1
|
Komori T. Glioneuronal and neuronal tumors: A perspective. Pathol Int 2024; 74:625-631. [PMID: 39239916 DOI: 10.1111/pin.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Glioneuronal and neuronal tumors (GNTs) are slow-growing, lower-grade neuroepithelial tumors characterized by mature neuronal differentiation and, less consistently, glial differentiation. Their identification has traditionally relied on histological proof of neuronal differentiation, reflecting the well-differentiated nature of GNTs. However, after discovering genetic alterations in GNTs, particularly those in the MAP-kinase pathway, it became evident that histological diagnoses do not always correlate with genetic alterations and vice versa. Therefore, molecular-based classification is now warranted since several inhibitors targeting the MAP-kinase pathway are available. The World Health Organization classification published in 2021 applied DNA methylation profiling to segregate low-grade neuroepithelial tumors. As GNTs are essentially indolent, radical resection and unnecessary chemoradiotherapy may be more harmful than beneficial for patients. Preserving tumor tissue for potential future treatments is more important for patients with GNTs.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| |
Collapse
|
2
|
Hayashi N, Fukai J, Nakatogawa H, Kawaji H, Yoshioka E, Kodama Y, Nakajo K, Uda T, Naito K, Kijima N, Okita Y, Kagawa N, Takahashi Y, Hashimoto N, Arita H, Takano K, Sakamoto D, Iida T, Arakawa Y, Kawauchi T, Sonoda Y, Mitobe Y, Ishibashi K, Matsuda M, Achiha T, Tomita T, Nonaka M, Hara K, Takebe N, Tsuzuki T, Nakajima Y, Ohue S, Nakajima N, Watanabe A, Inoue A, Umegaki M, Kanematsu D, Katsuma A, Sumida M, Shofuda T, Mano M, Kinoshita M, Mori K, Nakao N, Kanemura Y. Neuroradiological, genetic and clinical characteristics of histone H3 K27-mutant diffuse midline gliomas in the Kansai Molecular Diagnosis Network for CNS Tumors (Kansai Network): multicenter retrospective cohort. Acta Neuropathol Commun 2024; 12:120. [PMID: 39061104 PMCID: PMC11282756 DOI: 10.1186/s40478-024-01808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
This study aims to elucidate the clinical and molecular characteristics, treatment outcomes and prognostic factors of patients with histone H3 K27-mutant diffuse midline glioma. We retrospectively analyzed 93 patients with diffuse midline glioma (47 thalamus, 24 brainstem, 12 spinal cord and 10 other midline locations) treated at 24 affiliated hospitals in the Kansai Molecular Diagnosis Network for CNS Tumors. Considering the term "midline" areas, which had been confused in previous reports, we classified four midline locations based on previous reports and anatomical findings. Clinical and molecular characteristics of the study cohort included: age 4-78 years, female sex (41%), lower-grade histology (56%), preoperative Karnofsky performance status (KPS) scores ≥ 80 (49%), resection (36%), adjuvant radiation plus chemotherapy (83%), temozolomide therapy (76%), bevacizumab therapy (42%), HIST1H3B p.K27M mutation (2%), TERT promoter mutation (3%), MGMT promoter methylation (9%), BRAF p.V600E mutation (1%), FGFR1 mutation (14%) and EGFR mutation (3%). Median progression-free and overall survival time was 9.9 ± 1.0 (7.9-11.9, 95% CI) and 16.6 ± 1.4 (13.9-19.3, 95% CI) months, respectively. Female sex, preoperative KPS score ≥ 80, adjuvant radiation + temozolomide and radiation ≥ 50 Gy were associated with favorable prognosis. Female sex and preoperative KPS score ≥ 80 were identified as independent good prognostic factors. This study demonstrated the current state of clinical practice for patients with diffuse midline glioma and molecular analyses of diffuse midline glioma in real-world settings. Further investigation in a larger population would contribute to better understanding of the pathology of diffuse midline glioma.
Collapse
Affiliation(s)
- Nobuhide Hayashi
- Department of Neurosurgery, Wakayama Rosai Hospital, Kinomoto 93-1, Wakayama City, Wakayama, 640-8505, Japan.
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan.
- Department of Neurological Surgery, School of Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8510, Japan.
| | - Junya Fukai
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan.
