - 560 001, India
| |
Collapse
|
10
|
Lead(II) ion detection in purified drinking water by nickel hexacyanoferrate-modified n-Si electrode in presence of dihydroxybenzene. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4063-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Modified Lanthanum–Zeolite for Sensitive Electrochemical Detection of Heavy Metal Ions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3486-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Adarakatti PS, Mahanthappa M, H E, Siddaramanna A. Fe2
V4
O13
Nanoparticles Based Electrochemical Sensor for the Simultaneous Determination of Guanine and Adenine at Nanomolar Concentration. ELECTROANAL 2018. [DOI: 10.1002/elan.201800124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Prashanth Shivappa Adarakatti
- Department of Chemistry; Central College, Bangalore University; Bengaluru- 560001 India
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bengaluru- 560012 India
| | | | - Eranjaneya H
- Department of Chemistry; Central College, Bangalore University; Bengaluru- 560001 India
| | - Ashoka Siddaramanna
- School of Engineering; Dayananda Sagar University; Kudlu Gate Bengaluru- 560068 India
| |
Collapse
|
13
|
CeO2 nanoparticle-modified electrode as a novel electrochemical interface in the quantification of Zn2+ ions at trace level: application to real sample analysis. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-017-3872-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|