1
|
Yao L, Wu J, Liu S, Xing H, Wang P, Gao W, Wu Z, Zhou Q. Distinct drivers of bacterial community assembly processes in riverine islands in the middle and lower reaches of the Yangtze River. Microbiol Spectr 2024; 12:e0081824. [PMID: 38869307 PMCID: PMC11302259 DOI: 10.1128/spectrum.00818-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Riverine islands are widespread alluvium wetlands developed in large rivers, and bacterial communities are crucial to their ecological function, yet their assembly processes are rarely addressed. The ecosystem services provided by the middle and the lower Yangtze are primarily threatened by pollution discharge from agricultural land use, and resource overutilization (e.g., embankments), respectively. Here, we assessed bacterial community assembly processes and their drivers within riverine islands in the middle Yangtze River (MR islands) and those in the lower reach (LR islands). A significant distance-decay relationship was observed, although the turnover rate was lower than that of the terrestrial ecosystem with less connectivity. Deterministic and stochastic processes jointly shaped community patterns, and the influence of stochastic increased from 26% in MR islands to 59% for those in LR islands. Meanwhile, the bacterial community in MR islands was controlled more by inorganic nitrogen availability, whereas those in LR islands were governed by pH and EC, although those factors explained a limited fraction of variation in the bacterial community. Potential indicator taxa (affiliated with Nocardioides and Lysobacter) characterized the waterway transport pollution. Overall, our study demonstrated that bacterial community dissimilarity and the importance of dispersal limitation increased concurrently along the flow direction, while distinct local factors further determined bacterial community compositions by selecting habitat-specificity taxa and particularly metabolism function. These findings enhanced our understanding of the mechanisms driving changes in bacterial communities of riverine islands subject to increased anthropogenic impacts.IMPORTANCERivers are among the most threatened ecosystems globally and face multiple stressors related to human activity. However, linkages between microbial diversity patterns and assembly processes in rivers remain unclear, especially in riverine islands developed in large rivers. Our findings reveal that distinct factors result in divergent bacterial community compositions and functional profiles in the riverine islands in the middle Yangtze and those in the lower Yangtze, with substantial differentiation in deterministic and stochastic processes that jointly contribute to bacterial community assemblages. Additionally, keystone species may play important metabolic roles in coping with human-related disturbances. This study provides an improved understanding of relationships between microbial diversity patterns and ecosystem functions under environmental changes in large river ecosystems.
Collapse
Affiliation(s)
- Lu Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | - Junmei Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouzhuang Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hao Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pei Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wenjuan Gao
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhenbin Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Qiaohong Zhou
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
O'Brien L, Siboni N, Seymour JR, Balzer M, Mitrovic S. Tributary Inflows to a Regulated River Influence Bacterial Communities and Increase Bacterial Carbon Assimilation. MICROBIAL ECOLOGY 2023; 86:2642-2654. [PMID: 37480518 PMCID: PMC10640455 DOI: 10.1007/s00248-023-02271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Inflows from unregulated tributaries change the physical, chemical, and biotic conditions in receiving regulated rivers, impacting microbial community structure and metabolic function. Understanding how tributary inflows affect bacterial carbon production (BCP) is integral to understanding energy transfer in riverine ecosystems. To investigate the role of tributary inflows on bacterial community composition and BCP, a ~90th percentile natural flow event was sampled over 5 days along the Lachlan River and its tributaries within the Murray-Darling Basin of eastern Australia. Increased tributary inflows after rainfall corresponded with a significantly different and more diverse bacterial community in the regulated mainstem. The major contributor to this difference was an increase in relative abundance of bacterial groups with a potential metabolic preference for humic substances (Burkholderiaceae Polynucleobacter, Alcaligenaceae GKS98 freshwater group, Saccharimonadia) and a significant decrease in Spirosomaceae Pseudarcicella, known to metabolise algal exudates. Increases in orthophosphate and river discharge explained 31% of community change, suggesting a combination of resource delivery and microbial community coalescence as major drivers. BCP initially decreased significantly with tributary inflows, but the total load of carbon assimilated by bacteria increased by up to 20 times with flow due to increased water volume. The significant drivers of BCP were dissolved organic carbon, water temperature, and conductivity. Notably, BCP was not correlated with bacterial diversity or community composition. Tributary inflows were shown to alter mainstem bacterial community structure and metabolic function to take advantage of fresh terrestrial dissolved organic material, resulting in substantial changes to riverine carbon assimilation over small times scales.
