1
|
Mohd Nasir N, Barnes DKA, Wan Hussin WMR. Benthic functionality under climate-induced environment changes offshore on the Antarctic Peninsula continental shelf. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106341. [PMID: 38183736 DOI: 10.1016/j.marenvres.2024.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Marine ecosystems in Antarctica are thought to be highly vulnerable to aspects of dynamic global climate change, such as warming. In deep-water ecosystems, there has been little physico-chemical change in seawater there for millions of years. Thus, some benthic organisms are likely to include strong potential indicators of environmental changes and give early warnings of ecosystem vulnerability. In 2017 we sampled deep-water benthic assemblages across a continental shelf trough in outer Marguerite Bay, West Antarctic Peninsula (WAP). This region is one of the hotspots of climate-related physical change on Earth in terms of seasonal sea ice loss. Video and images of the seabed were captured at 5 stations, each with 20 replicates. From these, we identified substratum types and biota to functional groups to assess variability in benthic composition and diversity. We also collected coincident environmental information on depth, temperature, salinity, oxygen and chlorophyll-a (using a CTD). Climax sessile suspension feeders were the most spatially dominant group, comprising 539 individuals (39% of total abundance) that included Porifera, Brachiopoda and erect Bryozoa. ST5, the shallowest station was functionally contrasting with other stations. This functional difference was also influenced by hard substrata of ST5, which is typically preferred by climax sessile suspension feeders. Depth (or an associated driver) and hard substrates were the most apparent key factor which functionally characterised the communities, shown by the abundance of climax sessile suspension feeders. Our study showed that non-invasive, low taxonomic skill requirement, functional group approach is not only valuable in providing functional perspective on environment status, but such groupings also proved to be sensitive to environmental variability.
Collapse
Affiliation(s)
- Najib Mohd Nasir
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - David K A Barnes
- British Antarctic Survey, Natural Environment Research Council, UKRI, High Cross, Cambridge, United Kingdom
| | - Wan Mohd Rauhan Wan Hussin
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; National Antarctic Research Centre (NARC) - UMT, ICAMB Building, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
2
|
Lam-Gordillo O, Lohrer AM, Hewitt J, Dittmann S. NZTD - The New Zealand Trait Database for shallow-water marine benthic invertebrates. Sci Data 2023; 10:502. [PMID: 37516737 PMCID: PMC10387081 DOI: 10.1038/s41597-023-02414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Macrobenthic traits, for example feeding mode, life history, morphology, are increasingly used for determining responses of macrobenthic fauna to environmental change and influences on ecosystem functioning. Yet, trait information is scarce or non-existent in several parts of the world, such as New Zealand. This deficit makes collecting trait data a difficult and time-consuming task, limiting its potential use in trait-based assessments. Here, we present the New Zealand Trait Database (NZTD) for marine benthic invertebrates, the first comprehensive assessment of macrobenthic traits in New Zealand. The NZTD provides trait information for more than 700 macrobenthic taxa, categorised by 18 traits and 77 trait modalities. The NZTD includes five freely downloadable datasets, (1) the macrobenthic trait dataset, with outcomes from a fuzzy coding procedure, (2) the trait source information, (3) the references by taxa, (4) the full references list, and (5) the full taxa list used in the NZTD. Establishing the NZTD closes the trait knowledge gap in New Zealand and facilitates future research applying trait-based approaches to New Zealand's coastal macrofauna.
Collapse
Affiliation(s)
- Orlando Lam-Gordillo
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand.
- College of Science and Engineering, Flinders University, Adelaide, Australia.
| | - Andrew M Lohrer
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
| | - Judi Hewitt
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Sabine Dittmann
- College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
3
|
Kauppi L, Villnäs A. Marine heatwaves of differing intensities lead to distinct patterns in seafloor functioning. Proc Biol Sci 2022; 289:20221159. [DOI: 10.1098/rspb.2022.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Marine heatwaves (MHWs) are increasing in frequency and intensity due to climate change. Several well-documented effects of heatwaves on community structure exist, but examples of their effect on functioning of species, communities or ecosystems remain scarce. We tested the effects of short-term, moderate and strong MHWs on macrofauna bioturbation and associated solute fluxes as examples of ecosystem functioning. We also measured macrofaunal excretion rates to assess effects of temperature on macrofauna metabolism. For this experiment, we used unmanipulated sediment cores with natural animal communities collected from a muddy location at 32 m depth in the northern Baltic Sea. Despite the mechanistic effect of bioturbation remaining unchanged between the treatments, there were significant differences in oxygen consumption, solute fluxes and excretion. Biogeochemical and biological processes were boosted by the moderate heatwave, whereas biogeochemical cycling seemed to decrease under a strong heatwave. A prolonged, moderate heatwave could possibly lead to resource depletion if primary production cannot meet the demands of benthic consumption. By contrast, decreased degradation activities under strong heatwaves could lead to a build-up of organic material and potentially hypoxia. The strong variability and the complexity of the response highlight the context dependency of these processes complicating future predictions.
