1
|
Yamashita K, Murayama R, Itoyama M, Kikuchi K, Kusunoki M, Kuga D, Hatae R, Fujioka Y, Otsuji R, Fujita N, Yoshimoto K, Ishigami K, Togao O. The cortical high-flow sign in oligodendroglioma, IDH-mutant and 1p/19q-codeleted is correlated with histological cortical vascular density. Neuroradiology 2025; 67:291-298. [PMID: 39831960 DOI: 10.1007/s00234-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND AND PURPOSE The cortical high-flow sign has been more commonly reported in oligodendroglioma, IDH-mutant and 1p/19q-codeleted (ODG IDHm-codel) compared to diffuse glioma with IDH-wildtype or astrocytoma, IDH-mutant. Besides tumor types, higher grades of glioma might also contribute to the cortical high flow. Therefore, we investigated whether the histological cortical vascular density or CNS WHO grade was associated with the cortical high-flow sign in patients with ODG IDHm-codel. MATERIALS AND METHODS This retrospective study consisted of pathologically confirmed 25 adult patients with ODG IDHm-codel. We implemented pseudo-continuous arterial spin labeling technique with background suppression. Subtraction images were generated from paired control and label images. Tumor-affecting cortices without intense contrast enhancement on conventional MR imaging were targeted for the determination of the cortical high-flow sign. Immunohistochemical staining of CD31 antibody was performed for the identification of vascular endothelial cells. A microscopic field of the most intense vascularization was captured in each specimen. The vessel number and the relative vascular density (%Vessel) were compared between the positive cortical high-flow sign (CHFS+) and the negative cortical high-flow sign (CHFS-) groups using the Mann-Whitney U test. Second, Fisher's exact test was used to compare the difference between the presence or absence of cortical high-flow sign and CNS WHO grades. Finally, the vessel number and %Vessel were compared between the CNS WHO grade 2 and grade 3 using the Mann-Whitney U test. RESULTS The vessel number and %Vessel were higher in patients with the CHFS+ group than in patients with CHFS- group (p = 0.016 and p = 0.005, respectively). We observed no significant differences (p = 1.00) in the frequency of cortical high-flow sign between the CNS WHO grade 2 and grade 3. In addition, no significant differences are found in the vessel number and %Vessel between the CNS WHO grade 2 and grade 3 (p = 0.121 and p = 0.475, respectively). CONCLUSION The cortical high-flow sign on ASL, which is more commonly found in ODG IDHm-codel than in diffuse glioma with IDH-wildtype or astrocytoma, is associated with the histological cortical vascular density in patients with ODG IDHm-codel.
Collapse
Affiliation(s)
- Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Ryo Murayama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masahiro Itoyama
- Department of Scientific Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaoki Kusunoki
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nobuhiro Fujita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
2
|
Hata N, Fujioka Y, Otsuji R, Kuga D, Hatae R, Sangatsuda Y, Amemiya T, Noguchi N, Sako A, Fujiki M, Mizoguchi M, Yoshimoto K. In-house molecular diagnosis of diffuse glioma updating the revised WHO classification by a platform of the advanced medical care system, Senshin-Iryo. Neuropathology 2024; 44:344-350. [PMID: 38477051 DOI: 10.1111/neup.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Since the World Health Organization (WHO) 2016 revision, the number of molecular markers required for diffuse gliomas has increased, placing a burden on clinical practice. We have established an in-house, molecular diagnostic platform using Senshin-Iryo, a feature of Japan's unique healthcare system, and partially modified the analysis method in accordance with the WHO 2021 revision. Herein, we review over a total 5 years of achievements using this platform. Analyses of IDH, BRAF, and H3 point mutations, loss of heterozygosity (LOH) on 1p/19q and chromosomes 10 and 17, and MGMT methylation were combined into a set that was submitted to Senshin-Iryo as "Drug resistance gene testing for anticancer chemotherapy" and was approved in August 2018. Subsequently, in October 2021, Sanger sequencing for the TERT promoter mutation was added to the set, and LOH analysis was replaced with multiplex ligation-dependent probe amplification (MLPA) to analyze 1p/19q codeletion and newly required genetic markers, such as EGFR, PTEN, and CDKN2A from WHO 2021. Among the over 200 cases included, 54 were analyzed after the WHO 2021 revision. The laboratory has maintained a diagnostic platform where molecular diagnoses are confirmed within 2 weeks. Initial expenditures exceeded the income from patient copayments; however, it has gradually been reduced to running costs alone and is approaching profitability. After the WHO 2021 revision, diagnoses were confirmed using molecular markers obtained from Senshin-Iryo in 38 of 54 cases (70.1%). Among the remaining 16 patients, only four (7.4%) were diagnosed with diffuse glioma, not elsewhere classified, which was excluded in 12 cases where glioblastoma was confirmed by histopathological diagnosis. Our Senshin-Iryo trial functioned as a salvage system to overcome the transition period between continued revisions of WHO classification that has caused a clinical dilemma in the Japanese healthcare system.