Collapse
Affiliation(s)
- Lauren O'Brien
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Matthew Balzer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Simon Mitrovic
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
3
|
Li K, Cao X, Zhou S, Li L. Spatial and temporal distribution characteristics of pCO 2 and CO 2 evasion in karst rivers under the influence of urbanization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53920-53937. [PMID: 36869950 DOI: 10.1007/s11356-023-26144-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Surface rivers play an essential role in carbon cycle processes in karst regions. However, the CO2 diffusion flux from karst rivers under the influence of urbanization has been scarcely examined in the literature. Along these lines, in this work, the CO2 partial pressure (pCO2) and its degassing in a typical karst river (Nanming River and its tributaries) were thoroughly investigated, which are significantly affected by urbanization in Southwest China. From the acquired results, it was demonstrated that the average values of pCO2 in the main stream of the Nanming River in the wet season, dry season, and flat season were 1975.77 ± 714.45 μatm, 1116.08 ± 454.24 μatm, and 976.89 ± 746.37 μatm, respectively. On the other hand, the tributary showed mean pCO2 values of 1770.46 ± 1120.79 μatm, 1638.13 ± 1121.82 μatm, and 1107.74 ± 824.03 μatm in the three different hydrographic periods. Overall, the pCO2 of the Nanming River basin decreased in the following order: wet season > dry season > flat season, while the mainstream of the Nanming River was slightly higher than that of the tributaries in the wet season. However, it was lower than that of the tributaries in the dry and flat seasons. Additionally, more than 90% of the samples displayed a supersaturated state of CO2, which acted as an important source of CO2 in the atmosphere. From a spatial point of view, pCO2 tended to be higher in the western region than in the eastern region, higher in the middle than in the immediate vicinity, and higher in the south during the three seasons. The higher urban areas showed also relatively higher pCO2 than the lower urban areas. The urban land along with the Nanming River's mainstream exhibited a weaker correlation with pCO2 than the urban land along with the main tributaries due to the mainstream's regular management in recent years. Moreover, the pCO2 was mainly influenced by the carbonate rocks dissolution, aquatic organism metabolic processes, and human activities. In the Nanming River basin, the average CO2 diffusion fluxes in the wet season, dry season, and flat season were 147.02 ± 100.3 mmol·m-2·d-1, 76.02 ± 67.45 mmol·m-2·d-1, and 119.28 ± 168.22 mmol·m-2·d-1, respectively, which indicates high potential CO2 emissions. In addition, it was found that urban construction could increase the pCO2 of karst rivers and cause an increase in the CO2 release flux during the regional urban expansion. In view of the increasing intensive and extensive urbanization in karst regions, our findings are helpful to elucidate the characteristics of carbon dioxide emissions from karst rivers under the disturbance of human activities and further deepen the understanding of the carbon balance in karst river basins.
Collapse
Affiliation(s)
- Kai Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 500025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
| | - Xingxing Cao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 500025, China.
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China.
| | - Shiyu Zhou
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 500025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
| | - Linwei Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 500025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
| |
Collapse
|
4
|
Verma A, Amnebrink D, Pinhassi J, Wikner J. Prokaryotic maintenance respiration and growth efficiency field patterns reproduced by temperature and nutrient control at mesocosm scale. Environ Microbiol 2023; 25:721-737. [PMID: 36511634 DOI: 10.1111/1462-2920.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The distribution of prokaryotic metabolism between maintenance and growth activities has a profound impact on the transformation of carbon substrates to either biomass or CO2 . Knowledge of key factors influencing prokaryotic maintenance respiration is, however, highly limited. This mesocosm study validated the significance of prokaryotic maintenance respiration by mimicking temperature and nutrients within levels representative of winter and summer conditions. A global range of growth efficiencies (0.05-0.57) and specific growth rates (0.06-2.7 d-1 ) were obtained. The field pattern of cell-specific respiration versus specific growth rate and the global relationship between growth efficiency and growth rate were reproduced. Maintenance respiration accounted for 75% and 15% of prokaryotic respiration corresponding to winter and summer conditions, respectively. Temperature and nutrients showed independent positive effects for all prokaryotic variables except abundance and cell-specific respiration. All treatments resulted in different taxonomic diversity, with specific populations of amplicon sequence variants associated with either maintenance or growth conditions. These results validate a significant relationship between specific growth and respiration rate under productive conditions and show that elevated prokaryotic maintenance respiration can occur under cold and oligotrophic conditions. The experimental design provides a tool for further study of prokaryotic energy metabolism under realistic conditions at the mesocosm scale.