- Department of Neurological Surgery, School of Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8510, Japan.
| | - Hirokazu Nakatogawa
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Pediatric Neurosurgery, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, 430-8558, Japan
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, 430-8558, Japan
| | - Hiroshi Kawaji
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, 430-8558, Japan
| | - Ema Yoshioka
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Division of Molecular Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka City, Osaka, 540-0006, Japan
| | - Yoshinori Kodama
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka City, Osaka, 541-8567, Japan
| | - Kosuke Nakajo
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka City, Osaka, 545-8585, Japan
| | - Takehiro Uda
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka City, Osaka, 545-8585, Japan
| | - Kentaro Naito
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka City, Osaka, 545-8585, Japan
| | - Noriyuki Kijima
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoshiko Okita
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Naoki Kagawa
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Takahashi
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, School of Medical Science, Kyoto Prefectural University Graduate, Kyoto City, Kyoto, 602-8566, Japan
| | - Naoya Hashimoto
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, School of Medical Science, Kyoto Prefectural University Graduate, Kyoto City, Kyoto, 602-8566, Japan
| | - Hideyuki Arita
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka City, Osaka, 541-8567, Japan
| | - Koji Takano
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka City, Osaka, 541-8567, Japan
| | - Daisuke Sakamoto
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tomoko Iida
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshiki Arakawa
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, 606-8507, Japan
| | - Takeshi Kawauchi
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka Red Cross Hospital, Osaka City, Osaka, 543-8555, Japan
| | - Yukihiko Sonoda
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, 990-8560, Japan
| | - Yuta Mitobe
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, 990-8560, Japan
| | - Kenichi Ishibashi
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka City General Hospital, Osaka City, Osaka, 534-0021, Japan
| | - Masahide Matsuda
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takamune Achiha
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Kansai Rosai Hospital, Amagasaki, Hyogo, 660-8511, Japan
| | - Takahiro Tomita
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama, 930-0194, Japan
| | - Masahiro Nonaka
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Kansai Medical University, Hirakata, Osaka, 573-1191, Japan
| | - Keijiro Hara
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima City, Tokushima, 770-8501, Japan
| | - Noriyoshi Takebe
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Medical Research Institute, Tazuke Kofukai Foundation, Kitano Hospital, Osaka City, Osaka, 530-8480, Japan
| | - Takashi Tsuzuki
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Sakai City Medical Center, Sakai, Osaka, 593-8304, Japan
| | - Yoshikazu Nakajima
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Sakai City Medical Center, Sakai, Osaka, 593-8304, Japan
- Department of Neurosurgery, Kobe Tokushukai Hospital, Kobe, Hyogo, 655-0017, Japan
| | - Shiro Ohue
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Ehime Prefectural Central Hospital, Matsuyama, Ehime, 790-0024, Japan
| | - Nobuyuki Nakajima
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Akira Watanabe
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Kindai University Nara Hospital, Ikoma, Nara, 630-0293, Japan
| | - Akihiro Inoue
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Masao Umegaki
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Suita Municipal Hospital, Suita, Osaka, 564-8567, Japan
| | - Daisuke Kanematsu
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Division of Molecular Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka City, Osaka, 540-0006, Japan
| | - Asako Katsuma
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka City, Osaka, 540-0006, Japan
| | - Miho Sumida
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka City, Osaka, 540-0006, Japan
| | - Tomoko Shofuda
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka City, Osaka, 540-0006, Japan
| | - Masayuki Mano
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Central Laboratory and Surgical Pathology, NHO Osaka National Hospital, Osaka City, Osaka, 540-0006, Japan
| | - Manabu Kinoshita