Collapse
Affiliation(s)
- Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Amemiya
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka, Japan
| | - Naoki Noguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minoru Fujiki
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Kikuchi K, Togao O, Yamashita K, Momosaka D, Kikuchi Y, Kuga D, Hata N, Mizoguchi M, Yamamoto H, Iwaki T, Hiwatashi A, Ishigami K. Quantitative relaxometry using synthetic MRI could be better than T2-FLAIR mismatch sign for differentiation of IDH-mutant gliomas: a pilot study. Sci Rep 2022; 12:9197. [PMID: 35654812 PMCID: PMC9163057 DOI: 10.1038/s41598-022-13036-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
This study aimed to determine whether quantitative relaxometry using synthetic magnetic resonance imaging (SyMRI) could differentiate between two diffuse glioma groups with isocitrate dehydrogenase (IDH)-mutant tumors, achieving an increased sensitivity compared to the qualitative T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign. Between May 2019 and May 2020, thirteen patients with IDH-mutant diffuse gliomas, including seven with astrocytomas and six with oligodendrogliomas, were evaluated. Five neuroradiologists independently evaluated the presence of the qualitative T2-FLAIR mismatch sign. Interrater agreement on the presence of the T2-FLAIR mismatch sign was calculated using the Fleiss kappa coefficient. SyMRI parameters (T1 and T2 relaxation times and proton density) were measured in the gliomas and compared by the Mann-Whitney U test. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance. The sensitivity, specificity, and kappa coefficient were 57.1%, 100%, and 0.60, respectively, for the qualitative T2-FLAIR mismatch sign. The two types of diffuse gliomas could be differentiated using a cutoff value of 178 ms for the T2 relaxation time parameter with 100% sensitivity, specificity, accuracy, and positive and negative predictive values, with an area under the curve (AUC) of 1.00. Quantitative relaxometry using SyMRI could differentiate astrocytomas from oligodendrogliomas, achieving an increased sensitivity and objectivity compared to the qualitative T2-FLAIR mismatch sign.
