1
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Cihan M, Schmauck G, Sprang M, Andrade-Navarro MA. Unveiling cell-type-specific microRNA networks through alternative polyadenylation in glioblastoma. BMC Biol 2025; 23:15. [PMID: 39838429 PMCID: PMC11752630 DOI: 10.1186/s12915-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by its cellular complexity, with a microenvironment consisting of diverse cell types, including oligodendrocyte precursor cells (OPCs) and neoplastic CD133 + radial glia-like cells. This study focuses on exploring the distinct cellular transitions in GBM, emphasizing the role of alternative polyadenylation (APA) in modulating microRNA-binding and post-transcriptional regulation. RESULTS Our research identified unique APA profiles that signify the transitional phases between neoplastic cells and OPCs, underscoring the importance of APA in cellular identity and transformation in GBM. A significant finding was the disconnection between differential APA events and gene expression alterations, indicating that APA operates as an independent regulatory mechanism. We also highlighted the specific genes in neoplastic cells and OPCs that lose microRNA-binding sites due to APA, which are crucial for maintaining stem cell characteristics and DNA repair, respectively. The constructed networks of microRNA-transcription factor-target genes provide insights into the cellular mechanisms influencing cancer cell survival and therapeutic resistance. CONCLUSIONS This study elucidates the APA-driven regulatory framework within GBM, spotlighting its influence on cell state transitions and microRNA network dynamics. Our comprehensive analysis using single-cell RNA sequencing data to investigate the microRNA-binding sites altered by APA profiles offers a robust foundation for future research, presenting a novel approach to understanding and potentially targeting the complex molecular interplay in GBM.
Collapse
Affiliation(s)
- Mert Cihan
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Greta Schmauck
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | |
Collapse
|
3
|
Nohman AI, Schwarm FP, Stein M, Schänzer A, Koch C, Uhl E, Kolodziej M. Significantly higher expression of high-mobility group AT hook protein 2 (HMGA2) in the border zone of glioblastoma. J Neurosurg Sci 2024; 68:668-675. [PMID: 36987772 DOI: 10.23736/s0390-5616.22.05903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND High-mobility group AT-hook protein 2 (HMGA2) is a gene regulatory protein that is correlated with metastatic potential and poor prognosis. It has been shown that HMGA2 is overexpressed in various tumors such as lung cancer or pancreatic cancer. The invasive character and highly aggressive structure of glioblastoma let us to investigate HMGA2 expression in the border zone of the tumor more closely. We compared HMGA2 expression between glioblastoma and normal brain tissue. In addition, we analyzed and compared HMGA2 expression in the border and center zones of tumors. Correlation tests between HMGA expression and clinical parameters such as MGMT-status and survival were performed. METHODS Samples from 23 patients with WHO grade 4 glioblastomas were analyzed for HMGA2 expression using quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) and correlated with clinical parameters. The areas from the tumor center and border were analyzed separately. Two normal brain tissue specimens were used as the controls. RESULTS Our results confirm that HMGA2 is higher expressed in glioblastoma compared to healthy brain tissue (qPCR, P=0.013; IHC, P=0.04). Moreover, immunohistochemistry revealed significantly higher HMGA2 expression in the border zone of the tumor than in the tumor center zone (P=0.012). Survival analysis revealed a tendency for shorter survival when HMGA2 was highly expressed in the border zone. CONCLUSIONS The results reveal an overexpression of HMGA2 in the border zone of glioblastomas; thus, the expression cluster of HMGA2 seems to be heterogenous and thorough borough surgical resection of the vital and aggressive border cells might be important to inhibit the invasive character of the tumor.
Collapse
Affiliation(s)
- Amin I Nohman
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany -
- Unit of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht Karl University Hospital of Heidelberg, Heidelberg, Germany -
| | - Frank P Schwarm
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | - Marco Stein
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | - Anne Schänzer
- Department of Neuropathology, Justus-Liebig University Giessen, Giessen, Germany
| | - Christian Koch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Eberhard Uhl
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
4
|
Shamaeizadeh N, Mirian M. MicroRNA-219 in the central nervous system: a potential theranostic approach. Res Pharm Sci 2024; 19:634-655. [PMID: 39911893 PMCID: PMC11792714 DOI: 10.4103/rps.rps_163_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 02/07/2025] Open
Abstract
Despite the recent therapeutic advances in neurological disorders, curative therapy remains a serious challenge in many cases. Even though recent years have witnessed the development of gene therapy from among the different therapeutic approaches affecting pathophysiological mechanisms, intriguing aspects exist regarding the effectiveness, safety, and mechanism of action of gene therapies. Micro ribonucleic acid (microRNA-miRNA), as a fundamental gene regulator, regulates messenger ribonucleic acid (mRNA) by directly binding through the 3'-untranslated region (3'-UTR). MicroRNA-219 is a specific brain-enriched miRNA associated with neurodevelopmental disorders that play crucial roles in the differentiation of oligodendrocyte progenitorcells, promotion of oligodendrocyte maturation, remyelination, and cognitive functions to the extent that it can be considered a potential therapeutic option for demyelination in multiple sclerosis and spinal cord injury and reverse chronic inflammation pains. Additionally, miR-219 regulates the circadian clock, influencing the duration of the circadian clock period. This regulation can impact mood stability and is associated with phase fluctuations in bipolar patients. Furthermore, miR-219 also plays a role in modulating tau toxicity, which is relevant to the pathophysiology of Alzheimer's disease and schizophrenia. Finally, it reportedly has protective effects against seizures and Parkinson's disease, as well as neoplasms, by inhibiting proliferation, suppressing invasion, and inducing cell death in tumor cells. Exploring the miR-219 molecular pathways and their therapeutic effects on central nervous system disorders and the mechanisms involved, the present review study aims to illustrate how this information may change the future of gene therapy.
Collapse
Affiliation(s)
- Nahal Shamaeizadeh
- Department of Pharmaceutics and Novel Drug Delivery Systems Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
5
|
Ma C, Chen J, Ji J, Zheng Y, Liu Y, Wang J, Chen T, Chen H, Chen Z, Zhou Q, Hou C, Ke Y. Therapeutic modulation of APP-CD74 axis can activate phagocytosis of TAMs in GBM. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167449. [PMID: 39111632 DOI: 10.1016/j.bbadis.2024.167449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Glioblastoma multiforme (GBM) remains the most lethal central nervous system cancer with poor survival and few targeted therapies. The GBM tumor microenvironment is complex and closely associated with outcomes. Here, we analyzed the cell-cell communication within the microenvironment and found the high level of cell communication between GBM tumor cells and tumor-associated macrophages (TAMs). We found that the amyloid protein precursor (APP)-CD74 axis displayed the highest levels of communication between GBM tumor cells and TAMs, and that APP and CD74 expression levels were significantly corelated with poorer patient outcomes. We showed that the expression of APP on the surface of GBM inhibited phagocytosis of TAMs through the binding of APP to the CD74/CXCR4 cell surface receptor complex. We further demonstrated that disrupting the APP-CD74 axis could upregulated the phagocytosis of TAMs in vitro and in vivo. Finally, we demonstrated that APP promotes the phosphorylation of SHP-1 by binding to CD74. Together, our findings revealed that the APP-CD74 axis was a highly expressed anti-phagocytic signaling pathway that may be a potential immunotherapeutic target for GBM.
