1
|
Chen R. New Redox Chemistries of Halogens in Aqueous Batteries. CHEMSUSCHEM 2025; 18:e202401678. [PMID: 39435849 DOI: 10.1002/cssc.202401678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
Halogen-based redox-active materials represent an important class of materials in aqueous electrochemistry. The existence of versatile halogen species and their rich bonding coordination create great flexibility in designing new redox couples. Novel redox reaction mechanisms and electrochemical reversibility can be unlocked in specifically configurated electrolyte environments and electrodes. In this review, the halogen-based redox couples and their appealing redox chemistries in aqueous batteries, including redox flow batteries and traditional static batteries that have been studied in recent years, are discussed. New aqueous electrochemistry provides hope to outperform the state-of-the-art materials and systems that are facing resources and performance limitation, and to enrich the existing battery chemistries.
Collapse
Affiliation(s)
- Ruiyong Chen
- Department of Chemistry, University of Liverpool, Liverpool, L7 3NY, United Kingdom
- Korea Institute of Science and Technology (KIST) Europe, Campus E7 1, 66123, Saarbrücken, Germany
| |
Collapse
|
2
|
Konev DV, Zader PA, Vorotyntsev MA. Evolution of the Bromate Electrolyte Composition in the Course of Its Electroreduction inside a Membrane-Electrode Assembly with a Proton-Exchange Membrane. Int J Mol Sci 2023; 24:15297. [PMID: 37894976 PMCID: PMC10607049 DOI: 10.3390/ijms242015297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The passage of cathodic current through the acidized aqueous bromate solution (catholyte) leads to a negative shift of the average oxidation degree of Br atoms. It means a distribution of Br-containing species in various oxidation states between -1 and +5, which are mutually transformed via numerous protonation/deprotonation, chemical, and redox/electrochemical steps. This process is also accompanied by the change in the proton (H+) concentration, both due to the participation of H+ ions in these steps and due to the H+ flux through the cation-exchange membrane separating the cathodic and anodic compartments. Variations of the composition of the catholyte concentrations of all these components has been analyzed for various initial concentrations of sulfuric acid, cA0 (0.015-0.3 M), and two values of the total concentrations of Br atoms inside the system, ctot (0.1 or 1.0 M of Br atoms), as functions of the average Br-atom oxidation degree, x, under the condition of the thermodynamic equilibrium of the above transformations. It is shown that during the exhaustion of the redox capacity of the catholyte (x pass from 5 to -1), the pH value passes through a maximum. Its height and the corresponding average oxidation state of bromine atoms depend on the initial bromate/acid ratio. The constructed algorithm can be used to select the initial acid content in the bromate catholyte, which is optimal from the point of view of preventing the formation of liquid bromine at the maximum content of electroactive compounds.
Collapse
Affiliation(s)
- Dmitry V. Konev
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Pavel A. Zader
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Mikhail A. Vorotyntsev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
3
|
Kartashova NV, Konev DV, Loktionov PA, Glazkov AT, Goncharova OA, Petrov MM, Antipov AE, Vorotyntsev MA. A Hydrogen-Bromate Flow Battery as a Rechargeable Chemical Power Source. MEMBRANES 2022; 12:1228. [PMID: 36557135 PMCID: PMC9782483 DOI: 10.3390/membranes12121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The hydrogen-bromate flow battery represents one of the promising variants for hybrid power sources. Its membrane-electrode assembly (MEA) combines a hydrogen gas diffusion anode and a porous flow-through cathode where bromate reduction takes place from its acidized aqueous solution: BrO3− + 6 H+ + 6 e− = Br− + 3 H2O (*). The process of electric current generation occurs on the basis of the overall reaction: 3 H2 + BrO3− = Br− + 3 H2O (**), which has been studied in previous publications. Until this work, it has been unknown whether this device is able to function as a rechargeable power source. This means that the bromide anion, Br−, should be electrooxidized into the bromate anion, BrO3−, in the course of the charging stage inside the same cell under strongly acidic conditions, while until now this process has only been carried out in neutral or alkaline solutions with specially designed anode materials. In this study, we have demonstrated that processes (*) and (**) can be performed in a cyclic manner, i.e., as a series of charge and discharge stages with the use of MEA: H2, Freidenberg H23C8 Pt-C/GP-IEM 103/Sigracet 39AA, HBr + H2SO4; square cross-section of 4 cm2 surface area, under an alternating galvanostatic mode at a current density of 75 mA/cm2. The coulombic, voltaic and energy efficiencies of the flow battery under a cyclic regime, as well as the absorption spectra of the catholyte, were measured during its operation. The total amount of Br-containing compounds penetrating through the membrane into the anode space was also determined.