Collapse
Affiliation(s)
- Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Koji Yamashita
- National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Daichi Momosaka
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Komori T. Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System. J Transl Med 2022; 102:126-133. [PMID: 34504304 DOI: 10.1038/s41374-021-00667-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
The grading of gliomas based on histological features has been a subject of debate for several decades. A consensus has not yet been reached because of technical limitations and inter-observer variations. While the traditional grading system has failed to stratify the risk of IDH-mutant astrocytoma, canonical histological and proliferative markers may be applicable to the risk stratification of IDH-wild-type astrocytoma. Numerous studies have examined molecular markers in order to obtain more clinically relevant information that will improve the risk stratification of gliomas. The CDKN2A/B homozygous deletion for IDH-mutant astrocytoma and the following three criteria for IDH-wild-type astrocytoma: the concurrent gain of whole chromosome 7 and loss of whole chromosome 10, TERT promoter mutations, and EGFR amplification, were identified as independent molecular markers of the worst clinical outcomes. Therefore, the 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System adopted these molecular markers into the revised grading criteria of IDH-mutant and -wild-type astrocytoma, respectively, as a grading system within tumor types. Of note, several recent studies have shown that some low-grade IDH-wild-type astrocytoma lacking both the molecular glioblastoma signature and genetic alterations typical of pediatric-type gliomas may demonstrate a relatively indolent clinical course, suggesting the existence of lower-grade adult IDH-wild-type astrocytoma. In terms of oligodendroglioma, IDH-mutant, and 1p/19q codeleted, consistent makers that predict poor outcomes have not yet been identified, and, thus, the current criteria have remained unchanged. Molecular testing to fulfill the revised WHO criteria is, however, not always available worldwide, and in that case, an integrated diagnosis combining all available complementary information is highly recommended. This review discusses controversial issues surrounding legacy grading systems and newly identified potential genetic markers of adult diffuse gliomas and provides perspectives on future grading systems.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| |
Collapse
|
5
|
Mizoguchi M, Hata N, Kuga D, Hatae R, Akagi Y, Sangatsuda Y, Fujioka Y, Takigawa K, Funakoshi Y, Suzuki SO, Iwaki T. Clinical implications of molecular analysis in diffuse glioma stratification. Brain Tumor Pathol 2021; 38:210-217. [PMID: 34268651 DOI: 10.1007/s10014-021-00409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
The revised 4th edition of the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO) has introduced the integrated diagnostic classification that combines molecular and histological diagnoses for diffuse gliomas. In this study, we evaluated the molecular alterations for consecutive 300 diffuse glioma cases (grade 2, 56; grade 3, 62; grade 4, 182) based on this classification. Mutations in the isocitrate dehydrogenase (IDH) genes were common in lower grade glioma (LGG: grade2-3), and when combined with 1p/19q status, LGGs could be stratified into three groups except for four cases (Astrocytoma, IDH-mutant: 44; Oligodendroglioma, IDH-mutant and 1p/19q codeleted: 37; Astrocytoma, IDH-wildtype: 33). 1p/19q-codeleted oligodendrogliomas were clinically the most favorable subgroup even with upfront chemotherapy. In contrast, IDH-wildtype astrocytomas had a relatively worse prognosis; however, this subgroup was more heterogeneous. Of this subgroup, 11 cases had TERT promoter (pTERT) mutation with shorter overall survival than 12 pTERT-wildtype cases. Additionally, a longitudinal analysis indicated pTERT mutation as early molecular event for gliomagenesis. Therefore, pTERT mutation is critical for the diagnosis of molecular glioblastoma (WHO grade 4), regardless of histological findings, and future treatment strategy should be considered based on the precise molecular analysis.
Collapse
Affiliation(s)
- Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yojiro Akagi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Santisukwongchote S, Teerapakpinyo C, Chankate P, Techavichit P, Boongird A, Sathornsumetee S, Thammachantha S, Cheunsuchon P, Tanboon J, Thorner PS, Shuangshoti S. Simplified approach for pathological diagnosis of diffuse gliomas in adult patients. Pathol Res Pract 2021; 223:153483. [PMID: 34022681 DOI: 10.1016/j.prp.2021.153483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023]
Abstract
The most recent WHO classification (2016) for gliomas introduced integrated diagnoses requiring both phenotypic and genotypic data. This approach presents difficulties for countries with limited resources for laboratory testing. The present study describes a series of 118 adult Thai patients with diffuse gliomas, classified by the WHO 2016 classification. The purpose was to demonstrate how a diagnosis can still be achieved using a simplified approach that combines clinical, morphological, immunohistochemical, and fewer molecular assays than typically performed. This algorithm starts with tumor location (midline vs. non-midline) with diffuse midline glioma identified by H3 K27M immunostaining. All other tumors are placed into one of 6 categories, based on morphologic features rather than specific diagnoses. Molecular testing is limited to IDH1/IDH2 mutations, plus co-deletion of 1p/19q for cases with oligodendroglial features and TERT promoter mutation for cases without such features. Additional testing for co-deletion of 1p/19q, TERT promoter mutation and BRAF mutations are only used in selected cases to refine diagnosis and prognosis. With this approach, we were able to reach the integrated diagnosis in 117/118 cases, saving 50 % of the costs of a more inclusive testing panel. The demographic data and tumor subtypes were found to be similar to series from other regions of the world. To the best of our knowledge, this is to the first reported series of diffuse gliomas in South-East Asia categorized by the WHO 2016 classification system.