Collapse
Affiliation(s)
- Chengcheng Ma
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiawen Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jingsen Ji
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yaofeng Zheng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yang Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Taoliang Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huajian Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zetao Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Quanwei Zhou
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chongxian Hou
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
6
|
White J, White MPJ, Wickremesekera A, Peng L, Gray C. The tumour microenvironment, treatment resistance and recurrence in glioblastoma. J Transl Med 2024; 22:540. [PMID: 38844944 PMCID: PMC11155041 DOI: 10.1186/s12967-024-05301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
The adaptability of glioblastoma (GBM) cells, encouraged by complex interactions with the tumour microenvironment (TME), currently renders GBM an incurable cancer. Despite intensive research, with many clinical trials, GBM patients rely on standard treatments including surgery followed by radiation and chemotherapy, which have been observed to induce a more aggressive phenotype in recurrent tumours. This failure to improve treatments is undoubtedly a result of insufficient models which fail to incorporate components of the human brain TME. Research has increasingly uncovered mechanisms of tumour-TME interactions that correlate to worsened patient prognoses, including tumour-associated astrocyte mitochondrial transfer, neuronal circuit remodelling and immunosuppression. This tumour hijacked TME is highly implicated in driving therapy resistance, with further alterations within the TME and tumour resulting from therapy exposure inducing increased tumour growth and invasion. Recent developments improving organoid models, including aspects of the TME, are paving an exciting future for the research and drug development for GBM, with the hopes of improving patient survival growing closer. This review focuses on GBMs interactions with the TME and their effect on tumour pathology and treatment efficiency, with a look at challenges GBM models face in sufficiently recapitulating this complex and highly adaptive cancer.
Collapse
Affiliation(s)
- Jasmine White
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | | | - Agadha Wickremesekera
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
7
|
Bugakova AS, Chudakova DA, Myzina MS, Yanysheva EP, Ozerskaya IV, Soboleva AV, Baklaushev VP, Yusubalieva GM. Non-Tumor Cells within the Tumor Microenvironment-The "Eminence Grise" of the Glioblastoma Pathogenesis and Potential Targets for Therapy. Cells 2024; 13:808. [PMID: 38786032 PMCID: PMC11119139 DOI: 10.3390/cells13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. GBM has high levels of therapy failure and its prognosis is usually dismal. The phenotypic heterogeneity of the tumor cells, dynamic complexity of non-tumor cell populations within the GBM tumor microenvironment (TME), and their bi-directional cross-talk contribute to the challenges of current therapeutic approaches. Herein, we discuss the etiology of GBM, and describe several major types of non-tumor cells within its TME, their impact on GBM pathogenesis, and molecular mechanisms of such an impact. We also discuss their value as potential therapeutic targets or prognostic biomarkers, with reference to the most recent works on this subject. We conclude that unless all "key player" populations of non-tumor cells within the TME are considered, no breakthrough in developing treatment for GBM can be achieved.
Collapse
Affiliation(s)
- Aleksandra S. Bugakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Maria S. Myzina
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Elvira P. Yanysheva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Iuliia V. Ozerskaya
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Alesya V. Soboleva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
8
|
Abdolahi M, Ghaedi Talkhounche P, Derakhshan Nazari MH, Hosseininia HS, Khoshdel-Rad N, Ebrahimi Sadrabadi A. Functional Enrichment Analysis of Tumor Microenvironment-Driven Molecular Alterations That Facilitate Epithelial-to-Mesenchymal Transition and Distant Metastasis. Bioinform Biol Insights 2024; 18:11779322241227722. [PMID: 38318286 PMCID: PMC10840405 DOI: 10.1177/11779322241227722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Nowadays, hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths, and identifying the effective factors in causing this disease can play an important role in its prevention and treatment. Tumors provide effective agents for invasion and metastasis to other organs by establishing appropriate communication between cancer cells and the microenvironment. Epithelial-to-mesenchymal transition (EMT) can be mentioned as one of the effective phenomena in tumor invasion and metastasis. Several factors are involved in inducing this phenomenon in the tumor microenvironment, which helps the tumor survive and migrate to other places. It can be effective to identify these factors in the use of appropriate treatment strategies and greater patient survival. This study investigated the molecular differences between tumor border cells and tumor core cells or internal tumor cells in HCC for specific EMT genes. Expression of NOTCH1, ID1, and LST1 genes showed a significant increase at the HCC tumor border. Targeting these genes can be considered as a useful therapeutic strategy to prevent distant metastasis in HCC patients.
Collapse
Affiliation(s)
- Mahnaz Abdolahi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hossein Derakhshan Nazari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Haniyeh Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Medical Science, Islamic Azad University of Medical Sciences, Tehran, Iran
- Cytotech & Bioinformatics Research Group, Bioinformatics Department, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Cytotech & Bioinformatics Research Group, Bioinformatics Department, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
| |
Collapse
|
9
|
Fei X, Wu J, Tian H, Jiang D, Chen H, Yan K, Wang Y, Zhao Y, Chen H, Xie X, Wang Z, Zhu W, Huang Q. Glioma stem cells remodel immunotolerant microenvironment in GBM and are associated with therapeutic advancements. Cancer Biomark 2024; 41:1-24. [PMID: 39240627 PMCID: PMC11492047 DOI: 10.3233/cbm-230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS). Glioblastoma (GBM) is incurable with current treatment strategies. Additionally, the treatment of recurrent GBM (rGBM) is often referred to as terminal treatment, necessitating hospice-level care and management. The presence of the blood-brain barrier (BBB) gives GBM a more challenging or "cold" tumor microenvironment (TME) than that of other cancers and gloma stem cells (GSCs) play an important role in the TME remodeling, occurrence, development and recurrence of giloma. In this review, our primary focus will be on discussing the following topics: niche-associated GSCs and macrophages, new theories regarding GSC and TME involving pyroptosis and ferroptosis in GBM, metabolic adaptations of GSCs, the influence of the cold environment in GBM on immunotherapy, potential strategies to transform the cold GBM TME into a hot one, and the advancement of GBM immunotherapy and GBM models.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Haiyan Tian
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of GCP, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Dongyi Jiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Hanchun Chen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ke Yan
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangtong Xie
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Wenyu Zhu
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Qiang Huang
- Department of Neurosurgery, Second Affiliated Hospital of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Haydo A, Wehle A, Herold-Mende C, Kögel D, Pampaloni F, Linder B. Combining organotypic tissue culture with light-sheet microscopy (OTCxLSFM) to study glioma invasion. EMBO Rep 2023; 24:e56964. [PMID: 37938214 DOI: 10.15252/embr.202356964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
Glioblastoma is a very aggressive tumor and represents the most common primary brain malignancy. Key characteristics include its high resistance against conventional treatments, such as radio- and chemotherapy and its diffuse tissue infiltration, preventing complete surgical resection. The analysis of migration and invasion processes in a physiological microenvironment allows for enhanced understanding of these phenomena and can lead to improved therapeutic approaches. Here, we combine two state-of-the-art techniques, adult organotypic brain tissue slice culture (OTC) and light-sheet fluorescence microscopy (LSFM) of cleared tissues in a combined method termed OTCxLSFM. Using this methodology, we can show that glioblastoma tissue infiltration can be effectively blocked through treatment with arsenic trioxide or WP1066, as well as genetic depletion of the tetraspanin, transmembrane receptor CD9, or signal transducer and activator of transcription 3 (STAT3). With our analysis pipeline, we gain single-cell level, three-dimensional information, as well as insights into the morphological appearance of the tumor cells.
