1
|
Poćwierz-Kotus A, McQuaid CD, Lipinski MR, Zbawicka M, Wenne R. SNPs Analysis Indicates Non-Uniform Origins of Invasive Mussels ( Mytilus galloprovincialis Lamarck, 1819) on the Southern African Coast. Animals (Basel) 2024; 14:3080. [PMID: 39518803 PMCID: PMC11545541 DOI: 10.3390/ani14213080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the origins of invasive species is necessary to manage them and predict their potential for spreading. The mussel genus Mytilus forms an important component of coastal ecosystems in the northern and southern hemispheres. M. galloprovincialis is an important invasive species globally, first appearing on the South African coast in the 1970s. Studies using nuclear and mitochondrial DNA indicated that the invasion probably originated from the north-east Atlantic. We used fifty-five polymorphic SNPs to genotype mussels from sites across the coast of South Africa with reference samples from the Mediterranean, the Atlantic, and New Zealand to test for possible introgression of the northern and southern taxa. Low levels of genetic differentiation were confirmed, and all samples grouped with reference samples of the Atlantic form of M. galloprovincialis, supporting previous studies. The SNP genotyping, however, allowed the detection of some individuals with genotypes typical of the Mediterranean, indicating that introduced populations in South Africa do not have a uniform origin. The initial population introduced to South Africa may have been genetically heterogenous from the start, coming from a region influenced by both the Atlantic and Mediterranean. Alternatively, multiple introductions may have taken place, originating from different regions, specifically North Africa, southern Europe, and the Mediterranean, building up the final heterogeneity.
Collapse
Affiliation(s)
- Anita Poćwierz-Kotus
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| | - Christopher D. McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6139, Eastern Cape, South Africa;
| | - Marek R. Lipinski
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown 6139, Eastern Cape, South Africa;
- South African Institute of Aquatic Biodiversity (SAIAB), Grahamstown 6140, Eastern Cape, South Africa
| | - Małgorzata Zbawicka
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| | - Roman Wenne
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| |
Collapse
|
2
|
Mbandzi-Phorego N, Puccinelli E, Pieterse PP, Ndaba J, Porri F. Metal bioaccumulation in marine invertebrates and risk assessment in sediments from South African coastal harbours and natural rocky shores. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124230. [PMID: 38810679 DOI: 10.1016/j.envpol.2024.124230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Industrial and urban activities are major contributors to metal contamination in coastal systems, often impacting the physiology, distribution and diversity of marine invertebrates. This study assessed metal contaminations in sediments, seawater, algae and invertebrates across four armoured systems (harbours) and two natural sites along the south coast of South Africa. Bioaccumulation factors such as Biosediment (BSAF), Biowater (BWAF), Bioaccumulation (BAF) and bioremediation of metals by invertebrate bioindicators were also determined. Spatial variation in metal concentrations were observed, however, bioaccumulation of metals was site and species-specific. Invertebrates bioaccumulated higher metal concentrations in armoured than natural sites, with filter feeders exhibiting higher concentrations than grazers. Among filter feeders, Octomeris angulosa and Crassostrea gigas bioaccumulated elevated aluminium (Al), arsenic (As), chromium (Cr), zinc (Zn) and copper (Cu), while, Perna perna accumulated elevated nickel (Ni), cadmium (Cd) and lead (Pb). Among grazers, Siphonaria serrata and Scutellastra longicosta bioaccumulated elevated Al, Cr, Cd, cobalt (Co), Cu, Ni and Zn. Bioaccumulation factors indicated that (As, Ni, Zn) were bioaccumulated by algae, and invertebrates from sediment (BSAF>1) and from seawater (BWAF>1). Additionally, invertebrates bioaccumulated metals from their prey item, algae as indicated by (BAF>1). Arsenic Cd and Pb in invertebrates were above the maximum limit set for human consumption by various regulatory bodies. Our findings underscore the significant role of coastal invertebrates in bioaccumulating and bioremediating metals, suggesting a natural mechanism for water quality enhancement, especially in urbanised coastal areas.