Collapse
Affiliation(s)
- Sakun Santisukwongchote
- Dept. of Pathology, Faculty of Medicine, Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Chinnachote Teerapakpinyo
- Chulalongkorn GenePRO Center, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyamai Chankate
- Chulalongkorn GenePRO Center, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piti Techavichit
- Division of Hematology and Oncology, Dept. of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Atthaporn Boongird
- Neurosurgical Unit, Dept. of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sith Sathornsumetee
- Dept. of Medicine (Neurology), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Samasuk Thammachantha
- Dept. of Pathology, Neurological Institute of Thailand, Dept. of Medical Service, Ministry of Public Health, Bangkok, 10400, Thailand
| | - Pornsuk Cheunsuchon
- Dept. of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jantima Tanboon
- Dept. of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Paul Scott Thorner
- Dept. of Pathology, Faculty of Medicine, Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
| | - Shanop Shuangshoti
- Dept. of Pathology, Faculty of Medicine, Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand; Chulalongkorn GenePRO Center, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Zeng C, Wang J, Li M, Wang H, Lou F, Cao S, Lu C. Comprehensive Molecular Characterization of Chinese Patients with Glioma by Extensive Next-Generation Sequencing Panel Analysis. Cancer Manag Res 2021; 13:3573-3588. [PMID: 33953611 PMCID: PMC8092857 DOI: 10.2147/cmar.s291681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Background Tremendous efforts have been made to explore biomarkers for classifying and grading glioma. However, the majority of the current understanding is based on public databases that might not accurately reflect the Asian population. Here, we investigated the genetic landscape of Chinese glioma patients using a validated multigene next-generation sequencing (NGS) panel to provide a strong rationale for the future classification and prognosis of glioma in this population. Methods We analyzed 83 samples, consisting of 71 initial treatments and 12 recurrent surgical tumors, from 81 Chinese patients with gliomas by performing multigene NGS with an Acornmed panel targeting 808 cancer-related hotspot genes, including genes related to glioma (hotspots, selected exons or complete coding sequences) and full-length SNPs located on chromosomes 1 and 19. Results A total of 76 (91.57%) glioma samples had at least one somatic mutation. The most commonly mutated genes were TP53, TERT, IDH1, PTEN, ATRX, and EGFR. Approximately one-third of cases exhibited more than one copy number variation. Of note, this study identified the amplification of genes, such as EGFR and PDGFRA, which were significantly associated with glioblastoma but had not been previously used for clinical classification (P<0.05). Significant differences in genomic profiles between different pathological subtypes and WHO grade were observed. Compared to the MSKCC database primarily comprised of Caucasians, H3F3A mutations and MET amplifications exhibited higher mutation rates, whereas TERT mutations and EGFR and CDKN2A/B copy number variations presented a lower mutation rate in Chinese patients with glioma (P<0.05). Conclusion Our multigene NGS in the simultaneous evaluation of multiple relevant markers revealed several novel genetic alterations in Chinese patients with glioma. NGS-based molecular analysis is a reliable and effective method for diagnosing brain tumors, assisting clinicians in evaluating additional potential therapeutic options, such as targeted therapy, for glioma patients in different racial/ethnic groups.