Collapse
Affiliation(s)
- Ashish Verma
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Hörnefors, Sweden
| | - Dennis Amnebrink
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Hörnefors, Sweden
| |
Collapse
|
5
|
Singh M, Pandey U, Pandey J. Effects of COVID-19 lockdown on water quality, microbial extracellular enzyme activity, and sediment-P release in the Ganga River, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60968-60986. [PMID: 35435553 PMCID: PMC9014407 DOI: 10.1007/s11356-022-20243-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/09/2022] [Indexed: 06/03/2023]
Abstract
This study investigates possible improvement in water quality and ecosystem functions in the Ganga River as influenced by COVID-19 lockdown in India. A total of 132 samples were collected during summer-2020 low flow (coinciding COVID-19 lockdown) for water (sub-surface and sediment-water interface) and 132 samples separately for sediment (river bottom and land-water interface) considering 518-km main river stem including three-point sources (one releases urban sewage and the other two add metal-rich industrial effluents) and a pollution-impacted tributary. Parameters such as dissolved oxygen deficit and the concentrations of carbon, nutrients (N and P), and heavy metals were measured in water. Sediment P-release was measured in bottom sediment whereas extracellular enzymes (EE; alkaline phosphatase, FDAase, protease, and β-D-glucosidase) and CO2 emission were measured at land-water interface to evaluate changes in water quality and ecosystem functions. The data comparisons were made with preceding year (2019) measurements. Sediment-P release and the concentrations of carbon, nutrients, and heavy metals declined significantly (p<0.05) in 2020 compared to those recorded in 2019. Unlike the preceding year, we did not observe benthic hypoxia (DO <2.0 mg L-1) in 2020 even at the most polluted site. The EE activities, which declined sharply in the year 2019, showed improvement during the 2020. The stability coefficient and correlative evidences also showed a large improvement in the water quality and functional variables. Positive changes in functional attributes indicated a transient recovery when human perturbations withdrawn. The study suggests that timing the ecosystem recovery windows, as observed here, may help taking management decision to design mitigation actions for rivers to recover from anthropogenic perturbations.
Collapse
Affiliation(s)
- Madhulika Singh
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Usha Pandey
- Department of Botany, Faculty of Science and Technology, Mahatma Gandhi Kashividyapith University, Varanasi, 221002, India
| | - Jitendra Pandey
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Eswaran R, Khandeparker L. Ecological relevance of high and low nucleic acid content bacteria in a monsoon influenced tropical estuary: Implications on the β-Glucosidase activity. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2020.103697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Galantini L, Lapierre JF, Maranger R. How Are Greenhouse Gases Coupled Across Seasons in a Large Temperate River with Differential Land Use? Ecosystems 2021. [DOI: 10.1007/s10021-021-00629-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Vikström K, Wikner J. Importance of Bacterial Maintenance Respiration in a Subarctic Estuary: a Proof of Concept from the Field. MICROBIAL ECOLOGY 2019; 77:574-586. [PMID: 30135980 PMCID: PMC6469616 DOI: 10.1007/s00248-018-1244-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Bacterial respiration contributes to atmospheric carbon dioxide accumulation and development of hypoxia and is a critical, often overlooked, component of ecosystem function. This study investigates the concept that maintenance respiration is a significant proportion of bacterial respiration at natural nutrient levels in the field, advancing our understanding of bacterial living conditions and energy strategies. Two river-sea transects of respiration and specific growth rates were analyzed representing low- and high-productivity conditions (by in situ bacterial biomass production) in a subarctic estuary, using an established ecophysiological linear model (the Pirt model) estimating maintenance respiration. The Pirt model was applicable to field conditions during high, but not low, bacterial biomass production. However, a quadratic model provided a better fit to observed data, accounting for the maintained respiration at low μ. A first estimate of maintenance respiration was 0.58 fmol O2 day-1 cell-1 by the quadratic model. Twenty percent to nearly all of the bacterial respiration was due to maintenance respiration over the observed range of μ (0.21-0.002 day-1). In the less productive condition, bacterial specific respiration was high and without dependence on μ, suggesting enhanced bacterial energy expenditure during starvation. Annual maintenance respiration accounted for 58% of the total bacterioplankton respiration based on μ from monitoring data. Phosphorus availability occasionally, but inconsistently, explained some of the remaining variation in bacterial specific respiration. Bacterial maintenance respiration can constitute a large share of pelagic respiration and merit further study to understand bacterial energetics and oxygen dynamics in the aquatic environment.