Collapse
Affiliation(s)
- Alicia Haydo
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrej Wehle
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) Partner site Frankfurt/Main, a partnership between DKFZ and Goethe University Hospital, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Blanchard R, Adjei I. Engineering the glioblastoma microenvironment with bioactive nanoparticles for effective immunotherapy. RSC Adv 2023; 13:31411-31425. [PMID: 37901257 PMCID: PMC10603567 DOI: 10.1039/d3ra01153d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
While immunotherapies have revolutionized treatment for other cancers, glioblastoma multiforme (GBM) patients have not shown similar positive responses. The limited response to immunotherapies is partly due to the unique challenges associated with the GBM tumor microenvironment (TME), which promotes resistance to immunotherapies, causing many promising therapies to fail. There is, therefore, an urgent need to develop strategies that make the TME immune permissive to promote treatment efficacy. Bioactive nano-delivery systems, in which the nanoparticle, due to its chemical composition, provides the pharmacological function, have recently emerged as an encouraging option for enhancing the efficacy of immunotherapeutics. These systems are designed to overcome immunosuppressive mechanisms in the TME to improve the efficacy of a therapy. This review will discuss different aspects of the TME and how they impede therapy success. Then, we will summarize recent developments in TME-modifying nanotherapeutics and the in vitro models utilized to facilitate these advances.
Collapse
Affiliation(s)
- Ryan Blanchard
- Department of Biomedical Engineering, Texas A&M University TX USA
| | - Isaac Adjei
- Department of Biomedical Engineering, Texas A&M University TX USA
| |
Collapse
|
12
|
Erices JI, Bizama C, Niechi I, Uribe D, Rosales A, Fabres K, Navarro-Martínez G, Torres Á, San Martín R, Roa JC, Quezada-Monrás C. Glioblastoma Microenvironment and Invasiveness: New Insights and Therapeutic Targets. Int J Mol Sci 2023; 24:7047. [PMID: 37108208 PMCID: PMC10139189 DOI: 10.3390/ijms24087047] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain cancer in adults. Without treatment the mean patient survival is approximately 6 months, which can be extended to 15 months with the use of multimodal therapies. The low effectiveness of GBM therapies is mainly due to the tumor infiltration into the healthy brain tissue, which depends on GBM cells' interaction with the tumor microenvironment (TME). The interaction of GBM cells with the TME involves cellular components such as stem-like cells, glia, endothelial cells, and non-cellular components such as the extracellular matrix, enhanced hypoxia, and soluble factors such as adenosine, which promote GBM's invasiveness. However, here we highlight the role of 3D patient-derived glioblastoma organoids cultures as a new platform for study of the modeling of TME and invasiveness. In this review, the mechanisms involved in GBM-microenvironment interaction are described and discussed, proposing potential prognosis biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- José Ignacio Erices
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina Bizama
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Ignacio Niechi
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Daniel Uribe
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Arnaldo Rosales
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Karen Fabres
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Giovanna Navarro-Martínez
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ángelo Torres
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca 8370003, Chile
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudia Quezada-Monrás
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
13
|
Shibahara I, Saito R, Kanamori M, Sonoda Y, Sato S, Hide T, Tominaga T, Kumabe T. Role of the parietooccipital fissure and its implications in the pathophysiology of posterior medial temporal gliomas. J Neurosurg 2022; 137:505-514. [PMID: 34905728 DOI: 10.3171/2021.7.jns21990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The parietooccipital fissure is an anatomical landmark that divides the temporal, occipital, and parietal lobes. More than 40% of gliomas are located in these three lobes, and the temporal lobe is the most common location. The parietooccipital fissure is located just posterior to the medial temporal lobe, but little is known about the clinical significance of this fissure in gliomas. The authors investigated the anatomical correlations between the parietooccipital fissure and posterior medial temporal gliomas to reveal the radiological features and unique invasion patterns of these gliomas. METHODS The authors retrospectively reviewed records of all posterior medial temporal glioma patients treated at their institutions and examined the parietooccipital fissure. To clarify how the surrounding structures were invaded in each case, the authors categorized tumor invasion as being toward the parietal lobe, occipital lobe, isthmus of the cingulate gyrus, insula/basal ganglia, or splenium of the corpus callosum. DSI Studio was used to visualize the fiber tractography running through the posterior medial temporal lobe. RESULTS Twenty-four patients with posterior medial temporal gliomas were identified. All patients presented with a parietooccipital fissure as an uninterrupted straight sulcus and as the posterior border of the tumor. Invasion direction was toward the parietal lobe in 13 patients, the occipital lobe in 4 patients, the isthmus of the cingulate gyrus in 19 patients, the insula/basal ganglia in 3 patients, and the splenium of the corpus callosum in 8 patients. Although the isthmus of the cingulate gyrus and the occipital lobe are located just posterior to the posterior medial temporal lobe, there was a significantly greater preponderance of invasion toward the isthmus of the cingulate gyrus than toward the occipital lobe (p = 0.00030, McNemar test). Based on Schramm's classification for the medial temporal tumors, 4 patients had type A and 20 patients had type D tumors. The parietooccipital fissure determined the posterior border of the tumors, resulting in a unique and identical radiological feature. Diffusion spectrum imaging (DSI) tractography indicated that the fibers running through the posterior medial temporal lobe toward the occipital lobe had to detour laterally around the bottom of the parietooccipital fissure. CONCLUSIONS Posterior medial temporal gliomas present identical invasion patterns, resulting in unique radiological features that are strongly affected by the parietooccipital fissure. The parietooccipital fissure is a key anatomical landmark for understanding the complex infiltrating architecture of posterior medial temporal gliomas.
