1
|
Chan CK, Lim KS, Chan CY, Kumar TS, Audrey C, Narayanan V, Fong SL, Ng CC. A review of epilepsy syndromes and epileptogenic mechanism affiliated with brain tumor related genes. Gene 2025; 962:149531. [PMID: 40294709 DOI: 10.1016/j.gene.2025.149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is one of the comorbidities often manifested by patients with brain tumors. While there are reviews commenting on the epileptogenicity of brain-tumor-related genes, the reviews are commonly restricted to BRAF, IDH and PIK3CA. According to World Health Organization (WHO), at least 50 genes have been proposed as brain-tumor-related genes. Hence, we aimed to provide a more comprehensive review of the epileptogenicity of the brain-tumor-related genes. We performed an extensive literature search on PubMed, classified the studies, and provided an overview of the associated epilepsy phenotype and epileptogenic mechanism of the brain-tumor-related genes advocated by WHO. Through our analysis, we found a minor overlap between brain-tumor-related genes and epilepsy-associated genes, as some brain-tumor-related genes have been classified as epilepsy-associated genes in earlier studies. Besides reviewing the well-studied genes like TSC1 and TSC2, we identified several under-discovered brain-tumor-related genes, including TP53, CIC, IDH1 and NOTCH1, that warrant future exploration due to the existence of clinical or in vivo evidence substantiating their pathogenic role in epileptogenesis. We also propounded some methodologies that can be applied in future research to enhance the study of the epileptogenic mechanism of brain-tumor-related genes. To date, this article covers the greatest number of brain-tumor-related genes.
Collapse
Affiliation(s)
- Chung-Kin Chan
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kheng-Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chet-Ying Chan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thinisha Sathis Kumar
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Christine Audrey
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Si-Lei Fong
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ching-Ching Ng
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Frederico SC, Vera E, Abdullaev Z, Acquaye A, Aldape K, Boris L, Briceno N, Choi A, Christ A, Cooper D, Grajkowska E, Kunst T, Leeper HE, Levine J, Lollo N, Pratt D, Quezado M, Shah R, Wall K, Gilbert MR, Armstrong TS, Penas-Prado M. Heterogeneous clinicopathological findings and patient-reported outcomes in adults with MN1-altered CNS tumors: A case report and systematic literature review. Front Oncol 2023; 13:1099618. [PMID: 36741001 PMCID: PMC9892899 DOI: 10.3389/fonc.2023.1099618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The uncommon MN1-altered primary central nervous system (CNS) tumors were recently added to the World Health Organization 2021 classification under the name Astroblastoma, MN1-altered. Another term used to describe them, "High-grade neuroepithelial tumor with MN1 alteration" (HGNET-MN1), makes reference to their distinct epigenetic profile but is currently not a recommended name. Thought to occur most commonly in children and predominantly in females, MN1-altered CNS tumors are associated with typical but not pathognomonic histological patterns and are characterized by a distinct DNA methylation profile and recurrent fusions implicating the MN1 (meningioma 1) gene. Diagnosis based on histological features alone is challenging: most cases with morphological features of astroblastoma (but not all) show these molecular features, whereas not all tumors with MN1 fusions show astroblastoma morphology. There is large variability in reported outcomes and detailed clinical and therapeutic information is frequently missing. Some patients experience multiple recurrences despite multimodality treatment, whereas others experience no recurrence after surgical resection alone, suggesting large clinical and biological heterogeneity despite unifying epigenetic features and recurrent fusions. In this report, we present the demographics, tumor characteristics, treatment, and outcome (including patient-reported outcomes) of three adults with MN1-altered primary CNS tumors diagnosed via genome-wide DNA methylation and RNA sequencing. All three patients were females and two of them were diagnosed as young adults. By reporting our neuropathological and clinical findings and comparing them with previously published cases we provide insight into the clinical heterogeneity of this tumor. Additionally, we propose a model for prospective, comprehensive, and systematic collection of clinical data in addition to neuropathological data, including standardized patient-reported outcomes.