Collapse
Affiliation(s)
- Natalia V. Kartashova
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry V. Konev
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Pavel A. Loktionov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Artem T. Glazkov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Olga A. Goncharova
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Mikhail M. Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anatoly E. Antipov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Mikhail A. Vorotyntsev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
4
|
Konev DV, Istakova OI, Kartashova NV, Abunaeva LZ, Pyrkov PV, Loktionov PA, Vorotyntsev MA. Electrochemical Measurement of Co-Ion Diffusion Coefficient in Ion-Exchange Membranes. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522120035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Zader PA, Konev DV, Vorotyntsev MA. Theoretical Analysis of the pH Dependence of Evolution of the System Composition in the Course of Electrolysis of Acidic Aqueous Chloride Solutions. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Konev DV, Goncharova OA, Tolmachev YV, Vorotyntsev MA. The Role of Chlorine Dioxide in the Electroreduction of Chlorates at Low pH. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Vorotyntsev MA, Zader PA. Simulation of Mediator-Catalysis Process inside Redox Flow Battery. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Konev DV, Istakova OI, Vorotyntsev MA. Electrochemical Measurement of Interfacial Distribution and Diffusion Coefficients of Electroactive Species for Ion-Exchange Membranes: Application to Br 2/Br - Redox Couple. MEMBRANES 2022; 12:1041. [PMID: 36363597 PMCID: PMC9693329 DOI: 10.3390/membranes12111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
A novel method has been proposed for rapid determination of principal transmembrane transport parameters for solute electroactive co-ions/molecules, in relation to the crossover problem in power sources. It is based on direct measurements of current for the electrode, separated from solution by an ion-exchange membrane, under voltammetric and chronoamperometric regimes. An electroactive reagent is initially distributed within the membrane/solution space under equilibrium. Then, potential change induces its transformation into the product at the electrode under the diffusion-limited regime. For the chronoamperometric experiment, the electrode potential steps backward after the current stabilization, thus inducing an opposite redox transformation. Novel analytical solutions for nonstationary concentrations and current have been derived for such two-stage regime. The comparison of theoretical predictions with experimental data for the Br2/Br- redox couple (where only Br- is initially present) has provided the diffusion coefficients of the Br- and Br2 species inside the membrane, D(Br-) = (2.98 ± 0.27) 10-6 cm2/s and D(Br2) = (1.10 ± 0.07) 10-6 cm2/s, and the distribution coefficient of the Br- species at the membrane/solution boundary, K(Br-) = 0.190 ± 0.005, for various HBr additions (0.125-0.75 M) to aqueous 2 M H2SO4 solution. This possibility to determine transport characteristics of two electroactive species, the initial solute component and its redox product, within a single experiment, represents a unique feature of this study.