Collapse
Affiliation(s)
- Chun Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China
| | - Jing Wang
- Department of Neurosurgery, Peking University International Hospital, Beijing, People's Republic of China
| | - Mingwei Li
- Acornmed Biotechnology Co., Ltd, Beijing, People's Republic of China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd, Beijing, People's Republic of China
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd, Beijing, People's Republic of China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd, Beijing, People's Republic of China
| | - Changyu Lu
- Department of Neurosurgery, Peking University International Hospital, Beijing, People's Republic of China
| |
Collapse
|
8
|
Kong Z, Jiang C, Liu D, Chen W, Ma W, Cheng X, Wang Y. Quantitative Features From CHO PET Distinguish the WHO Grades of Primary Diffuse Glioma. Clin Nucl Med 2021; 46:103-110. [PMID: 33208625 DOI: 10.1097/rlu.0000000000003406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to investigate the quantitative 18F-fluoroethylcholine (CHO) PET characteristics for differentiating lower-grade glioma (LGG) from glioblastoma (GBM). PATIENTS AND METHODS Thirty-nine patients who underwent CHO PET with histopathologically confirmed primary diffuse glioma were prospectively enrolled. The 3-dimensional region of interest was semiautomatically defined based on the SUV threshold, and a total of 74 quantitative features, including 13 shape features, 31 SUV-based features, and 30 normalized SUV-based features, were calculated. Wilcoxon rank sum test, receiver operating characteristic curve, and correlation coefficient analyses were applied to select independent representative features, and patient prognosis was stratified by the World Health Organization (WHO) grade and CHO features. RESULTS A total of 89.2% of the quantitative features were significantly different between LGG and GBM, and the SUV-based features displayed higher area under the receiver operating characteristic curve (AUC) values than the other feature groups. Among the 5 traditional features, the SUVmax and the total lesion CHO uptake were the most distinguishing, with AUCs of 0.880 and 0.860 (0.938 and 0.927 after reclassification of 2 outliers), respectively, both of which could also stratify patient prognosis better than WHO grade. Five alternative features, including 2 shape features and 3 SUV-based features, were considered representative, with AUCs ranging from 0.754 to 0.854. CONCLUSIONS Quantitative features from CHO PET are reliable in determining the WHO grade of primary diffuse gliomas. Our findings suggest that GBM has a larger volume, a more spherical shape, higher choline activity in most interval segments, and a more symmetrical distribution than LGG.
Collapse
Affiliation(s)
| | | | - Delin Liu
- Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Wenbin Ma
- From the Departments of Neurosurgery
| | - Xin Cheng
- Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- From the Departments of Neurosurgery
| |
Collapse
|
9
|
Xu S, Tang L, Dai G, Luo C, Liu Z. Expression of m6A Regulators Correlated With Immune Microenvironment Predicts Therapeutic Efficacy and Prognosis in Gliomas. Front Cell Dev Biol 2020; 8:594112. [PMID: 33240891 PMCID: PMC7683617 DOI: 10.3389/fcell.2020.594112] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background N6-methyladenosine (m6A) RNA methylation and tumor immune microenvironment played crucial roles in cancer development. However, their association in gliomas remains to be fully elucidated. Methods A total of 2144 glioma patients from CGGA, TCGA, and Rembrandt databases were extracted in our study, in which 325 were set as the training cohort and 1819 were defined as the validation cohort. Survival differences evaluated by Kaplan-Meier analysis between groups. Patients were clustered into subgroups by consensus clustering. ESTIMATE algorithm was applied to calculate immune