Collapse
Affiliation(s)
- Kevin Vikström
- Department of Ecology and Environmental Science, Umeå University, SE-901 87, Umeå, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, SE-901 87, Umeå, Sweden.
- Umeå Marine Sciences Center, Norrbyn 557, SE-905 71, Hörnefors, Sweden.
| |
Collapse
|
9
|
Allochthonous Organic Matter Supports Benthic but Not Pelagic Food Webs in Shallow Coastal Ecosystems. Ecosystems 2018. [DOI: 10.1007/s10021-018-0233-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Julian P, Osborne TZ. From lake to estuary, the tale of two waters: a study of aquatic continuum biogeochemistry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:96. [PMID: 29372426 DOI: 10.1007/s10661-017-6455-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
The balance of fresh and saline water is essential to estuarine ecosystem function. Along the fresh-brackish-saline water gradient within the C-43 canal/Caloosahatchee River Estuary (CRE), the quantity, timing and distribution of water, and associated water quality significantly influence ecosystem function. Long-term trends of water quality and quantity were assessed from Lake Okeechobee to the CRE between May 1978 and April 2016. Significant changes to monthly flow volumes were detected between the lake and the estuary which correspond to changes in upstream management. and climatic events. Across the 37-year period, total phosphorus (TP) flow-weighted mean (FWM) concentration significantly increased at the lake; meanwhile, total nitrogen (TN) FMW concentrations significantly declined at both the lake and estuary headwaters. Between May 1999 and April 2016, TN, TP, and total organic carbon (TOC), ortho-P, and ammonium conditions were assessed within the estuary at several monitoring locations. Generally, nutrient concentrations decreased from upstream to downstream with shifts in TN/TP from values > 20 in the freshwater portion, ~ 20 in the estuarine portion, and < 20 in the marine portion indicating a spatial shift in nutrient limitations along the continuum. Aquatic productivity analysis suggests that the estuary is net heterotrophic with productivity being negatively influenced by TP, TN, and TOC likely due to a combination of effects including shading by high color dissolved organic matter. We conclude that rainfall patterns, land use, and the resulting discharges of runoff drive the ecology of the C-43/CRE aquatic continuum and associated biogeochemistry rather than water management associated with Lake Okeechobee.
Collapse
Affiliation(s)
- Paul Julian
- Soil and Water Sciences, University of Florida, 2199 South Rock Rd, Ft. Pierce, FL, 34945, USA.
| | - Todd Z Osborne
- Soil and Water Sciences, University of Florida, Gainesville, FL, 32611, USA
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| |
Collapse
|
11
|
Anderson OR. The Role of Heterotrophic Microbial Communities in Estuarine C Budgets and the Biogeochemical C Cycle with Implications for Global Warming: Research Opportunities and Challenges. J Eukaryot Microbiol 2015; 63:394-409. [PMID: 26507684 DOI: 10.1111/jeu.12279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/01/2022]
Abstract
Estuaries are among the most productive and economically important marine ecosystems at the land-ocean interface and contribute significantly to exchange of CO2 with the atmosphere. Estuarine microbial communities are major links in the biogeochemical C cycle and flow of C in food webs from primary producers to higher consumers. Considerable attention has been given to bacteria and autotrophic eukaryotes in estuarine ecosystems, but less research has been devoted to the role of heterotrophic eukaryotic microbes. Current research is reviewed here on the role of heterotrophic eukaryotic microbes in C biogeochemistry and ecology of estuaries, with particular attention to C budgets, trophodynamics, and the metabolic fate of C in microbial communities. Some attention is given to the importance of these processes in climate change and global warming, especially in relation to sources and sinks of atmospheric CO2 , while also documenting the current paucity of research on the role of eukaryotic microbes that contribute to this larger question of C biogeochemistry and the environment. Some recommendations are made for future directions of research and opportunities of applying newer technologies and analytical approaches to a more refined analysis of the role of C in estuarine microbial community processes and the biogeochemical C cycle.