Collapse
Affiliation(s)
- Ichiyo Shibahara
- 1Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara
| | - Ryuta Saito
- 2Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Masayuki Kanamori
- 3Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi; and
| | - Yukihiko Sonoda
- 4Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Sumito Sato
- 1Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara
| | - Takuichiro Hide
- 1Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara
| | - Teiji Tominaga
- 3Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi; and
| | - Toshihiro Kumabe
- 1Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara
| |
Collapse
|
14
|
Ribosomes and Ribosomal Proteins Promote Plasticity and Stemness Induction in Glioma Cells via Reprogramming. Cells 2022; 11:cells11142142. [PMID: 35883585 PMCID: PMC9323835 DOI: 10.3390/cells11142142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal tumor that develops in the adult brain. Despite advances in therapeutic strategies related to surgical resection and chemo-radiotherapy, the overall survival of patients with GBM remains unsatisfactory. Genetic research on mutation, amplification, and deletion in GBM cells is important for understanding the biological aggressiveness, diagnosis, and prognosis of GBM. However, the efficacy of drugs targeting the genetic abnormalities in GBM cells is limited. Investigating special microenvironments that induce chemo-radioresistance in GBM cells is critical to improving the survival and quality of life of patients with GBM. GBM cells acquire and maintain stem-cell-like characteristics via their intrinsic potential and extrinsic factors from their special microenvironments. The acquisition of stem-cell-like phenotypes and aggressiveness may be referred to as a reprogramming of GBM cells. In addition to protein synthesis, deregulation of ribosome biogenesis is linked to several diseases including cancer. Ribosomal proteins possess both tumor-promotive and -suppressive functions as extra-ribosomal functions. Incorporation of ribosomes and overexpression of ribosomal protein S6 reprogram and induce stem-cell-like phenotypes in GBM cells. Herein, we review recent literature and our published data on the acquisition of aggressiveness by GBM and discuss therapeutic options through reprogramming.
Collapse
|
15
|
Cancer Stem Cell-Associated Immune Microenvironment in Recurrent Glioblastomas. Cells 2022; 11:cells11132054. [PMID: 35805138 PMCID: PMC9265559 DOI: 10.3390/cells11132054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most incurable tumor (due to the difficulty in complete surgical resection and the resistance to conventional chemo/radiotherapies) that displays a high relapse frequency. Cancer stem cells (CSCs) have been considered as a promising target responsible for therapy resistance and cancer recurrence. CSCs are known to organize a self-advantageous microenvironment (niche) for their maintenance and expansion. Therefore, understanding how the microenvironment is reconstructed by the remaining CSCs after conventional treatments and how it eventually causes recurrence should be essential to inhibit cancer recurrence. However, the number of studies focusing on recurrence is limited, particularly those related to tumor immune microenvironment, while numerous data have been obtained from primary resected samples. Here, we summarize recent investigations on the immune microenvironment from the viewpoint of recurrent GBM (rGBM). Based on the recurrence-associated immune cell composition reported so far, we will discuss how CSCs manipulate host immunity and create the special microenvironment for themselves to regrow. An integrated understanding of the interactions between CSCs and host immune cells at the recurrent phase will lead us to develop innovative therapies and diagnoses to achieve GBM eradication.
Collapse
|
16
|
Teng C, Zhu Y, Li Y, Dai L, Pan Z, Wanggou S, Li X. Recurrence- and Malignant Progression-Associated Biomarkers in Low-Grade Gliomas and Their Roles in Immunotherapy. Front Immunol 2022; 13:899710. [PMID: 35677036 PMCID: PMC9168984 DOI: 10.3389/fimmu.2022.899710] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Despite a generally better prognosis than high-grade glioma (HGG), recurrence and malignant progression are the main causes for the poor prognosis and difficulties in the treatment of low-grade glioma (LGG). It is of great importance to learn about the risk factors and underlying mechanisms of LGG recurrence and progression. In this study, the transcriptome characteristics of four groups, namely, normal brain tissue and recurrent LGG (rLGG), normal brain tissue and secondary glioblastoma (sGBM), primary LGG (pLGG) and rLGG, and pLGG and sGBM, were compared using Chinese Glioma Genome Atlas (CGGA) and Genotype-Tissue Expression Project (GTEx) databases. In this study, 296 downregulated and 396 upregulated differentially expressed genes (DEGs) with high consensus were screened out. Univariate Cox regression analysis of data from The Cancer Genome Atlas (TCGA) yielded 86 prognostically relevant DEGs; a prognostic prediction model based on five key genes (HOXA1, KIF18A, FAM133A, HGF, and MN1) was established using the least absolute shrinkage and selection operator (LASSO) regression dimensionality reduction and multivariate Cox regression analysis. LGG was divided into high- and low-risk groups using this prediction model. Gene Set Enrichment Analysis (GSEA) revealed that signaling pathway differences in the high- and low-risk groups were mainly seen in tumor immune regulation and DNA damage-related cell cycle checkpoints. Furthermore, the infiltration of immune cells in the high- and low-risk groups was analyzed, which indicated a stronger infiltration of immune cells in the high-risk group than that in the low-risk group, suggesting that an immune microenvironment more conducive to tumor growth emerged due to the interaction between tumor and immune cells. The tumor mutational burden and tumor methylation burden in the high- and low-risk groups were also analyzed, which indicated higher gene mutation burden and lower DNA methylation level in the high-risk group, suggesting that with the accumulation of genomic mutations and epigenetic changes, tumor cells continued to evolve and led to the progression of LGG to HGG. Finally, the value of potential therapeutic targets for the five key genes was analyzed, and findings demonstrated that KIF18A was the gene most likely to be a potential therapeutic target. In conclusion, the prediction model based on these five key genes can better identify the high- and low-risk groups of LGG and lay a solid foundation for evaluating the risk of LGG recurrence and malignant progression.
Collapse
Affiliation(s)
- Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurosurgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yueshuo Li
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Luohuan Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Zhouyang Pan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Menna G, Mattogno PP, Donzelli CM, Lisi L, Olivi A, Della Pepa GM. Glioma-Associated Microglia Characterization in the Glioblastoma Microenvironment through a 'Seed-and Soil' Approach: A Systematic Review. Brain Sci 2022; 12:718. [PMID: 35741603 PMCID: PMC9220868 DOI: 10.3390/brainsci12060718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background and aim: Ever since the discovery of tumor-associated immune cells, there has been growing interest in the understanding of the mechanisms underlying the crosstalk between these cells and tumor cells. A "seed and soil" approach has been recently introduced to describe the glioblastoma (GBM) landscape: tumor microenvironments act as fertile "soil" and interact with the "seed" (glial and stem cells compartment). In the following article, we provide a systematic review of the current evidence pertaining to the characterization of glioma-associated macrophages and microglia (GAMs) and microglia and macrophage cells in the glioma tumor microenvironment (TME). Methods: An online literature search was launched on PubMed Medline and Scopus using the following research string: "((Glioma associated macrophages OR GAM OR Microglia) AND (glioblastoma tumor microenvironment OR TME))". The last search for articles pertinent to the topic was conducted in February 2022. Results: The search of the literature yielded a total of 349 results. A total of 235 studies were found to be relevant to our research question and were assessed for eligibility. Upon a full-text review, 58 articles were included in the review. The reviewed papers were further divided into three categories based on their focus: (1) Microglia maintenance of immunological homeostasis and protection against autoimmunity; (2) Microglia crosstalk with dedifferentiated and stem-like glioblastoma cells; (3) Microglia migratory behavior and its activation pattern. Conclusions: Aggressive growth, inevitable recurrence, and scarce response to immunotherapies are driving the necessity to focus on the GBM TME from a different perspective to possibly disentangle its role as a fertile 'soil' for tumor progression and identify within it feasible therapeutic targets. Against this background, our systematic review confirmed microglia to play a paramount role in promoting GBM progression and relapse after treatments. The correct and extensive understanding of microglia-glioma crosstalk could help in understanding the physiopathology of this complex disease, possibly opening scenarios for improvement of treatments.