Collapse
Affiliation(s)
- Dmitry V. Konev
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Olga I. Istakova
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Mikhail A. Vorotyntsev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
9
|
Zader PA, Konev DV, Gun J, Lev O, Vorotyntsev MA. Theoretical Analysis of System’s Composition Changes in the Course of Electrolysis of Acidic Chloride Aqueous Solution. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522100123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Petrov M, Chikin D, Abunaeva L, Glazkov A, Pichugov R, Vinyukov A, Levina I, Motyakin M, Mezhuev Y, Konev D, Antipov A. Mixture of Anthraquinone Sulfo-Derivatives as an Inexpensive Organic Flow Battery Negolyte: Optimization of Battery Cell. MEMBRANES 2022; 12:912. [PMID: 36295671 PMCID: PMC9607404 DOI: 10.3390/membranes12100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Anthraquinone-2,7-disulfonic acid (2,7-AQDS) is a promising organic compound, which is considered as a negolyte for redox flow batteries as well as for other applications. In this work we carried out a well-known reaction of anthraquinone sulfonation to synthesize 2,7-AQDS in mixture with other sulfo-derivatives, namely 2,6-AQDS and 2-AQS. Redox behavior of this mixture was evaluated with cyclic voltammetry and was almost identical to 2,7-AQDS. Mixture was then assessed as a potential negolyte of anthraquinone-bromine redox flow battery. After adjusting membrane-electrode assembly composition (membrane material and flow field)), the cell demonstrated peak power density of 335 mW cm-2 (at SOC 90%) and capacity utilization, capacity retention and energy efficiency of 87.9, 99.6 and 64.2%, respectively. These values are almost identical or even higher than similar values for flow battery with 2,7-AQDS as a negolyte, while the price of mixture is significantly lower. Therefore, this work unveils the promising possibility of using a mixture of crude sulfonated anthraquinone derivatives mixture as an inexpensive negolyte of RFB.
Collapse
Affiliation(s)
- Mikhail Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry Chikin
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Lilia Abunaeva
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Artem Glazkov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Roman Pichugov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Vinyukov
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Irina Levina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail Motyakin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry Konev
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Anatoly Antipov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
11
|
Konev DV, Istakova OI, Ruban EA, Glazkov AT, Vorotyntsev MA. Hydrogen-Chlorate Electric Power Source: Feasibility of the Device, Discharge Characteristics and Modes of Operation. Molecules 2022; 27:molecules27175638. [PMID: 36080404 PMCID: PMC9457794 DOI: 10.3390/molecules27175638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
A power source based on the current-generating reaction of aqueous chlorate-to-chloride reduction by molecular hydrogen would provide as much as 1150 Wh per 1 L of reagent storage (for a combination of 700 atm compressed hydrogen and saturated aqueous solution of lithium chlorate) at room temperature, but direct electroreduction of chlorate only proceeds with unacceptably high overvoltages, even for the most catalytically active electrodes. In the present study, we experimentally demonstrated that this process can be performed via redox-mediator catalysis by intermediate products of chlorate reduction, owing to their participation in homogeneous com- and disproportionation reactions. A series of current–voltage and discharge characteristics were measured for hydrogen-chlorate membrane–electrode assembly (MEA) cells at various concentrations of chlorate and sulfuric acid under operando spectrophotometric monitoring of the electrolyte composition during the discharge. We established that chlorine dioxide (ClO2) is the key intermediate product; its fraction in the electrolyte solution increases progressively, up to its maximum, equal to 0.4–0.6 of the initial amount of chlorate anions, whereas the ClO2 amount decreases gradually to a zero value in the later stage. In most discharge experiments, the Faradaic yield exceeded 90% (maximal value: 99%), providing approximately 48% chemical energy storage-to-electricity conversion efficiency at maximal power of the discharge (max value: 402 mW/cm2). These results support prospect of a hydrogen-chlorate flow current generator as a highly specific energy-capacity source for airless media.
Collapse
Affiliation(s)
- Dmitry V. Konev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Correspondence: (D.V.K.); (M.A.V.)
| | - Olga I. Istakova
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Evgeny A. Ruban
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Artem T. Glazkov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Mikhail A. Vorotyntsev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- Correspondence: (D.V.K.); (M.A.V.)