Collapse
Affiliation(s)
- Nokubonga Mbandzi-Phorego
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Ichthyology & Fisheries Science, Rhodes University, Makhanda, South Africa.
| | - Eleonora Puccinelli
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Coastal Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Netherlands; Department of Oceanography, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | | | - Jabulani Ndaba
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Ichthyology & Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Francesca Porri
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Ichthyology & Fisheries Science, Rhodes University, Makhanda, South Africa
| |
Collapse
|
3
|
Berlino M, Mangano MC, Di Bona G, Lucchese M, Terzo SMC, De Vittor C, D'Alessandro M, Esposito V, Gambi MC, Del Negro P, Sarà G. Functional diversity and metabolic response in benthic communities along an ocean acidification gradient. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106520. [PMID: 38685145 DOI: 10.1016/j.marenvres.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Altered ocean chemistry caused by ocean acidification (OA) is expected to have negative repercussions at different levels of the ecological hierarchy, starting from the individual and scaling up to the community and ultimately to the ecosystem level. Understanding the effects of OA on benthic organisms is of primary importance given their relevant ecological role in maintaining marine ecosystem functioning. The use of functional traits represents an effective technique to investigate how species adapt to altered environmental conditions and can be used to predict changes in the resilience of communities faced with stresses associated with climate change. Artificial supports were deployed for 1-y along a natural pH gradient in the shallow hydrothermal systems of the Bottaro crater near Panarea (Aeolian Archipelago, southern Tyrrhenian Sea), to explore changes in functional traits and metabolic rates of benthic communities and the repercussions in terms of functional diversity. Changes in community composition due to OA were accompanied by modifications in functional diversity. Altered conditions led to higher oxygen consumption in the acidified site and the selection of species with the functional traits needed to withstand OA. Calcification rate and reproduction were found to be the traits most affected by pH variations. A reduction in a community's functional evenness could potentially reduce its resilience to further environmental or anthropogenic stressors. These findings highlight the ability of the ecosystem to respond to climate change and provide insights into the modifications that can be expected given the predicted future pCO2 scenarios. Understanding the impact of climate change on functional diversity and thus on community functioning and stability is crucial if we are to predict changes in ecosystem vulnerability, especially in a context where OA occurs in combination with other environmental changes and anthropogenic stressors.
Collapse
Affiliation(s)
- M Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy; Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - M C Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - G Di Bona
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - M Lucchese
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy; National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - S M C Terzo
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Fernando Stagno d'Alcontres 3, University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, Molosiglio, Napoli, 80133, Italy
| | - C De Vittor
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - M D'Alessandro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - V Esposito
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy; Stazione Zoologica Anton Dohrn, Research Infrastructures for Marine Biological Resources Department, Via Po 25, 00198, Roma, Italy
| | - M C Gambi
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy; Previous at the Stazione Zoologica Anton Dohrn, Department of Marine Integrative Ecology (EMI), Ischia Marine Center, Ischia Napoli, Italy
| | - P Del Negro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - G Sarà
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| |
Collapse
|
4
|
Ziegler SL, Atencio WE, Carroll JM, Byers JE. High parasite prevalence in an ecosystem engineer correlated with both local- and landscape-level factors. Oecologia 2024; 205:423-435. [PMID: 38898336 DOI: 10.1007/s00442-024-05581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Spatial variation in parasitic infection may have many physical and biological drivers. Uncovering these drivers may be especially important for parasites of ecosystem engineers because the engineers are foundational to their communities. Oysters are an important coastal ecosystem engineer that have declined drastically worldwide, in part due to enhanced cases of lethal oyster diseases, such as Dermo and MSX, caused by the protozoan parasites Perkinsus marinus and Haplosporidium nelsoni, respectively. Besides water quality and hydrodynamics, there is little information on how other variables influence the prevalence and intensity of these pathogens in oysters across a regional scale. To examine drivers of spatial variation in these oyster parasites-including host size, local reef properties, and landscape properties-we sampled 24 reefs systematically spread along the coast of Georgia, USA. Across sites, we found universally high prevalence of oysters with at least one of these parasites (91.02% ± 8.89, mean ± SD). Not only are high levels of parasite prevalence potentially problematic for a pivotal ecosystem engineer, but also low spatial variability may limit the explanatory power of variables across a regional scale. Our statistical models explained between 18 and 42% of the variation in spatial patterns of prevalence and intensity of these microparasites. Interestingly, landscape context was a positive predictor of P. marinus, but a negative predictor of H. nelsoni. Overall, our findings suggest that factors driving parasite prevalence and intensity operate across multiple spatial scales, and the same factor can both facilitate and hinder different parasites within the same host species.