Collapse
Affiliation(s)
- Grazia Menna
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Pier Paolo Mattogno
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Carlo Maria Donzelli
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Lucia Lisi
- Institute of Pharmacology, Catholic University of Rome, 00168 Rome, Italy;
| | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Giuseppe Maria Della Pepa
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| |
Collapse
|
18
|
Hide T, Shibahara I, Inukai M, Shigeeda R, Shirakawa Y, Jono H, Shinojima N, Mukasa A, Kumabe T. Ribosomal proteins induce stem cell-like characteristics in glioma cells as an "extra-ribosomal function". Brain Tumor Pathol 2022; 39:51-56. [PMID: 35508789 DOI: 10.1007/s10014-022-00434-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
The characteristic features of plasticity and heterogeneity in glioblastoma (GB) cells cause therapeutic difficulties. GB cells are exposed to various stimuli from the tumor microenvironment and acquire the potential to resist chemoradiotherapy. To investigate how GB cells acquire stem cell-like phenotypes, we focused on ribosomal proteins, because ribosome incorporation has been reported to induce stem cell-like phenotypes in somatic cells. Furthermore, dysregulation of ribosome biogenesis has been reported in several types of cancer. We focused on ribosomal protein S6, which promotes sphere-forming ability and stem cell marker expression in GB cells. We expect that investigation of dysregulation of ribosome biogenesis and extra-ribosomal function in GB will provide new insights about the plasticity, heterogeneity, and therapeutic resistance of GB cells, which can potentially lead to revolutionary therapeutic strategies.
Collapse
Affiliation(s)
- Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Madoka Inukai
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ryota Shigeeda
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yuki Shirakawa
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, chuo-ku, Kumamoto, 860-8556, Japan
| | - Naoki Shinojima
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 850-8556, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 850-8556, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
19
|
Tamai S, Ichinose T, Tsutsui T, Tanaka S, Garaeva F, Sabit H, Nakada M. Tumor Microenvironment in Glioma Invasion. Brain Sci 2022; 12:brainsci12040505. [PMID: 35448036 PMCID: PMC9031400 DOI: 10.3390/brainsci12040505] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
A major malignant trait of gliomas is their remarkable infiltration capacity. When glioma develops, the tumor cells have already reached the distant part. Therefore, complete removal of the glioma is impossible. Recently, research on the involvement of the tumor microenvironment in glioma invasion has advanced. Local hypoxia triggers cell migration as an environmental factor. The transcription factor hypoxia-inducible factor (HIF) -1α, produced in tumor cells under hypoxia, promotes the transcription of various invasion related molecules. The extracellular matrix surrounding tumors is degraded by proteases secreted by tumor cells and simultaneously replaced by an extracellular matrix that promotes infiltration. Astrocytes and microglia become tumor-associated astrocytes and glioma-associated macrophages/microglia, respectively, in relation to tumor cells. These cells also promote glioma invasion. Interactions between glioma cells actively promote infiltration of each other. Surgery, chemotherapy, and radiation therapy transform the microenvironment, allowing glioma cells to invade. These findings indicate that the tumor microenvironment may be a target for glioma invasion. On the other hand, because the living body actively promotes tumor infiltration in response to the tumor, it is necessary to reconsider whether the invasion itself is friend or foe to the brain.
Collapse
|
20
|
Ion Channel Drugs Suppress Cancer Phenotype in NG108-15 and U87 Cells: Toward Novel Electroceuticals for Glioblastoma. Cancers (Basel) 2022; 14:cancers14061499. [PMID: 35326650 PMCID: PMC8946312 DOI: 10.3390/cancers14061499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma is a lethal brain cancer that commonly recurs after tumor resection and chemotherapy treatment. Depolarized resting membrane potentials and an acidic intertumoral extracellular pH have been associated with a proliferative state and drug resistance, suggesting that forced hyperpolarization and disruption of proton pumps in the plasma membrane could be a successful strategy for targeting glioblastoma overgrowth. We screened 47 compounds and compound combinations, most of which were ion-modulating, at different concentrations in the NG108-15 rodent neuroblastoma/glioma cell line. A subset of these were tested in the U87 human glioblastoma cell line. A FUCCI cell cycle reporter was stably integrated into both cell lines to monitor proliferation and cell cycle response. Immunocytochemistry, electrophysiology, and a panel of physiological dyes reporting voltage, calcium, and pH were used to characterize responses. The most effective treatments on proliferation in U87 cells were combinations of NS1643 and pantoprazole; retigabine and pantoprazole; and pantoprazole or NS1643 with temozolomide. Marker analysis and physiological dye signatures suggest that exposure to bioelectric drugs significantly reduces proliferation, makes the cells senescent, and promotes differentiation. These results, along with the observed low toxicity in human neurons, show the high efficacy of electroceuticals utilizing combinations of repurposed FDA approved drugs.
Collapse
|
21
|
Zhao Y, Zhu W, Chen H, Yan K, Wu J, Huang Q. Glioma stem cells and their microenvironment: A narrative review on docking and transformation. GLIOMA 2022. [DOI: 10.4103/glioma.glioma_5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
GRPEL2 Knockdown Exerts Redox Regulation in Glioblastoma. Int J Mol Sci 2021; 22:ijms222312705. [PMID: 34884508 PMCID: PMC8657957 DOI: 10.3390/ijms222312705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant brain tumors are responsible for catastrophic morbidity and mortality globally. Among them, glioblastoma multiforme (GBM) bears the worst prognosis. The GrpE-like 2 homolog (GRPEL2) plays a crucial role in regulating mitochondrial protein import and redox homeostasis. However, the role of GRPEL2 in human glioblastoma has yet to be clarified. In this study, we investigated the function of GRPEL2 in glioma. Based on bioinformatics analyses from the Cancer Gene Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we inferred that GRPEL2 expression positively correlates with WHO tumor grade (p < 0.001), IDH mutation status (p < 0.001), oligodendroglial differentiation (p < 0.001), and overall survival (p < 0.001) in glioma datasets. Functional validation in LN229 and GBM8401 GBM cells showed that GRPEL2 knockdown efficiently inhibited cellular proliferation. Moreover, GRPEL2 suppression induced cell cycle arrest at the sub-G1 phase. Furthermore, GRPEL2 silencing decreased intracellular reactive oxygen species (ROS) without impending mitochondria membrane potential. The cellular oxidative respiration measured with a Seahorse XFp analyzer exhibited a reduction of the oxygen consumption rate (OCR) in GBM cells by siGRPEL2, which subsequently enhanced autophagy and senescence in glioblastoma cells. Taken together, GRPEL2 is a novel redox regulator of mitochondria bioenergetics and a potential target for treating GBM in the future.