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka City, Osaka, 541-8567, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kanji Mori
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, Yao Municipal Hospital, Yao, Osaka, 581-0069, Japan
| | - Naoyuki Nakao
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Department of Neurological Surgery, School of Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8510, Japan
| | - Yonehiro Kanemura
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka City, Osaka, 540-0006, Japan
- Division of Molecular Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka City, Osaka, 540-0006, Japan
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka City, Osaka, 540-0006, Japan
- Department of Neurosurgery, NHO Osaka National Hospital, Osaka City, Osaka, 540-0006, Japan
| |
Collapse
|
3
|
Mishchenko TA, Turubanova VD, Gorshkova EN, Krysko O, Vedunova MV, Krysko DV. Glioma: bridging the tumor microenvironment, patient immune profiles and novel personalized immunotherapy. Front Immunol 2024; 14:1299064. [PMID: 38274827 PMCID: PMC10809268 DOI: 10.3389/fimmu.2023.1299064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victoria D. Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience Research Institute, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina N. Gorshkova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
4
|
Park YW, Vollmuth P, Foltyn-Dumitru M, Sahm F, Choi KS, Park JE, Ahn SS, Chang JH, Kim SH. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 3-Summary of Imaging Findings on Glioneuronal and Neuronal Tumors. J Magn Reson Imaging 2023; 58:1680-1702. [PMID: 37715567 DOI: 10.1002/jmri.29016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/17/2023] Open
Abstract
The fifth edition of the World Health Organization classification of central nervous system tumors published in 2021 reflects the current transitional state between traditional classification system based on histopathology and the state-of-the-art molecular diagnostics. This Part 3 Review focuses on the molecular diagnostics and imaging findings of glioneuronal and neuronal tumors. Histological and molecular features in glioneuronal and neuronal tumors often overlap with pediatric-type diffuse low-grade gliomas and circumscribed astrocytic gliomas (discussed in the Part 2 Review). Due to this overlap, in several tumor types of glioneuronal and neuronal tumors the diagnosis may be inconclusive with histopathology and genetic alterations, and imaging features may be helpful to distinguish difficult cases. Thus, it is crucial for radiologists to understand the underlying molecular diagnostics as well as imaging findings for application on clinical practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Martha Foltyn-Dumitru
- Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Kyu Sung Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Masui K, Nitta M, Muragaki Y, Kawamata T, Satomi K, Matsushita Y, Yoshida A, Ichimura K, Tsuda M, Tanaka S, Komori T. A case of "genetically defined" radiation-induced glioma: 29 years after surgery and radiation for pilocytic astrocytoma. Neuropathology 2023; 43:425-428. [PMID: 36949717 DOI: 10.1111/neup.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kaishi Satomi
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
- Department of Diagnostic Pathology, National Cancer Center Institute, Tokyo, Japan
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Institute, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Visioli A, Trivieri N, Mencarelli G, Giani F, Copetti M, Palumbo O, Pracella R, Cariglia MG, Barile C, Mischitelli L, Soriano AA, Palumbo P, Legnani F, DiMeco F, Gorgoglione L, Pesole G, Vescovi AL, Binda E. Different states of stemness of glioblastoma stem cells sustain glioblastoma subtypes indicating novel clinical biomarkers and high-efficacy customized therapies. J Exp Clin Cancer Res 2023; 42:244. [PMID: 37735434 PMCID: PMC10512479 DOI: 10.1186/s13046-023-02811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.
Collapse
Affiliation(s)
| | - Nadia Trivieri
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | | | - Massimiliano Copetti
- Biostatistical Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Maria Grazia Cariglia
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Chiara Barile
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Luigi Mischitelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Amata Amy Soriano
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Federico Legnani
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
- Department of Neurosurgery, John Hopkins University, Baltimore, Mariland, USA
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Angelo L Vescovi
- Scientific Directorate, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
- Hyperstem SA, Lugano, Switzerland.