and stroma scores. The infiltration of immune cells was characterized by TIMER algorithm. The risk signature was constructed by multivariate Cox regression analysis. Results Nineteen m6A regulators were highly expressed in glioma tissues. The expression of m6A regulators was associated with prognoses, grade, isocitrate dehydrogenase (IDH) status, and 1p19q status of gliomas. Two subgroups were identified by consensus clustering, in which cluster 1 was associated with favorable prognosis, high stroma and immune scores, and high immune infiltration. When the patients were divided into high risk and low risk groups based on their risk scores, we found that patients in the high risk group had poor prognoses. Besides, patients in the high risk group had a higher stroma and immune scores, and higher abundance of immune infiltration. These results were further verified in the validation cohort, which contained three independent datasets. Moreover, patients in the low risk group enjoyed better prognoses without chemoradiotherapy or single chemotherapy. Conclusion Our study revealed that m6A regulators could predict the prognosis and therapeutic efficacy, and were also associated with the immune microenvironment in gliomas.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Lu Tang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Gan Dai
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengke Luo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Sarhan AM. Brain Tumor Classification in Magnetic Resonance Images Using Deep Learning and Wavelet Transform. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/jbise.2020.136010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Akimoto J, Fukami S, Suda T, Ichikawa M, Haraoka R, Kohno M, Shishido-Hara Y, Nagao T, Kuroda M. First autopsy analysis of the efficacy of intra-operative additional photodynamic therapy for patients with glioblastoma. Brain Tumor Pathol 2019; 36:144-151. [PMID: 31487014 DOI: 10.1007/s10014-019-00351-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
The study aim to demonstrate the therapeutic tissue depth of photodynamic therapy (PDT) using the photosensitizer talaporfin sodium and semiconductor laser for malignant glioma from an autopsy finding. Three patients diagnosed with glioblastoma by pre-operative imaging (1 newly diagnosed patient and 2 patients with recurrence) were treated with intra-operative additional PDT and adjuvant therapy such as post-operative radiotherapy or chemotherapy. All three patients died of brain stem dysfunction owing to cerebrospinal fluid dissemination or direct invasion of the tumor cells from 13, 18, or 20 months after PDT. Antemortem magnetic resonance images demonstrated no tumor recurrence in the site of PDT, and autopsy was performed for the pathological analysis. Macroscopic observation demonstrated no tumor recurrence in two patients, but one patient demonstrated tumor recurrence in the therapeutic depth of PDT. Microscopic analysis demonstrated histopathological changes reaching depths of 9, 11, and 18 mm (mean: 12.7 mm) from the surface of the cavity of tumor resection, suggesting the therapeutic tissue depth of PDT to be in this range. This region demonstrated glial scarring with infiltration of T lymphocytes and macrophages, with slight degeneration of small vessel walls. However, viable tumor tissues were observed beyond or around the therapeutic tissue depth of PDT in two patients. PDT for glioblastoma prevented early local recurrence, which suggests the possibility that activation of the immune mechanisms was involved. The therapeutic tissue depth was suggested to be 9-18 mm from the surface of the cavity of tumor resection; however, the viable tumor tissues were demonstrated beyond this therapeutic range.
Collapse
Affiliation(s)
- Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan. .,Department of Neurosurgery, Kohsei Chuo General Hospital, Tokyo, Japan.
| | - Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Tomohiro Suda
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Megumi Ichikawa
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Rei Haraoka
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | | | - Toshitaka Nagao
- Department of Human Pathology, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Ochirjav E, Enkhbat B, Baldandorj T, Choe G. Reclassification of Mongolian Diffuse Gliomas According to the Revised 2016 World Health Organization Central Nervous System Tumor Classification. J Pathol Transl Med 2019; 53:298-307. [PMID: 31370384 PMCID: PMC6755654 DOI: 10.4132/jptm.2019.07.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Background The 2016 World Health Organization (WHO) classification of central nervous system (CNS) tumors has been modified to incorporate the IDH mutation and 1p/19q co-deletion in the diagnosis of diffuse gliomas. In this study, we aimed to evaluate the feasibility and prognostic significance of the revised 2016 WHO classification of CNS tumors in Mongolian patients with diffuse gliomas. Methods A total of 124 cases of diffuse gliomas were collected, and tissue microarray blocks were made. IDH1 mutation was tested using immunohistochemistry, and 1p/19q co-deletion status was examined using fluorescence in situ hybridization analysis. Results According to the 2016 WHO classification, 124 cases of diffuse brain glioma were reclassified as follows: 10 oligodendroglioma, IDHmut and 1p/19q co-deleted; three anaplastic oligodendroglioma, IDHmut and 1p/19q co-deleted; 35 diffuse astrocytoma, IDHmut, 11 diffuse astrocytoma, IDHwt, not otherwise specified (NOS); 22 anaplastic astrocytoma, IDHmut, eight anaplastic astrocytoma, IDHwt, NOS; and 35 glioblastoma, IDHwt, NOS, respectively. The 2016 WHO classification presented better prognostic value for overall survival in patients with grade II tumors than traditional histological classification. Among patients with grade II tumors, those with oligodendroglioma IDHmut and 1p/19q co-deleted and diffuse astrocytoma IDHmut showed significantly higher survival than those with diffuse astrocytoma IDHwt, NOS (p<.01). Conclusions Mongolian diffuse gliomas could be reclassified according to the new 2016 WHO classification. Reclassification revealed substantial changes in diagnosis of both oligodendroglial and astrocytic entities. We have confirmed that the revised 2016 WHO CNS tumor classification has prognostic significance in Mongolian patients with diffuse gliomas, especially those with grade II tumors.
Collapse
Affiliation(s)
- Enkhee Ochirjav
- Department of Pathology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Bayarmaa Enkhbat
- Department of Pathology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Tuul Baldandorj
- Department of Pathology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
13
|
Kim D, Chun JH, Kim SH, Moon JH, Kang SG, Chang JH, Yun M. Re-evaluation of the diagnostic performance of 11C-methionine PET/CT according to the 2016 WHO classification of cerebral gliomas. Eur J Nucl Med Mol Imaging 2019; 46:1678-1684. [PMID: 31102001 DOI: 10.1007/s00259-019-04337-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE We evaluated the usefulness of 11C-methionine (MET) positron emission tomography/computed tomography (PET/CT) for grading cerebral gliomas according to the 2016 WHO classification with special emphasis on the presence of the isocitrate dehydrogenase 1 (IDH1) gene mutation and 1p/19q codeletion. METHODS In total, 144 patients underwent MET PET/CT before surgery. The ratios of the maximum standardized uptake value (SUV) of the gliomas to the mean SUV of the contralateral cortex on MET PET/CT (MET TNR) were calculated. RESULTS The median MET TNRs in IDH1-mutant and IDH1-wildtype tumours were 1.95 and 3.35, respectively. From among 74 IDH1-mutant tumours, the oligodendrogliomas showed a higher median MET TNR than the astrocytic tumours (2.90 vs. 1.40, P < 0.001). In grade II, III and IV IDH1-mutant astrocytic tumours, the median MET TNRs were 1.20, 2.05 and 2.20, respectively (grade II vs. grade III, P < 0.0001; grade II vs. grade IV, P = 0.023). In oligodendrogliomas, the MET TNR was lower fin grade II tumours than in grade III tumours (2.30 vs. 3.30 P = 0.008). In differentiating low-grade (grade II) from high-grade (grade III and IV) gliomas, receiver operating characteristic analysis showed a higher area under the curve for wildtype tumours (0.976) than for all tumours (0.852; P < 0.001) and IDH1-mutant tumours (0.817; P = 0.004). CONCLUSION IDH1-mutant tumours showed lower MET uptake than IDH1-wildtype tumours. Regardless of IDH1 mutation status, oligodendrogliomas with 1p/19q codeletion showed MET uptake as high as that in high-grade IDH1-wildtype tumours. Therefore, MET uptake for glioma grading was more consistent for IDH1-wildtype tumours than for IDH1-mutant tumours.