Collapse
|
23
|
Wei J, Gilboa E, Calin GA, Heimberger AB. Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Front Oncol 2021; 11:682129. [PMID: 34532286 PMCID: PMC8438301 DOI: 10.3389/fonc.2021.682129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are heterogeneous and have a poor prognosis. Glioblastoma cells interact with their neighbors to form a tumor-permissive and immunosuppressive microenvironment. Short noncoding RNAs are relevant mediators of the dynamic crosstalk among cancer, stromal, and immune cells in establishing the glioblastoma microenvironment. In addition to the ease of combinatorial strategies that are capable of multimodal modulation for both reversing immune suppression and enhancing antitumor immunity, their small size provides an opportunity to overcome the limitations of blood-brain-barrier (BBB) permeability. To enhance glioblastoma delivery, these RNAs have been conjugated with various molecules or packed within delivery vehicles for enhanced tissue-specific delivery and increased payload. Here, we focus on the role of RNA therapeutics by appraising which types of nucleotides are most effective in immune modulation, lead therapeutic candidates, and clarify how to optimize delivery of the therapeutic RNAs and their conjugates specifically to the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - George A Calin
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
24
|
Gerstmeier J, Possmayer AL, Bozkurt S, Hoffmann ME, Dikic I, Herold-Mende C, Burger MC, Münch C, Kögel D, Linder B. Calcitriol Promotes Differentiation of Glioma Stem-Like Cells and Increases Their Susceptibility to Temozolomide. Cancers (Basel) 2021; 13:cancers13143577. [PMID: 34298790 PMCID: PMC8303292 DOI: 10.3390/cancers13143577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Cancer cells with a stem-like phenotype that are thought to be highly tumorigenic are commonly described in glioblastoma, the most common primary adult brain cancer. This phenotype comprises high self-renewal capacity and resistance against chemotherapy and radiation therapy, thereby promoting tumor progression and disease relapse. Here, we show that calcitriol, the hormonally active form of the “sun hormone” vitamin D3, effectively suppresses stemness properties in glioblastoma stem-like cells (GSCs), supporting the hypothesis that calcitriol sensitizes them to additional chemotherapy. Indeed, a physiological organotypic brain slice model was used to monitor tumor growth of GSCs, and the effectiveness of combined treatment with temozolomide, the current standard-of-care, and calcitriol was proven. These findings indicate that further research on applying calcitriol, a well-known and safe drug, as a potential adjuvant therapy for glioblastoma is both justified and necessary. Abstract Glioblastoma (GBM) is the most common and most aggressive primary brain tumor, with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evidence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infiltrative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the expression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show, using in vitro limiting dilution assays, quantitative real-time PCR, quantitative proteomics and ex vivo adult organotypic brain slice transplantation cultures, that therapeutic doses of calcitriol, the hormonally active form of vitamin D3, reduce stemness to varying extents in a panel of investigated GSC lines, and that it effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to completely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in follow-up studies.
Collapse
Affiliation(s)
- Julia Gerstmeier
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
| | - Anna-Lena Possmayer
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
| | - Süleyman Bozkurt
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Marina E. Hoffmann
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Ivan Dikic
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany;
| | - Michael C. Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, 60528 Frankfurt am Main, Germany;
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Donat Kögel
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
- German Cancer Consortium DKTK Partner Site Frankfurt/Main, 60590 Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Linder
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
- Correspondence: ; Tel.: +49-69-6301-6930
| |
Collapse
|
25
|
López-Gil JC, Martin-Hijano L, Hermann PC, Sainz B. The CXCL12 Crossroads in Cancer Stem Cells and Their Niche. Cancers (Basel) 2021; 13:cancers13030469. [PMID: 33530455 PMCID: PMC7866198 DOI: 10.3390/cancers13030469] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary CXCL12 and its receptors have been extensively studied in cancer, including their influence on cancer stem cells (CSCs) and their niche. This intensive research has led to a better understanding of the crosstalk between CXCL12 and CSCs, which has aided in designing several drugs that are currently being tested in clinical trials. However, a comprehensive review has not been published to date. The aim of this review is to provide an overview on how CXCL12 axes are involved in the regulation and maintenance of CSCs, their presence and influence at different cellular levels within the CSC niche, and the current state-of-the-art of therapeutic approaches aimed to target the CXCL12 crossroads. Abstract Cancer stem cells (CSCs) are defined as a subpopulation of “stem”-like cells within the tumor with unique characteristics that allow them to maintain tumor growth, escape standard anti-tumor therapies and drive subsequent repopulation of the tumor. This is the result of their intrinsic “stem”-like features and the strong driving influence of the CSC niche, a subcompartment within the tumor microenvironment that includes a diverse group of cells focused on maintaining and supporting the CSC. CXCL12 is a chemokine that plays a crucial role in hematopoietic stem cell support and has been extensively reported to be involved in several cancer-related processes. In this review, we will provide the latest evidence about the interactions between CSC niche-derived CXCL12 and its receptors—CXCR4 and CXCR7—present on CSC populations across different tumor entities. The interactions facilitated by CXCL12/CXCR4/CXCR7 axes seem to be strongly linked to CSC “stem”-like features, tumor progression, and metastasis promotion. Altogether, this suggests a role for CXCL12 and its receptors in the maintenance of CSCs and the components of their niche. Moreover, we will also provide an update of the therapeutic options being currently tested to disrupt the CXCL12 axes in order to target, directly or indirectly, the CSC subpopulation.
Collapse
Affiliation(s)
- Juan Carlos López-Gil
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain; (J.C.L.-G.); (L.M.-H.)
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Laura Martin-Hijano
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain; (J.C.L.-G.); (L.M.-H.)
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Patrick C. Hermann
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
- Correspondence: (P.C.H.); (B.S.J.)
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain; (J.C.L.-G.); (L.M.-H.)