Collapse
Affiliation(s)
| | - Wil E Atencio
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - John M Carroll
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Cozzolino L, Nicastro KR, Hubbard PC, Seuront L, McQuaid CD, Zardi GI. Intraspecific genetic lineages of a marine mussel show behavioural divergence when exposed to microplastic leachates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122779. [PMID: 37863252 DOI: 10.1016/j.envpol.2023.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Worldwide, microplastic pollution has numerous negative implications for marine biota, exacerbating the effects of other forms of global anthropogenic disturbance. Mounting evidence shows that microplastics (MPs) not only cause physical damage through their ingestion, but also act as vectors for hazardous compounds by leaching absorbed and adsorbed chemicals. Research on the effects of plastic pollution has, however, largely assumed that species respond uniformly, while ignoring intraspecific diversity (i.e., variation within a single species). We investigated the effects of plastic leachates derived from factory-fresh (virgin) and beached microplastics on the behavioural responses of two genetic lineages of the Mediterranean mussel Mytilus galloprovincialis. Through laboratory behavioural experiments, we found that during exposure to leachates from beached microplastics (beached MPLs), Atlantic specimens moved significantly less than Mediterranean individuals in terms of both (i) proportion of individuals responding through movement and (ii) net and gross distances crawled. In contrast, no significant intraspecific differences were observed in the behaviour of either adults or recruits when exposed to MPLs from virgin microplastics (virgin MPLs). Additionally, the reception of cues from three amino acids (L-cysteine, proline and L-leucine) at increasing concentrations (10-5 M to 10-3 M in charcoal-filtered seawater) was tested by electrophysiological analysis using mussels exposed to beached MPLs or control seawater. We found significant intraspecific differences in response to 10-3 M L-cysteine (regardless of treatment) and 10-4 M L-cysteine (in mussels exposed to beached MPLs) and to 10-3 M proline (in mussels exposed to beached MPLs) and 10-5 M L-leucine. Our study suggests that intraspecific variation in a marine mussel may prompt different responses to plastic pollution, potentially triggered by local adaptation and physiological variability between lineages. Our work highlights the importance of assessing the effects of intraspecific variation, especially in environmental sentinel species as this level of diversity could modulate responses to plastic pollution.
Collapse
Affiliation(s)
- Lorenzo Cozzolino
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| | - Katy R Nicastro
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Peter C Hubbard
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108- 8477, Japan
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Gerardo I Zardi
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000, Caen, France
| |
Collapse
|
6
|
Silva Dos Santos F, Neves RAF, Crapez MAC, Teixeira VL, Krepsky N. How does the brown mussel Perna perna respond to environmental pollution? A review on pollution biomarkers. J Environ Sci (China) 2022; 111:412-428. [PMID: 34949370 DOI: 10.1016/j.jes.2021.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 06/14/2023]
Abstract
The brown mussel Perna perna (Linnaeus, 1758) is a valuable resource for aquaculture in tropical and subtropical coastal regions. It presents desirable characteristics for biomonitoring, including being sessile, widely distributed and abundant, and is a filter-feeder able to accumulate several classes of pollutants (e.g., metals, hydrocarbons, among others). Mussels' biological responses to pollution exposure can be measured as biomarkers, which include alterations ranging from molecular to physiological levels, to estimate the degree of environmental contamination and its effects on biota. This full review compiles two decades (2000-2020) of literature concerning biological effects on P. perna mussel caused by environmental pollutants (i.e., metals, hydrocarbons, and emerging pollutants), considering environmental and farm-based biomonitoring. Biochemical markers related to mussels' oxidative status were efficient for the biomonitoring of metals (i.e., antioxidant enzymes associated with oxidative damage in biomolecules). Genotoxicity and cytotoxicity indicators (i.e., comet, micronucleus, and neutral red assays) provided a depiction of hydrocarbon contamination. The neutral red assay gave a time-concentration cytotoxic response to a wide range of pollutants, including emerging pollutants (e.g., pharmaceuticals and biocides) and hydrocarbons. Perna perna hemocyte parameters provided a useful approach for biocide biomonitoring. This paper summarizes useful biomarkers from molecular to physiological levels in this mussel species used to identify and quantify the degree of coastal pollution. An integrated biomarker analysis may provide a way to overcome possible biomarker variations and assess multi-polluted sites. Nevertheless, it is necessary to investigate biomarker variations according to natural factors (e.g., season and gonad maturation stage) to standardize them for trustworthy biomonitoring.
