1
|
Liu C, Wang W, Wu F, Zhang J, Chen C, Cheng P, Zhu Y, Zhang S, Seong G. Research Progress on Preparation and Electrocatalytic Performance of Tin Dioxide Nanomaterials. CHEM REC 2025; 25:e202500007. [PMID: 40195570 DOI: 10.1002/tcr.202500007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Indexed: 04/09/2025]
Abstract
In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell's performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti-toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected.
Collapse
Affiliation(s)
- Chang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Weixia Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Feiyang Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jiayi Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chunguang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ping Cheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuanzheng Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Gimyeong Seong
- Department of Environmental and Energy Engineering, The University of Suwon, Gyeonggi-do, 18323, Republic of Korea
| |
Collapse
|
2
|
Valorization of spent double substituted Co-Ni-Zn-Fe LDH wastewater nanoadsorbent as methanol electro-oxidation catalyst. Sci Rep 2022; 12:19354. [PMID: 36369455 PMCID: PMC9652425 DOI: 10.1038/s41598-022-23798-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022] Open
Abstract
Finding suitable non-expensive electrocatalyst materials for methanol oxidation is a significant challenge. Waste valorization of spent wastewater nanoadsorbents is a promising route toward achieving circular economy guidelines. In this study, the residual of layered double hydroxide (LDH) can be used as an electrocatalyst in direct methanol fuel cells as a novel approach. The Co-Ni-Zn-Fe LDH was prepared by the co-precipitation method followed by the adsorption of methyl orange (MO). Moreover, the spent adsorbent was calcined at different temperatures (200, 400, and 600 °C) to be converted to the corresponding mixed metal oxides (MMO). The prepared samples were characterized using XRD, FTIR, HRTEM, zeta potential, and hydrodynamic size measurements. The spent adsorbent was tested as an electro-catalyst for direct methanol electro-oxidation. The spent LDH/MO adsorbent showed a maximum current density of 6.66 mA/cm2 at a 50 mV/s scan rate and a 1 M methanol concentration. The spent MMO/MO adsorbent showed a maximum current density of 8.40 mA/cm2 at a 200 °C calcination temperature, 50 mV/s scan rate, and a 3 M methanol concentration. Both samples show reasonable stability over time, as indicated by the chronoamperometric response. Further nanoengineering of used nanoadsorbents could be a promising path to repurposing these wastes as electro-oxidation catalysts.
Collapse
|
3
|
Fabrication of polyaniline/SBA-15-supported platinum/cobalt nanocomposites as promising electrocatalyst for formic acid oxidation. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01400-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|