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
7
|
Nafe R, Porto L, Samp PF, You SJ, Hattingen E. Adult-type and Pediatric-type Diffuse Gliomas : What the Neuroradiologist Should Know. Clin Neuroradiol 2023; 33:611-624. [PMID: 36941392 PMCID: PMC10449995 DOI: 10.1007/s00062-023-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/22/2023]
Abstract
The classification of diffuse gliomas into the adult type and the pediatric type is the new basis for the diagnosis and clinical evaluation. The knowledge for the neuroradiologist should not remain limited to radiological aspects but should be based additionally on the current edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). This classification defines the 11 entities of diffuse gliomas, which are included in the 3 large groups of adult-type diffuse gliomas, pediatric-type diffuse low-grade gliomas, and pediatric-type diffuse high-grade gliomas. This article provides a detailed overview of important molecular, morphological, and clinical aspects for all 11 entities, such as typical genetic alterations, age distribution, variability of the tumor localization, variability of histopathological and radiological findings within each entity, as well as currently available statistical information on prognosis and outcome. Important differential diagnoses are also discussed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
| | - Luciana Porto
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Patrick-Felix Samp
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Se-Jong You
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Elke Hattingen
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Park YW, Vollmuth P, Foltyn-Dumitru M, Sahm F, Ahn SS, Chang JH, Kim SH. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 2-Summary of Imaging Findings on Pediatric-Type Diffuse High-Grade Gliomas, Pediatric-Type Diffuse Low-Grade Gliomas, and Circumscribed Astrocytic Gliomas. J Magn Reson Imaging 2023; 58:690-708. [PMID: 37069764 DOI: 10.1002/jmri.28740] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
The fifth edition of the World Health Organization (WHO) classification of central nervous system tumors published in 2021 advances the role of molecular diagnostics in the classification of gliomas by emphasizing integrated diagnoses based on histopathology and molecular information and grouping tumors based on genetic alterations. This Part 2 review focuses on the molecular diagnostics and imaging findings of pediatric-type diffuse high-grade gliomas, pediatric-type diffuse low-grade gliomas, and circumscribed astrocytic gliomas. Each tumor type in pediatric-type diffuse high-grade glioma mostly harbors a distinct molecular marker. On the other hand, in pediatric-type diffuse low-grade gliomas and circumscribed astrocytic gliomas, molecular diagnostics may be extremely complicated at a glance in the 2021 WHO classification. It is crucial for radiologists to understand the molecular diagnostics and imaging findings and leverage the knowledge in clinical practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Philipp Vollmuth
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Martha Foltyn-Dumitru
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Furuta T, Moritsubo M, Muta H, Shimamoto H, Ohshima K, Sugita Y. Pediatric and elderly polymorphous low-grade neuroepithelial tumor of the young: Typical and unusual case reports and literature review. Neuropathology 2023; 43:319-325. [PMID: 36545913 DOI: 10.1111/neup.12889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 08/03/2023]
Abstract
Polymorphous low-grade neuroepithelial tumor of the young (PLNTY), one of the pediatric-type diffuse low-grade gliomas, is characterized by a diffuse infiltrating pattern of oligodendroglioma-like tumor cells showing CD34 positivity and harbors mitogen-activated protein kinase (MAPK) alteration, such as vRAF murine sarcoma viral oncogene homolog B1 (BRAF) p.V600E or fibroblast growth factor fusion genetically. It occurs mainly in pediatric and adolescents with seizures due to the dominant location of the temporal lobe. However, there have been a few cases of PLNTY in adult patients, suggesting the wide range of this tumor spectrum. Here, we describe two cases of PLNTY, one in a 14-year-old female and the other in a 66-year-old female. The pediatric tumor showed typical clinical course and histopathology with BRAF p.V600E mutation, whereas the elderly tumor was unusual because of non-epileptic onset clinically and ependymal differentiation histopathologically harboring KIAA1549-BRAF fusion. There might be unusual but possible PLNTY, as in our elderly case. We also compared typical pediatric and unusual elderly tumors by reviewing the literature.
Collapse
Affiliation(s)
- Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Mayuko Moritsubo
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Hiroko Muta
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | | | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Yasuo Sugita
- Department of Neuropathology, St. Mary's Hospital, Fukuoka, Japan
| |
Collapse
|
10
|
Komori T. Update of the 2021 WHO classification of tumors of the central nervous system: adult diffuse gliomas. Brain Tumor Pathol 2023; 40:1-3. [PMID: 36538117 DOI: 10.1007/s10014-022-00446-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo Metropolitan Hospital Organization, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| |
Collapse
|
11
|