Collapse
Affiliation(s)
- Fernanda Silva Dos Santos
- Fluminense Federal University (UFF), Institute of Biology, Graduate Program in Science and Biotechnology, Mario Santos Braga Street, s/n. Centro, Niterói, RJ CEP 24.020-141, Brazil.
| | - Raquel A F Neves
- Federal University of the State of Rio de Janeiro (UNIRIO), Institute of Biosciences (IBIO), Graduate Program in Neotropical Biodiversity (PPGBIO), Pasteur Avenue, 458. Urca, Rio de Janeiro, RJ CEP 22.290-255, Brazil
| | - Mirian Araújo Carlos Crapez
- Fluminense Federal University (UFF), Institute of Biology, Graduate Program in Marine Biology and Coastal Environments, Mario Santos Braga Street, s/n. Centro, Niterói, RJ CEP 24.020-141, Brazil
| | - Valéria Laneuville Teixeira
- Fluminense Federal University (UFF), Institute of Biology, Graduate Program in Science and Biotechnology, Mario Santos Braga Street, s/n. Centro, Niterói, RJ CEP 24.020-141, Brazil; Federal University of the State of Rio de Janeiro (UNIRIO), Institute of Biosciences (IBIO), Graduate Program in Neotropical Biodiversity (PPGBIO), Pasteur Avenue, 458. Urca, Rio de Janeiro, RJ CEP 22.290-255, Brazil
| | - Natascha Krepsky
- Federal University of the State of Rio de Janeiro (UNIRIO), Institute of Biosciences (IBIO), Graduate Program in Neotropical Biodiversity (PPGBIO), Pasteur Avenue, 458. Urca, Rio de Janeiro, RJ CEP 22.290-255, Brazil; Federal University of the State of Rio de Janeiro (UNIRIO), Institute of Biosciences (IBIO), Graduate Program in Ecotourism and Conservation, Pasteur Avenue, 458. Urca, Rio de Janeiro, RJ CEP 22.290-255, Brazil
| |
Collapse
|
7
|
Berlino M, Mangano MC, De Vittor C, Sarà G. Effects of microplastics on the functional traits of aquatic benthic organisms: A global-scale meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117174. [PMID: 33957511 DOI: 10.1016/j.envpol.2021.117174] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are widespread in the aquatic environment and thus available for many organisms at different trophic levels. Many scientific papers focus their attention on the study of the effects of microplastics on different species at individual level. Here we performed a global scale meta-analysis focusing our work on the study of the effect of microplastics on the functional traits of aquatic benthic organisms. Overall, microplastics showed a moderate negative effect on the examined functional traits of benthic organisms. Our results show that some crucial functional traits, such as those linked to behaviour and feeding, appear to be unaffected by microplastics. In contrast, traits related to the capacity of organisms to assimilate energy are affected. Moreover, traits with possible effects at population level appear to be negatively affected by microplastics. We discuss how the direct impact of organismal performance may have indirect repercussions at higher levels in the ecological hierarchy and represent a risk for the stability and functioning of the ecosystem.