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
- Correspondence: (P.C.H.); (B.S.J.)
| |
Collapse
|
26
|
Berg TJ, Marques C, Pantazopoulou V, Johansson E, von Stedingk K, Lindgren D, Jeannot P, Pietras EJ, Bergström T, Swartling FJ, Governa V, Bengzon J, Belting M, Axelson H, Squatrito M, Pietras A. The Irradiated Brain Microenvironment Supports Glioma Stemness and Survival via Astrocyte-Derived Transglutaminase 2. Cancer Res 2021; 81:2101-2115. [PMID: 33483373 DOI: 10.1158/0008-5472.can-20-1785] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment plays an essential role in supporting glioma stemness and radioresistance. Following radiotherapy, recurrent gliomas form in an irradiated microenvironment. Here we report that astrocytes, when pre-irradiated, increase stemness and survival of cocultured glioma cells. Tumor-naïve brains increased reactive astrocytes in response to radiation, and mice subjected to radiation prior to implantation of glioma cells developed more aggressive tumors. Extracellular matrix derived from irradiated astrocytes were found to be a major driver of this phenotype and astrocyte-derived transglutaminase 2 (TGM2) was identified as a promoter of glioma stemness and radioresistance. TGM2 levels increased after radiation in vivo and in recurrent human glioma, and TGM2 inhibitors abrogated glioma stemness and survival. These data suggest that irradiation of the brain results in the formation of a tumor-supportive microenvironment. Therapeutic targeting of radiation-induced, astrocyte-derived extracellular matrix proteins may enhance the efficacy of standard-of-care radiotherapy by reducing stemness in glioma. SIGNIFICANCE: These findings presented here indicate that radiotherapy can result in a tumor-supportive microenvironment, the targeting of which may be necessary to overcome tumor cell therapeutic resistance and recurrence. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2101/F1.large.jpg.
Collapse
Affiliation(s)
- Tracy J Berg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Carolina Marques
- Seve Ballesteros Foundation Brain Tumor group, CNIO, Madrid, Spain
| | - Vasiliki Pantazopoulou
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristoffer von Stedingk
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.,Department of Oncogenomics, M1-131 Academic Medical Center University of Amsterdam, Amsterdam, the Netherlands
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pauline Jeannot
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elin J Pietras
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Bergström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Valeria Governa
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Johan Bengzon
- Division of Neurosurgery, Department of Clinical Sciences, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Division of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
27
|
Pasqualini C, Kozaki T, Bruschi M, Nguyen THH, Minard-Colin V, Castel D, Grill J, Ginhoux F. Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron 2020; 108:1025-1044. [PMID: 33065047 DOI: 10.1016/j.neuron.2020.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Despite considerable recent advances in understanding and treating many other cancers, malignant brain tumors remain associated with low survival or severe long-term sequelae. Limited progress, including development of immunotherapies, relates in part to difficulties in accurately reproducing brain microenvironment with current preclinical models. The cellular interactions among resident microglia, recruited tumor-associated macrophages, stromal cells, glial cells, neurons, and cancer cells and how they affect tumor growth or behavior are emerging, yet many questions remain. The role of the blood-brain barrier, extracellular matrix components, and heterogeneity among tumor types and within different regions of a single tumor further complicate the matter. Here, we focus on brain microenvironment features impacted by tumor biology. We also discuss limits of current preclinical models and how complementary models, such as humanized animals and organoids, will allow deeper mechanistic insights on cancer biology, allowing for more efficient testing of therapeutic strategies, including immunotherapy, for brain cancers.
Collapse
Affiliation(s)
- Claudia Pasqualini
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Marco Bruschi
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Thi Hai Hoa Nguyen
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Véronique Minard-Colin
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; INSERM U1015, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - David Castel
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Jacques Grill
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore; Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
28
|
Buruiană A, Florian ȘI, Florian AI, Timiș TL, Mihu CM, Miclăuș M, Oșan S, Hrapșa I, Cataniciu RC, Farcaș M, Șușman S. The Roles of miRNA in Glioblastoma Tumor Cell Communication: Diplomatic and Aggressive Negotiations. Int J Mol Sci 2020; 21:ijms21061950. [PMID: 32178454 PMCID: PMC7139390 DOI: 10.3390/ijms21061950] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) consists of a heterogeneous collection of competing cellular clones which communicate with each other and with the tumor microenvironment (TME). MicroRNAs (miRNAs) present various exchange mechanisms: free miRNA, extracellular vesicles (EVs), or gap junctions (GJs). GBM cells transfer miR-4519 and miR-5096 to astrocytes through GJs. Oligodendrocytes located in the invasion front present high levels of miR-219-5p, miR-219-2-3p, and miR-338-3p, all related to their differentiation. There is a reciprocal exchange between GBM cells and endothelial cells (ECs) as miR-5096 promotes angiogenesis after being transferred into ECs, whereas miR-145-5p acts as a tumor suppressor. In glioma stem cells (GSCs), miR-1587 and miR-3620-5p increase the proliferation and miR-1587 inhibits the hormone receptor co-repressor-1 (NCOR1) after EVs transfers. GBM-derived EVs carry miR-21 and miR-451 that are up-taken by microglia and monocytes/macrophages, promoting their proliferation. Macrophages release EVs enriched in miR-21 that are transferred to glioma cells. This bidirectional miR-21 exchange increases STAT3 activity in GBM cells and macrophages, promoting invasion, proliferation, angiogenesis, and resistance to treatment. miR-1238 is upregulated in resistant GBM clones and their EVs, conferring resistance to adjacent cells via the CAV1/EGFR signaling pathway. Decrypting these mechanisms could lead to a better patient stratification and the development of novel target therapies.
Collapse
Affiliation(s)
- Andrei Buruiană
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.B.); (S.O.); (I.H.); (R.C.C.); (M.F.)
| | - Ștefan Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (Ș.I.F.); (A.I.F.)
- Department of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alexandru Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (Ș.I.F.); (A.I.F.)
- Department of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Teodora-Larisa Timiș
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Carmen Mihaela Mihu
- Department of Morphological Sciences-Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Maria Miclăuș
- Department of Medical Genetics, Emergency Hospital for Children, 68 Moților Street, 400370 Cluj-Napoca, Romania;
| | - Sergiu Oșan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.B.); (S.O.); (I.H.); (R.C.C.); (M.F.)
| | - Iona Hrapșa
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.B.); (S.O.); (I.H.); (R.C.C.); (M.F.)
| | - Radu Constantin Cataniciu
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.B.); (S.O.); (I.H.); (R.C.C.); (M.F.)
| | - Marius Farcaș
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.B.); (S.O.); (I.H.); (R.C.C.); (M.F.)
- Department of Genetics, IMOGEN Research Center, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Sergiu Șușman
- Department of Morphological Sciences-Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department of Pathology, IMOGEN Research Center, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
29
|
Hide T, Komohara Y. Oligodendrocyte Progenitor Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:107-122. [PMID: 32040858 DOI: 10.1007/978-3-030-37184-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) develops from adult brain white matter and is the most common and lethal primary brain tumor, characterized by rapid growth and invasion. GBM tumors frequently spread into the contralateral hemisphere, including in the beginning of tumor development. However, after complete resection of the tumor mass and chemo-radiotherapy, GBM commonly recurs around the tumor removal site, suggesting that the microenvironment at the tumor border provides therapeutic resistance to GBM cells. To improve patient prognosis, understanding the microenvironment at the tumor border is critical. Several microRNAs (miRNAs) show higher expression at the tumor border, with the top three involved in oligodendrocyte differentiation. Oligodendrocyte progenitor cells (OPCs) may induce stemness and chemo-radioresistance in GBM cells, providing a supportive function to promote GBM. This review describes important features of OPCs and insights into the "border niche," a unique microenvironment that allows GBM cells to survive and recur at the tumor border.