Sansone G, Vivori N, Vivori C, Di Stefano AL, Picca A. Basic premises: searching for new targets and strategies in diffuse gliomas. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00507-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Massimino M, Vennarini S, Barretta F, Colombo F, Antonelli M, Pollo B, Pignoli E, Pecori E, Alessandro O, Schiavello E, Boschetti L, Podda M, Puma N, Gattuso G, Sironi G, Barzanò E, Nigro O, Bergamaschi L, Chiaravalli S, Luksch R, Meazza C, Spreafico F, Terenziani M, Casanova M, Ferrari A, Chisari M, Pellegrini C, Clerici CA, Modena P, Biassoni V. How ten-years of reirradiation for paediatric high-grade glioma may shed light on first line treatment. J Neurooncol 2022; 159:437-445. [PMID: 35809148 DOI: 10.1007/s11060-022-04079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/25/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Recurrence incidence for paediatric/adolescent high-grade glioma (HGG) exceeds 80%. Reirradiation (reRT) palliates symptoms and delays further progression. Strategies for reRT are scarce: we retrospectively analysed our series to develop rational future approaches. METHODS We re-evaluated MRI + RT plans of 21 relapsed HGG-patients, accrued 2010-2021, aged under 18 years. All underwent surgery and RT + chemotherapy at diagnosis. Pathologic/molecular re-evaluation allowed classification based on WHO 2021 criteria in 20/21 patients. Survival analyses and association with clinical parameters were performed. RESULTS Relapse after 1st RT was local in 12 (7 marginal), 4 disseminated, 5 local + disseminated. Re-RT obtained 8 SD, 1 PR, 1PsPD, 1 mixed response, 10 PD; neurological signs/symptoms improved in 8. Local reRT was given to 12, followed again by 6 local (2 marginal) and 4 local + disseminated second relapses in 10/12 re-evaluated. The 4 with dissemination had 1 whole brain, 2 craniospinal irradiation (CSI), 1 spine reRT and further relapsed with dissemination and local + dissemination in 3/four assessed. Five local + disseminated tumours had 3 CSI, 1 spine reRT, further progressing locally (2), disseminated (1), n.a. (1). Three had a third RT; three were alive at 19.4, 29, 50.3 months after diagnosis. Median times to progression/survival after re-RT were 3.7 months (0.6-16.2 months)/6.9 months (0.6-17.9 months), improved for longer interval between 1st RT and re-RT (P = 0.017) and for non-PD after reRT (P < 0.001). First marginal relapse showed potential association with dissemination after re-RT (P = 0.081). CONCLUSIONS This is the biggest series of re-RT in paediatric HGG. Considering the dissemination observed at relapse, our results could prompt the investigation of different first RT fields in a randomized trial.
Collapse
Affiliation(s)
- Maura Massimino
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| | - Sabina Vennarini
- Pediatric Radiotherapy (SV, FC, EP, OA), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Francesco Barretta
- Medical Statistics, Biometry and Bioinformatics (FB), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | | | - Manila Antonelli
- Radiological, Oncological and Anatomo-Pathological Sciences (MA), Department of La Sapienza University, Rome, Italy
| | - Bianca Pollo
- Neuropathology (BP) Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuele Pignoli
- Medical Physics (EP), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Emilia Pecori
- Pediatric Radiotherapy (SV, FC, EP, OA), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Ombretta Alessandro
- Pediatric Radiotherapy (SV, FC, EP, OA), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Elisabetta Schiavello
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Luna Boschetti
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Marta Podda
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Nadia Puma
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giovanna Gattuso
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giovanna Sironi
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Elena Barzanò
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Olga Nigro
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Luca Bergamaschi
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Stefano Chiaravalli
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Roberto Luksch
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Cristina Meazza
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Filippo Spreafico
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Monica Terenziani
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Michela Casanova
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Andrea Ferrari
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Marco Chisari
- Pain Therapy and Rehabilitation Units (MC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Chiara Pellegrini
- Pain Therapy and Rehabilitation Units (MC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Carlo Alfredo Clerici
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.,Hemato-Oncology Department La Statale University, Milan, Italy
| | | | - Veronica Biassoni
- Pediatrics (MM, LB, VB, ES, CAC), Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| |
Collapse
|
13
|
Affiliation(s)
- Alan R Cohen
- From the Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
14
|
Molecular Markers of Pediatric Solid Tumors—Diagnosis, Optimizing Treatments, and Determining Susceptibility: Current State and Future Directions. Cells 2022; 11:cells11071238. [PMID: 35406801 PMCID: PMC8997439 DOI: 10.3390/cells11071238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Advances in molecular technologies, from genomics and transcriptomics to epigenetics, are providing unprecedented insight into the molecular landscape of pediatric tumors. Multi-omics approaches provide an opportunity to identify a wide spectrum of molecular alterations that account for the initiation of the neoplastic process in children, response to treatment and disease progression. The detection of molecular markers is crucial to assist clinicians in accurate tumor diagnosis, risk stratification, disease subtyping, prediction of treatment response, and surveillance, allowing also for personalized cancer management. This review summarizes the most recent developments in genomics research and their relevance to the field of pediatric oncology with the aim of generating an overview of the most important, from the clinical perspective, molecular markers for pediatric solid tumors. We present an overview of the molecular markers selected based on therapeutic protocols, guidelines from international committees and scientific societies, and published data.