| |
Collapse
|
12
|
Pichugov R, Konev D, Speshilov I, Abunaeva L, Petrov M, Vorotyntsev MA. Analysis of the Composition of Bromide Anion Oxidation Products in Aqueous Solutions with Different pH via Rotating Ring-Disk Electrode Method. MEMBRANES 2022; 12:820. [PMID: 36135839 PMCID: PMC9504282 DOI: 10.3390/membranes12090820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
We measured the ring collection coefficient of bromide anion oxidation products in a neutral and slightly alkaline medium on a rotating ring-disk electrode (glassy carbon disk, platinum ring) varying the following parameters: disk electrode rotation velocity, sodium bromide concentration, pH of the medium (in the range of 6−12), anode current on the disk, and the electroreduction potential of the bromide anion oxidation products on the ring. The data obtained are presented via dependences of the cathode ring current on the disk current ratio vs. the ring electrode potential. The analysis of the results was carried out by comparing the experimental polarization curves of the ring electrode with the data of cyclic voltammetry in model solutions to determine the electrical activities of various bromine compounds in positive oxidation states. We claim that the RRDE method could be used to obtain quantitative and qualitative data on the electrooxidation of bromide ions in neutral and alkaline solutions. For the most effective regeneration of the spent oxidizer, the values of pH > 10 and moderate concentrations of NaBr should be used.
Collapse
Affiliation(s)
- Roman Pichugov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry Konev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Ivan Speshilov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Lilia Abunaeva
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Mikhail Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Mikhail Alexeevich Vorotyntsev
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
13
|
Modestov A, Kartashova N, Pichugov R, Petrov M, Antipov A, Abunaeva L. Bromine Crossover in Operando Analysis of Proton Exchange Membranes in Hydrogen-Bromate Flow Batteries. MEMBRANES 2022; 12:815. [PMID: 36005730 PMCID: PMC9416548 DOI: 10.3390/membranes12080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The manuscript deals with the fundamental problem of platinum hydrogen oxidation catalyst poisoning of the hybrid chemical power source based on bromate electroreduction and hydrogen electro-oxidation reactions. The poisoning is caused by the crossover of bromine-containing species through the proton exchange membrane separating compartments of the flow cell. Poisoning results in a drastic decrease in the flow cell performance. This paper describes the results of the direct measurement of bromine-containing species' crossover through perfluorosulfonic acid membranes of popular vendors in a hydrogen-bromate flow cell and proposes corresponding scenarios for the flow battery charge-discharge operation based on the electrolyte's control of the pH value. The rate of the crossover of the bromine-containing species through the membrane is found to be inversely proportional to the membrane thickness.
Collapse
Affiliation(s)
- Alexander Modestov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Natalia Kartashova
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Roman Pichugov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Mikhail Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anatoly Antipov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Lilia Abunaeva
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
14
|
Loktionov P, Bocharova A, Konev D, Modestov A, Pichugov R, Petrov M, Antipov A. Two-Membrane Acid-Base Flow Battery with Hydrogen Electrodes for Neutralization-to-Electrical Energy Conversion. CHEMSUSCHEM 2021; 14:4583-4592. [PMID: 34411450 DOI: 10.1002/cssc.202101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Acid-base flow batteries (ABFB) are a promising and environmentally benign class of flow batteries that utilize neutralization energy. Among the other flow batteries, ABFBs stand out with low cost and high solubility of the electrolytes and the possibility to harvest neutralization energy of acidic and alkaline wastewaters. However, the main ABFB issues, such as low power caused by discharge current limitation and low energy density, are limiting the possibility of their implementation. In this work, a novel two-membrane ABFB with two hydrogen electrodes was developed to overcome main ABFB issues. The proposed concept demonstrated high power density up to 6.1 mW cm-2 at 13 mA cm-2 . It was shown that battery performance was greatly limited by negative electrode overvoltage. Analysis of the voltage losses allowed to estimate main power losses and highlight the possible ways to its minimization.
Collapse
Affiliation(s)
- Pavel Loktionov
- D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russia
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432, Chernogolovka, Russia
| | - Anastasia Bocharova
- Lomonosov State University, Leninskie Gory 1, 119991, Moscow, Russia
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432, Chernogolovka, Russia
| | - Dmitry Konev
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432, Chernogolovka, Russia
| | - Alexander Modestov
- D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prospect, 31, bld.4, 119071, Moscow, Russia
| | - Roman Pichugov
- D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russia
| | - Mikhail Petrov
- D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russia
| | - Anatoliy Antipov
- D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russia
- Lomonosov State University, Leninskie Gory 1, 119991, Moscow, Russia
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432, Chernogolovka, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prospect, 31, bld.4, 119071, Moscow, Russia
| |
Collapse
|