Cruz-Quesada G, García-Ruíz C, López-Ramón MV, Fernández-Poyatos MDP, Velo-Gala I. Carbon-based metal oxide nanocomposites for water treatment by photocatalytic processes.
ENVIRONMENTAL RESEARCH 2025;
279:121724. [PMID:
40311908 DOI:
10.1016/j.envres.2025.121724]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
The increasing contamination of water by emerging contaminants and the need for more efficient and sustainable treatment methods have prompted the exploration of advanced materials and technologies, with a particular focus on photocatalysis. Carbon-based metal oxide nanocomposites are a promising solution for the treatment of polluted water. This paper aims to review the current state of research on the application of these nanocomposites as photocatalysts for complete water treatment, describing breakthroughs in contaminant removal from 2019 through 2024 and milestones in water disinfection from 2016 through 2024. It includes discussion on the utilization of nanocomposites of Metal Oxides (MOs) with carbon materials to improve photocatalytic efficiency and addresses the advantages and drawbacks of these materials, including electron-hole recombination and agglomeration. The review focuses on the photocatalytic mechanisms of these nanocomposites and highlights the importance of heterostructures formed between metal oxides and carbon materials (e.g., graphene, carbon nanotubes, and carbon quantum dots), which enhance light absorption and hydroxyl radical generation, thereby increasing the efficiency of pollutant degradation and water disinfection. The review describes the properties of different MOs (n-type and p-type), exploring synergies between MOs and carbon materials and discussing the benefits and challenges of their application in wastewater treatment and pathogen inactivation. The review ends with a scientometric analysis of research trends in this field.
Collapse