Collapse
|
15
|
Sasame J, Ikegaya N, Kawazu M, Natsumeda M, Hayashi T, Isoda M, Satomi K, Tomiyama A, Oshima A, Honma H, Miyake Y, Takabayashi K, Nakamura T, Ueno T, Matsushita Y, Iwashita H, Kanemaru Y, Murata H, Ryo A, Terashima K, Yamanaka S, Fujii Y, Mano H, Komori T, Ichimura K, Cahill DP, Wakimoto H, Yamamoto T, Tateishi K. HSP90 inhibition overcomes resistance to molecular targeted therapy in BRAFV600E mutant high-grade glioma. Clin Cancer Res 2022; 28:2425-2439. [PMID: 35344043 DOI: 10.1158/1078-0432.ccr-21-3622] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/07/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Molecular targeted therapy using BRAF and/or MEK inhibitors has been applied to BRAFV600E mutant high-grade gliomas (HGGs); however, the therapeutic effect is limited by the emergence of drug resistance. EXPERIMENTAL DESIGN We established multiple paired BRAFV600E mutant HGG patient-derived xenograft (PDX) models based on tissues collected prior to and at relapse after molecular targeted therapy. Using these models, we dissected treatment resistant mechanisms for molecular targeted therapy and explored therapeutic targets to overcome resistance in BRAFV600E HGG models in vitro and in vivo. RESULTS We found that, despite causing no major genetic and epigenetic changes, BRAF and/or MEK inhibitor treatment deregulated multiple negative feedback mechanisms, which led to the re-activation of the MAPK pathway through c-Raf and AKT signaling. This altered oncogenic signaling primarily mediated resistance to molecular targeted therapy in BRAFV600E mutant HGG. To overcome this resistance mechanism, we performed a high-throughput drug screening to identify therapeutic agents that potently induce additive cytotoxicity with BRAF and MEK inhibitors. We discovered that HSP90 inhibition combined with BRAF/MEK inhibition coordinately deactivated the MAPK and AKT/mTOR pathways, and subsequently induced apoptosis via dephosphorylation of GSK3β (Ser9) and inhibition of Bcl-2 family proteins. This mediated potent cytotoxicity in vitro and in vivo in refractory models with acquired resistance to molecular-targeted therapy. CONCLUSIONS The combination of an HSP90 inhibitor with BRAF or MEK inhibitors can overcome the limitations of the current therapeutic strategies for BRAFV600E mutant HGG.
Collapse
Affiliation(s)
- Jo Sasame
- Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | - Toshihide Ueno
- National Cancer Center Research Institute, Tokyo, Tokyo, Japan
| | | | | | | | | | | | - Keita Terashima
- National Center For Child Health and Development, Tokyo, Japan
| | | | - Yukihiko Fujii
- Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | | | | | | | - Daniel P Cahill
- Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - Hiroaki Wakimoto
- Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | | | | |
Collapse
|
16
|
The 2021 WHO classification of tumors, 5th edition, central nervous system tumors: the 10 basic principles. Brain Tumor Pathol 2022; 39:47-50. [PMID: 35316415 DOI: 10.1007/s10014-022-00428-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Komori T. Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System. J Transl Med 2022; 102:126-133. [PMID: 34504304 DOI: 10.1038/s41374-021-00667-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
The grading of gliomas based on histological features has been a subject of debate for several decades. A consensus has not yet been reached because of technical limitations and inter-observer variations. While the traditional grading system has failed to stratify the risk of IDH-mutant astrocytoma, canonical histological and proliferative markers may be applicable to the risk stratification of IDH-wild-type astrocytoma. Numerous studies have examined molecular markers in order to obtain more clinically relevant information that will improve the risk stratification of gliomas. The CDKN2A/B homozygous deletion for IDH-mutant astrocytoma and the following three criteria for IDH-wild-type astrocytoma: the concurrent gain of whole chromosome 7 and loss of whole chromosome 10, TERT promoter mutations, and EGFR amplification, were identified as independent molecular markers of the worst clinical outcomes. Therefore, the 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System adopted these molecular markers into the revised grading criteria of IDH-mutant and -wild-type astrocytoma, respectively, as a grading system within tumor types. Of note, several recent studies have shown that some low-grade IDH-wild-type astrocytoma lacking both the molecular glioblastoma signature and genetic alterations typical of pediatric-type gliomas may demonstrate a relatively indolent clinical course, suggesting the existence of lower-grade adult IDH-wild-type astrocytoma. In terms of oligodendroglioma, IDH-mutant, and 1p/19q codeleted, consistent makers that predict poor outcomes have not yet been identified, and, thus, the current criteria have remained unchanged. Molecular testing to fulfill the revised WHO criteria is, however, not always available worldwide, and in that case, an integrated diagnosis combining all available complementary information is highly recommended. This review discusses controversial issues surrounding legacy grading systems and newly identified potential genetic markers of adult diffuse gliomas and provides perspectives on future grading systems.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| |