Collapse
Affiliation(s)
- Stephen C. Frederico
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States,University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Elizabeth Vera
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alvina Acquaye
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lisa Boris
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nicole Briceno
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Anna Choi
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alexa Christ
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Diane Cooper
- Office of Research Services, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ewa Grajkowska
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tricia Kunst
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Heather E. Leeper
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jason Levine
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States,IT and Clinical Informatics, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nicole Lollo
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Drew Pratt
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ritu Shah
- Department of Radiology and Imaging Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kathleen Wall
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Terri S. Armstrong
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marta Penas-Prado
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States,*Correspondence: Marta Penas-Prado,
| |
Collapse
|
3
|
Allison CM, Scoones D, Batra A, Sinclair G. Thirteen-year long-term follow-up in a rare case of anaplastic astroblastoma: What makes the difference? Surg Neurol Int 2022; 13:221. [PMID: 35673675 PMCID: PMC9168415 DOI: 10.25259/sni_1065_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Astroblastomas are uncommon neuroepithelial tumors of the central nervous system with a distinct, yet, controversial radiological, histological, and molecular profile. Debatable differences between low- and high-grade astroblastoma have been reported in the medical literature; indeed, despite the increasing relevance of molecular genetic profiling in the realm of astroblastoma, its application is still in its early stages. As a result, the diagnostic criteria for astroblastoma remain undecided with yet no real consensus on the most ideal management. Case Description: This report describes a case of astroblastoma diagnosed 13 years ago in a young woman who despite six episodes of recurrence, transformation, and progression was able to retain a perfomace status of 0 by World Health Organization standard, throughout. Conclusion: This report discusses the clinical, radiological, histological features, and management of this rare tumor with an extraordinarily long survival, with an aim to strengthen the literature on management options. To the best of our knowledge, this is the longest surviving case of anaplastic astroblastoma reported in the available medical literature.
Collapse
Affiliation(s)
| | - David Scoones
- Department of Neuropathology, James Cook University Hospital, Middlesbrough, UK
| | - Arun Batra
- Department of Radiology James Cook University Hospital, Middlesbrough, UK
| | - Georges Sinclair
- Department of Oncology, James Cook University Hospital, Middlesbrough, UK.,Department of Oncology, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Department of Neurosurgery, Bezmialem Vakif University Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
Sari R, Altinoz MA, Ozyar E, Danyeli AE, Elmaci I. A pediatric cerebral tumor with MN1 alteration and pathological features mimicking carcinoma metastasis: may the terminology "high grade neuroepithelial tumor with MN1 alteration" still be relevant? Childs Nerv Syst 2021; 37:2967-2974. [PMID: 34269865 DOI: 10.1007/s00381-021-05289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Astroblastoma, MN1-altered (old name: high-grade neuroepithelial tumor/HGNET with MN1 alteration) is a recently described central nervous system tumor mostly affecting pediatric patients and profoundly young girls. Differential pathological diagnoses of these tumors include ependymoma, pleomorphic xanthoastrocytoma, embryonal tumor with multilayered rosettes, meningioma, and even glioblastoma. As the treatment approaches to these tumors differ, it is essential to increase the awareness about these tumors in the neurosurgical community. CLINICAL PRESENTATION A 7-year-old female patient admitted with a 7-day history of headache, nausea, and vomiting. A contrasted MRI scan revealed a left parietal 4 × 4 × 5 cm mass with central necrosis and peripheral contrast enhancement. The tumor's histopathological findings were suggestive of a metastatic carcinoma with unknown primary, yet further genetic analysis revealed MN1 alteration. Peculiarly, the tumor pathomorphological features were not compatible with astroblastomas and exerted features strongly indicating a metastatic cancer; however, systemic PET and whole-body MRI failed to detect a primary malignancy. OUTCOME AND CONCLUSIONS Eighteen months after gross-total tumor resection, an in-field and out-field multifocal recurrence developed which required a second surgery and subsequent chemo-radiotherapy. The patient is doing well for 1 year after the second treatment regimen at the time of this report. Despite the final cIMPACT6 classification in 2020 advised to define all MN1 altered brain tumors as astroblastomas, there exist prognostic differences in MN1-altered tumors with and without morphological features of astroblastoma. Rare morphological variants of MN1-altered tumors shall be recognized for their future prognostic and clinical classification. HGNET with MN1 alteration seems still be a more proper definition of such malignancies as an umbrella term.
Collapse
Affiliation(s)
- Ramazan Sari
- Department of Neurosurgery, Acibadem Maslak Hospital, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Enis Ozyar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ayca Ersen Danyeli
- Department of Pathology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ilhan Elmaci
- Department of Neurosurgery, Acibadem Maslak Hospital, Istanbul, Turkey. .,Department of Neurosurgery, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|