Collapse
Affiliation(s)
- M Berlino
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; National Institute of Oceanography and Applied Geophysics - OGS, via A. Piccard 54, 34151, Trieste, Italy
| | - M C Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy.
| | - C De Vittor
- National Institute of Oceanography and Applied Geophysics - OGS, via A. Piccard 54, 34151, Trieste, Italy
| | - G Sarà
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy
| |
Collapse
|
8
|
Phillips JS, McCormick AR, Botsch JC, Ives AR. Ecosystem engineering alters density-dependent feedbacks in an aquatic insect population. Ecology 2021; 102:e03513. [PMID: 34365638 DOI: 10.1002/ecy.3513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 07/15/2021] [Indexed: 11/07/2022]
Abstract
Ecosystem engineers have large impacts on the communities in which they live, and these impacts may feed back to populations of engineers themselves. In this study, we assessed the effect of ecosystem engineering on density-dependent feedbacks for midges in Lake Mývatn, Iceland. The midge larvae reside in the sediment and build silk tubes that provide a substrate for algal growth, thereby elevating benthic primary production. Benthic algae are in turn the primary food source for the midge larvae, setting the stage for the effects of engineering to feed back to the midges themselves. Using a field mesocosm experiment manipulating larval midge densities, we found a generally positive but nonlinear relationship between density and benthic production. Furthermore, adult emergence increased with the primary production per midge larva. By combining these two relationships in a simple model, we found that the positive effect of midges on benthic production weakened negative density dependence at low to intermediate larval densities. However, this benefit disappeared at high densities when midge consumption of primary producers exceeded their positive effects on primary production through ecosystem engineering. Our results illustrate how ecosystem engineering can alter density-dependent feedbacks for engineer populations.
Collapse
Affiliation(s)
- Joseph S Phillips
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Amanda R McCormick
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Jamieson C Botsch
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Anthony R Ives
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, 53706, USA
| |
Collapse
|
9
|
How Does Mytilus galloprovincialis Respond When Exposed to the Gametophyte Phase of the Invasive Red Macroalga Asparagopsis armata Exudate? WATER 2021. [DOI: 10.3390/w13040460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Asparagopsis armata is classified as an invasive species in Europe. Through the exudation of secondary metabolites, this macroalga holds a chemical defence against consumers, with potential toxic effects to native rocky shore communities. This study aims to evaluate the potential impact of A. armata (gametophyte) exudate in a native species, the mussel Mytilus galloprovincialis, in terms of biochemical and organismal effects. The 96 h-LC50 was 3.667% and based on it, exudate concentrations (0.25; 0.5; 1; 2%) were determined to further sublethal experiments. These sublethal concentrations caused no oxidative damage in the digestive gland since lipid peroxidation and protein carbonylation were not affected. Nevertheless, there was a significant rise in the electron transport system activity and total glutathione content in muscle, suggesting an increased non-enzymatic antioxidant capacity and consequent energy consumption to cope with potential pro-oxidant compounds. This might have contributed to the observed decline in cellular energy allocation of the exposed mussels. At the organismal level, clearance capacity declined along the concentration gradient. Moreover, the number of functional byssuses decreased with increasing concentrations and a significant reduction in their attachment strength was observed. These findings suggest that the presence of A. armata may compromise M. galloprovincialis integrity in the invaded coastal areas.
Collapse
|
10
|
Principe SC, Augusto A, Costa TM. Point-of-care testing for measuring haemolymph glucose in invertebrates is not a valid method. CONSERVATION PHYSIOLOGY 2019; 7:coz079. [PMID: 31798882 PMCID: PMC6882269 DOI: 10.1093/conphys/coz079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Blood glucose is widely used as a physiological parameter for vertebrates and invertebrates. However, its measurement in the field is often difficult due to the need for expensive and non-portable equipment. Point-of-care (POC) devices, originally intended for human use, are increasingly being used for measuring blood parameters of animals in the field. In this regard, POC glucose meters are becoming valuable tools for conservation physiologists, as glucose can be a useful indicator of stress response. In invertebrates, the use of POC glucose meters is still scarce, and no study yet has evaluated their usability in crustaceans and molluscs. We tested if a POC device can be used to measure haemolymph glucose in two widely used models, Leptuca thayeri and Perna perna, compared with a standard laboratory method. The device was unable to measure glucose in P. perna haemolymph due to equipment inaccuracy and low glucose concentration in this species (10.13 ± 6.25 mg/dL). Additionally, despite the device being capable of measuring glucose in L. thayeri haemolymph, Bland-Altman plots showed a strong bias and wide limits of agreement, and Lin's concordance correlation coefficient showed a weak concordance between methods. When simulating experimental conditions, POC results differed from those found using the standard method. We conclude that POC glucose meters are unsuitable for assessing glucose in mussels and should not be used in crabs as results are inaccurate.