Collapse
|
18
|
Lim SD, Kim SI, Park JW, Won JK, Kim SK, Phi JH, Chung CK, Choi SH, Yun H, Park SH. Emerging glioneuronal and neuronal tumors: case-based review. Brain Tumor Pathol 2022; 39:65-78. [PMID: 35048219 DOI: 10.1007/s10014-021-00420-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Glioneuronal and neuronal tumors (GNTs) are rare heterogeneous central nervous system tumors characterized by slow growth and favorable outcomes, but are often associated with diagnostic difficulties. A thorough analysis of three rare and recently recognized GNTs was performed in the context of clinicopathological features and molecular genetic characterization. The current spinal diffuse leptomeningeal glioneuronal tumor (DLGNT) was characterized with oligodendroglioma-like tumor with chromosome 1p/19q codeletion without IDH mutations and KIAA1549:BRAF fusion. The current occipital multinodular and vacuolating neuronal tumor (MVNT) was characteristic of the variable-sized vague nodules consisted of gangliocytic tumor cells with intracytoplasmic and pericellular vacuolation and the next-generation sequencing (NGS) revealed MAP2K1 p.Q56_V60del. A diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters (DGONC) of the amygdala was characterized by oligodendroglia-like cells and nuclear clusters, and monosomy 14. From the current cases and literature review, we found that DLGNT commonly occurs in the spinal cord and can make mass and more commonly have KIAA1549:BRAF fusion; MVNT is a neoplasm rather than malformation and MAP2K1 deletion is one of the hallmarks of this tumor; although DGONC may require a methylation profile, we can reach a diagnosis through its unique histology, monosomy 14, and exclusion diagnosis without a methylation profile.
Collapse
Affiliation(s)
- So Dug Lim
- Department of Pathology, KonKuk University School of Medicine, Seoul, 05029, Republic of Korea
| | - Seong Ik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jin Woo Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chun-Kee Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung-Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Institute of Neuroscience, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
19
|
Mizoguchi M, Hata N, Kuga D, Hatae R, Akagi Y, Sangatsuda Y, Fujioka Y, Takigawa K, Funakoshi Y, Suzuki SO, Iwaki T. Clinical implications of molecular analysis in diffuse glioma stratification. Brain Tumor Pathol 2021; 38:210-217. [PMID: 34268651 DOI: 10.1007/s10014-021-00409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
The revised 4th edition of the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO) has introduced the integrated diagnostic classification that combines molecular and histological diagnoses for diffuse gliomas. In this study, we evaluated the molecular alterations for consecutive 300 diffuse glioma cases (grade 2, 56; grade 3, 62; grade 4, 182) based on this classification. Mutations in the isocitrate dehydrogenase (IDH) genes were common in lower grade glioma (LGG: grade2-3), and when combined with 1p/19q status, LGGs could be stratified into three groups except for four cases (Astrocytoma, IDH-mutant: 44; Oligodendroglioma, IDH-mutant and 1p/19q codeleted: 37; Astrocytoma, IDH-wildtype: 33). 1p/19q-codeleted oligodendrogliomas were clinically the most favorable subgroup even with upfront chemotherapy. In contrast, IDH-wildtype astrocytomas had a relatively worse prognosis; however, this subgroup was more heterogeneous. Of this subgroup, 11 cases had TERT promoter (pTERT) mutation with shorter overall survival than 12 pTERT-wildtype cases. Additionally, a longitudinal analysis indicated pTERT mutation as early molecular event for gliomagenesis. Therefore, pTERT mutation is critical for the diagnosis of molecular glioblastoma (WHO grade 4), regardless of histological findings, and future treatment strategy should be considered based on the precise molecular analysis.
Collapse
Affiliation(s)
- Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yojiro Akagi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|