1
|
Resitano M, Tucci M, Mezzi A, Kaciulis S, Matturro B, D'Ugo E, Bertuccini L, Fazi S, Rossetti S, Aulenta F, Cruz Viggi C. Anaerobic treatment of groundwater co-contaminated by toluene and copper in a single chamber bioelectrochemical system. Bioelectrochemistry 2024; 158:108711. [PMID: 38626620 DOI: 10.1016/j.bioelechem.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Addressing the simultaneous removal of multiple coexisting groundwater contaminants poses a significant challenge, primarily because of their different physicochemical properties. Indeed, different chemical compounds may necessitate establishing distinct, and sometimes conflicting, (bio)degradation and/or removal pathways. In this work, we investigated the concomitant anaerobic treatment of toluene and copper in a single-chamber bioelectrochemical cell with a potential difference of 1 V applied between the anode and the cathode. As a result, the electric current generated by the bioelectrocatalytic oxidation of toluene at the anode caused the abiotic reduction and precipitation of copper at the cathode, until the complete removal of both contaminants was achieved. Open circuit potential (OCP) experiments confirmed that the removal of copper and toluene was primarily associated with polarization. Analogously, abiotic experiments, at an applied potential of 1 V, confirmed that neither toluene was oxidized nor copper was reduced in the absence of microbial activity. At the end of each experiment, both electrodes were characterized by means of a comprehensive suite of chemical and microbiological analyses, evidencing a highly selected microbial community competent in the biodegradation of toluene in the anodic biofilm, and a uniform electrodeposition of spherical Cu2O nanoparticles over the cathode surface.
Collapse
Affiliation(s)
- Marco Resitano
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials, National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Emilio D'Ugo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Stefano Fazi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy.
| |
Collapse
|
2
|
Luo Z, Su Y, Yue S, Yu Q, Zhang H, Zhang J. Electrodeposition of copper nanopowder with controllable morphology: influence of pH on the nucleation/growth mechanism. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|