Collapse
Affiliation(s)
- O Roger Anderson
- Biology, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, 10964
| |
Collapse
|
12
|
Lu X, Kicklighter DW, Melillo JM, Yang P, Rosenzweig B, Vörösmarty CJ, Gross B, Stewart RJ. A contemporary carbon balance for the Northeast region of the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13230-13238. [PMID: 24195766 DOI: 10.1021/es403097z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Development of regional policies to reduce net emissions of carbon dioxide (CO2) would benefit from the quantification of the major components of the region's carbon balance--fossil fuel CO2 emissions and net fluxes between land ecosystems and the atmosphere. Through spatially detailed inventories of fossil fuel CO2 emissions and a terrestrial biogeochemistry model, we produce the first estimate of regional carbon balance for the Northeast United States between 2001 and 2005. Our analysis reveals that the region was a net carbon source of 259 Tg C/yr over this period. Carbon sequestration by land ecosystems across the region, mainly forests, compensated for about 6% of the region's fossil fuel emissions. Actions that reduce fossil fuel CO2 emissions are key to improving the region's carbon balance. Careful management of forested lands will be required to protect their role as a net carbon sink and a provider of important ecosystem services such as water purification, erosion control, wildlife habitat and diversity, and scenic landscapes.
Collapse
Affiliation(s)
- Xiaoliang Lu
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nguyen D, Maranger R, Tremblay JÉ, Gosselin M. Respiration and bacterial carbon dynamics in the Amundsen Gulf, western Canadian Arctic. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jc007343] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Modelling the effect of directional spatial ecological processes at different scales. Oecologia 2010; 166:357-68. [PMID: 21170750 DOI: 10.1007/s00442-010-1867-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
During the last 20 years, ecologists discovered the importance of including spatial relationships in models of species distributions. Among the latest developments in modelling how species are spatially structured are eigenfunction-based spatial filtering methods such as Moran's eigenvector maps (MEM) and principal coordinates of neighbour matrices (PCNM). Although these methods are very powerful and flexible, they are only suited to study distributions resulting from non-directional spatial processes. The asymmetric eigenvector map (AEM) framework, a new eigenfunction-based spatial filtering method, fills this theoretical gap. AEM was specifically designed to model spatial structures hypothesized to be produced by directional spatial processes. Water currents, prevailing wind on mountainsides, river networks, and glaciations at historical time scales are some of the situations where AEM can be used. This paper presents three applications of the method illustrating different combinations of: sampling schemes (regular and irregular), data types (univariate and multivariate), and spatial scales (metres, kilometres, and hundreds of kilometres). The applications include the distribution of a crustacean (Atya) in a river, bacterial production in a lake, and the distribution of the copepodite stages of a crustacean on the Atlantic oceanic shelf. In each application, a comparison is made between AEM, MEM, and PCNM. No environmental components were included in the comparisons. AEM was a strong predictor in all cases, explaining 59.8% for Atya distribution, 51.4% of the bacterial production variation, and 38.4% for the copepodite distributions. AEM outperformed MEM and PCNM in these applications, offering a powerful and more appropriate tool for spatial modelling of species distributions under directional forcing and leading to a better understanding of the processes at work in these systems.
Collapse
|
15
|
Sinsabaugh RL, Shah JJF. Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production. Ecology 2010; 91:1455-65. [DOI: 10.1890/08-2192.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Arrigoni A, Findlay S, Fischer D, Tockner K. Predicting Carbon and Nutrient Transformations in Tidal Freshwater Wetlands of the Hudson River. Ecosystems 2008. [DOI: 10.1007/s10021-008-9161-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|