Collapse
Affiliation(s)
- Dongwoo Kim
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| |
Collapse
|
14
|
Cytometric analysis of cell suspension generated by cavitron ultrasonic surgical aspirator in pediatric brain tumors. J Neurooncol 2019; 143:15-25. [PMID: 30827009 DOI: 10.1007/s11060-019-03135-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/23/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE The aim of this study was to test the possibility of using specimens obtained by a cavitron ultrasonic surgical aspirator (CUSA) in flow and mass cytometry investigations of pediatric brain tumors. METHODS CUSA specimens obtained from 19 pediatric patients with brain tumors were investigated. Flow and mass cytometry methods were applied to analyze the composition of material collected using the CUSA. Cell suspensions were prepared from CUSA aspirates. Then sample viability was assessed by conventional flow cytometry and subsequently stained with a panel of 31 metal-labeled antibodies. RESULTS Viability assessment was performed using conventional flow cytometry. Viability of cells in the acquired samples was below 50% in 16 of 19 cases. A mass cytometry investigation and subsequent analysis enabled us to discriminate brain tumor cells from contaminating leukocytes, whose proportions varied across the specimens. The addition of the viability marker cisplatin directly into the mass cytometry panel gave the means to selecting viable cells only for subsequent analyses. The proportion of non-viable cells was higher among tumor cells compared leukocytes. CONCLUSIONS When the analysis of the tumor cell immunophenotype is performed with markers for determining viability, the expression of the investigated markers can be evaluated. Suitable markers can be selected by high-throughput methods, such as mass cytometry, and those that are diagnostically relevant can be investigated using flow cytometry, which is more flexible in terms of time.
Collapse
|
15
|
Zhang GH, Zhong QY, Gou XX, Fan EX, Shuai Y, Wu MN, Yue GJ. Seven genes for the prognostic prediction in patients with glioma. Clin Transl Oncol 2019; 21:1327-1335. [PMID: 30762207 DOI: 10.1007/s12094-019-02057-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Glioma is a common malignant tumor of the central nervous system, which is characterized by a low cure rate, high morbidity, and high recurrence rate. Consequently, it is imperative to explore some indicators for prognostic prediction in glioma. METHODS We obtained glioma data from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) were obtained by R software from TCGA data sets. Through Cox regression analysis, risk scores were obtained to assess the weighted gene-expression levels, which could predict the prognosis of patients with glioma. The validity and the prognostic value of this model in glioma were confirmed by the manifestation of receiver-operating characteristic (ROC) curves, area under the curve (AUC), and 5-year overall survival (OS). RESULTS In total, 920 DEGs of transcriptome genes in glioma were extracted from the TCGA database. We identified a novel seven-gene signature associated with glioma. Among them, AL118505.1 and SMOC1 were positively related to the 5-year OS of patients with glioma, showing a better prognosis for glioma; however, RAB42, SHOX2, IGFBP2, HIST1H3G, and IGF2BP3 were negatively related to 5-year OS, displaying a worse prognosis. In addition, according to risk scores, AL118505.1 was also a protective factor, while others were risk factors. Furthermore, the expression levels of SHOX2, IGFBP2, and IGF2BP3 were significantly positively correlated with glioma grades. Receiver-operating characteristic (ROC) curve assessed the accuracy and sensitivity of the gene signature. Each of the seven genes for patients with the distribution of the risk score was presented in the heat map. CONCLUSION We identified a novel seven-gene signature in patients with glioma, which could be used as a predictor for the prognosis of patients with glioma in the future.
Collapse
Affiliation(s)
- G-H Zhang
- Department of Head and Neck Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, People's Republic of China.
| | - Q-Y Zhong
- Department of Head and Neck Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - X-X Gou
- Department of Head and Neck Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - E-X Fan
- Department of Head and Neck Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - Y Shuai
- Department of Head and Neck Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - M-N Wu
- Department of Head and Neck Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - G-J Yue
- Department of Head and Neck Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, People's Republic of China.
| |
Collapse
|