Collapse
Affiliation(s)
- Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, Kanagawa, Japan.
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
30
|
Chen Y, Yuan S, Ning T, Xu H, Guan B. SNHG7 Facilitates Glioblastoma Progression by Functioning as a Molecular Sponge for MicroRNA-449b-5p and Thereby Increasing MYCN Expression. Technol Cancer Res Treat 2020; 19:1533033820945802. [PMID: 32720593 PMCID: PMC7388098 DOI: 10.1177/1533033820945802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Long noncoding RNA (small nucleolar RNA host gene 7) has been reported to be involved in multiple malignancies and acts as an oncogene. However, the potential mechanism of small nucleolar RNA host gene 7 in glioblastoma is rarely known. In this study, we attempted to elucidate the biological effects of small nucleolar RNA host gene 7 and the possible molecular mechanism in glioblastoma. METHODS The expression level of small nucleolar RNA host gene 7 in glioblastoma tissues and corresponding tumor cell lines was evaluated by using quantitative real-time polymerase chain reaction. Bioinformatics analyses and dual-luciferase reporter gene assay were conducted to verify the correlation among small nucleolar RNA host gene 7, miR-449b-5p, and MYCN. The role of small nucleolar RNA host gene 7 on cell viability, migration, and invasion was measured. RESULTS Small nucleolar RNA host gene 7 expression was markedly increased in glioblastoma tumor tissue. Small nucleolar RNA host gene 7 can sponge miR-449b-5p and negatively regulate miR-449b-5p expression. MiR-449b-5p was remarkably repressed in glioblastoma tissues. Reduction of miR-449b-5p reversed the repressive effects of small nucleolar RNA host gene 7 knockdown on cellular behaviors in glioblastoma. In addition, miR-449b-5p can directly bind with MYCN. Compared with normal samples, MYCN expression was increased. The MYCN expression was negatively related to miR-449b-5p expression while positively related to small nucleolar RNA host gene 7 expression. Rescue experiments revealed that MYCN overexpression reversed the repressive role of small nucleolar RNA host gene 7 knockdown on viability, migration, and invasion of U251 cells. CONCLUSION In summary, our results demonstrated that small nucleolar RNA host gene 7 regulates glioblastoma proliferation, migration, and invasion via regulating miR-449b-5p and its target gene MYCN, thereby providing a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Yaogang Chen
- Department of Neurosurgery, The Central Hospital of Qingdao,
Shandong, China
| | - Shaoyong Yuan
- Department of Neurosurgery, The Central Hospital of Qingdao,
Shandong, China
| | - Tieying Ning
- Department of Neurosurgery, The Central Hospital of Qingdao,
Shandong, China
| | - Huiqing Xu
- Department of Pathology, Qingdao Traditional Chinese Medicine
Hospital, Qingdao, Shandong, China
| | - Bo Guan
- Department of Neurosurgery, Zhucheng People’s Hospital, Zhucheng,
Shandong, China
| |
Collapse
|
31
|
Ogawa K, Kurose A, Kamataki A, Asano K, Katayama K, Kurotaki H. Giant cell glioblastoma is a distinctive subtype of glioma characterized by vulnerability to DNA damage. Brain Tumor Pathol 2020; 37:5-13. [PMID: 31655917 PMCID: PMC7028818 DOI: 10.1007/s10014-019-00355-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
Giant cell glioblastoma (GC-GBM) consists of large cells with pleomorphic nuclei. As a contrast to GC-GBM, we defined monotonous small GBM (MS-GBM) as GBM that consists of small cells with monotonous small nuclei, and compared the DNA damage as well as other pathological features. GC-GBM showed minimal invasion (< 2 mm) and focal sarcomatous areas. TERTp was wild type in GC-GBM but mutant in MS-GBM. OLIG2 expression was significantly higher in MS-GBM (P < 0.01) (77% in MS-GBM and 7% in GC-GBM). GC-GBM showed significantly higher DNA double-strand breaks (DSBs) compared with MS-GBM (P < 0.01) (76% in GC-GBM and 15% in MS-GBM). Nearly, all large cells in GC-GBM underwent DSBs. Thus, significant DSBs in GC-GBM might be induced by an innate lesser stemness characteristic and be followed by mitotic slippage, resulting in polyploidization and the large pleomorphic nuclei. We conclude that GC-GBM is a distinctive subtype of glioma characterized by its vulnerability to DNA damage and that wild-type TERTp and lower OLIG2 function might induce this feature. Notably, even large pleomorphic nuclei with severe DSBs demonstrated Ki67 positivity, which alerts pathologists to the interpretation of Ki67 positivity, because cells with large nuclei undergoing severe DSBs cannot be recognized as proliferating cells that contribute to tumor aggressiveness.
Collapse
Affiliation(s)
- Kaoru Ogawa
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki, 036-8562, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki, 036-8562, Japan.
| | - Akihisa Kamataki
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki, 036-8562, Japan
| | - Kenichiro Asano
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kosuke Katayama
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidekachi Kurotaki
- Department of Pathology, Aomori Prefectural Central Hospital, Aomori, Japan
| |
Collapse
|
32
|
Song S, Luo L, Sun B, Sun D. Roles of glial ion transporters in brain diseases. Glia 2019; 68:472-494. [PMID: 31418931 DOI: 10.1002/glia.23699] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Glial ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions of the central nervous system (CNS). In response to acute or chronic brain injuries, these ion transporters can be activated and differentially regulate glial functions, which has subsequent impact on brain injury or tissue repair and functional recovery. In this review, we summarized the current knowledge about major glial ion transporters, including Na+ /H+ exchangers (NHE), Na+ /Ca2+ exchangers (NCX), Na+ -K+ -Cl- cotransporters (NKCC), and Na+ -HCO3 - cotransporters (NBC). In acute neurological diseases, such as ischemic stroke and traumatic brain injury (TBI), these ion transporters are rapidly activated and play significant roles in regulation of the intra- and extracellular pH, Na+ , K+ , and Ca2+ homeostasis, synaptic plasticity, and myelin formation. However, overstimulation of these ion transporters can contribute to glial apoptosis, demyelination, inflammation, and excitotoxicity. In chronic brain diseases, such as glioma, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), glial ion transporters are involved in the glioma Warburg effect, glial activation, neuroinflammation, and neuronal damages. These findings suggest that glial ion transporters are involved in tissue structural and functional restoration, or brain injury and neurological disease development and progression. A better understanding of these ion transporters in acute and chronic neurological diseases will provide insights for their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|