Collapse
Affiliation(s)
- Silas C Principe
- São Paulo State University (UNESP), Biosciences Institute, Botucatu Campus, R. Prof. Dr. Antônio Celso, 250, 18618-000, Botucatu, São Paulo, Brazil
- São Paulo State University (UNESP), Biosciences Institute, Coastal Campus, Praça Infante Dom Henrique, s/n, P.O. Box: 73601, 11380-972, São Vicente, São Paulo, Brazil
| | - Alessandra Augusto
- São Paulo State University (UNESP), Biosciences Institute, Coastal Campus, Praça Infante Dom Henrique, s/n, P.O. Box: 73601, 11380-972, São Vicente, São Paulo, Brazil
- São Paulo State University (UNESP), CAUNESP, Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Tânia M Costa
- São Paulo State University (UNESP), Biosciences Institute, Botucatu Campus, R. Prof. Dr. Antônio Celso, 250, 18618-000, Botucatu, São Paulo, Brazil
- São Paulo State University (UNESP), Biosciences Institute, Coastal Campus, Praça Infante Dom Henrique, s/n, P.O. Box: 73601, 11380-972, São Vicente, São Paulo, Brazil
| |
Collapse
|
11
|
Phillips JS, McCormick AR, Einarsson Á, Grover SN, Ives AR. Spatiotemporal variation in the sign and magnitude of ecosystem engineer effects on lake ecosystem production. Ecosphere 2019. [DOI: 10.1002/ecs2.2760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Joseph S. Phillips
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Amanda R. McCormick
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Árni Einarsson
- Mývatn Research Station Skútustaðir IS‐660 Iceland
- Faculty of Life and Environmental Sciences University of Iceland Reykjavik IS‐101 Iceland
| | - Shannon N. Grover
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Anthony R. Ives
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| |
Collapse
|
12
|
Climate warming reduces the reproductive advantage of a globally invasive intertidal mussel. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01990-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Monaco CJ, McQuaid CD. Applicability of Dynamic Energy Budget (DEB) models across steep environmental gradients. Sci Rep 2018; 8:16384. [PMID: 30401809 PMCID: PMC6219521 DOI: 10.1038/s41598-018-34786-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/24/2018] [Indexed: 11/09/2022] Open
Abstract
Robust ecological forecasting requires accurate predictions of physiological responses to environmental drivers. Energy budget models facilitate this by mechanistically linking biology to abiotic drivers, but are usually ground-truthed under relatively stable physical conditions, omitting temporal/spatial environmental variability. Dynamic Energy Budget (DEB) theory is a powerful framework capable of linking individual fitness to environmental drivers and we tested its ability to accommodate variability by examining model predictions across the rocky shore, a steep ecotone characterized by wide fluctuations in temperature and food availability. We parameterized DEB models for co-existing mid/high-shore (Mytilus galloprovincialis) and mid/low-shore (Perna perna) mussels on the south coast of South Africa. First, we assumed permanently submerged conditions, and then incorporated metabolic depression under low tide conditions, using detailed data of tidal cycles, body temperature and variability in food over 12 months at three sites. Models provided good estimates of shell length for both species across the shore, but predictions of gonadosomatic index were consistently lower than observed. Model disagreement could reflect the effects of details of biology and/or difficulties in capturing environmental variability, emphasising the need to incorporate both. Our approach provides guidelines for incorporating environmental variability and long-term change into mechanistic models to improve ecological predictions.
Collapse
Affiliation(s)
- Cristián J Monaco
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa. .,Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | | |
Collapse
|