Collapse
Affiliation(s)
- Laura Kauppi
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
| | - Anna Villnäs
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
- Baltic Sea Centre, Stockholm University, Stockholm 114 19, Sweden
| |
Collapse
|
4
|
Lam-Gordillo O, Mosley LM, Simpson SL, Welsh DT, Dittmann S. Loss of benthic macrofauna functional traits correlates with changes in sediment biogeochemistry along an extreme salinity gradient in the Coorong lagoon, Australia. MARINE POLLUTION BULLETIN 2022; 174:113202. [PMID: 34864464 DOI: 10.1016/j.marpolbul.2021.113202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Estuarine ecosystems are considered hotspots for productivity, biogeochemical cycling and biodiversity, however, their functions and services are threatened by several anthropogenic pressures. We investigated how abundance and diversity of benthic macrofauna, and their functional traits, correlate to sediment biogeochemistry and nutrient concentrations throughout an estuarine-to-hypersaline lagoon. Benthic communities and functional traits were significantly different across the sites analysed, with higher abundance and more traits expressed in the estuarine region. The results revealed that the benthic trait differences correlated with sediment biogeochemistry and nutrient concentrations in the system. The estuarine regions were dominated by high abundance of large burrowing and bioturbating macrofauna, promoting nutrient cycling and organic matter mineralisation, while these organisms were absent in the hypersaline lagoon, favouring accumulation of organic matter and nutrients in the sediment. The results highlight the importance of preserving healthy benthic communities to maintain ecosystem functioning and mitigate the potential impacts of eutrophication in estuarine ecosystems.
Collapse
Affiliation(s)
- Orlando Lam-Gordillo
- College of Science and Engineering, Flinders University, GPO Box 2100, Kaurna Country, Adelaide, SA 5001, Australia.
| | - Luke M Mosley
- School of Biological Sciences, University of Adelaide, Kaurna Country, Adelaide, Australia
| | - Stuart L Simpson
- Centre for Environmental Contaminants Research, CSIRO Land & Water, Tharawal Country, Lucas Heights, NSW 2234, Australia
| | - David T Welsh
- School of Environment, Griffith University, Yugambeh/Kombumerri Country, Queensland, Australia
| | - Sabine Dittmann
- College of Science and Engineering, Flinders University, GPO Box 2100, Kaurna Country, Adelaide, SA 5001, Australia
| |
Collapse
|
5
|
Ashford OS, Guan S, Capone D, Rigney K, Rowley K, Cordes EE, Cortés J, Rouse GW, Mendoza GF, Sweetman AK, Levin LA. Relationships between biodiversity and ecosystem functioning proxies strengthen when approaching chemosynthetic deep-sea methane seeps. Proc Biol Sci 2021; 288:20210950. [PMID: 34403635 PMCID: PMC8370799 DOI: 10.1098/rspb.2021.0950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As biodiversity loss accelerates globally, understanding environmental influence over biodiversity-ecosystem functioning (BEF) relationships becomes crucial for ecosystem management. Theory suggests that resource supply affects the shape of BEF relationships, but this awaits detailed investigation in marine ecosystems. Here, we use deep-sea chemosynthetic methane seeps and surrounding sediments as natural laboratories in which to contrast relationships between BEF proxies along with a gradient of trophic resource availability (higher resource methane seep, to lower resource photosynthetically fuelled deep-sea habitats). We determined sediment fauna taxonomic and functional trait biodiversity, and quantified bioturbation potential (BPc), calcification degree, standing stock and density as ecosystem functioning proxies. Relationships were strongly unimodal in chemosynthetic seep habitats, but were undetectable in transitional 'chemotone' habitats and photosynthetically dependent deep-sea habitats. In seep habitats, ecosystem functioning proxies peaked below maximum biodiversity, perhaps suggesting that a small number of specialized species are important in shaping this relationship. This suggests that absolute biodiversity is not a good metric of ecosystem 'value' at methane seeps, and that these deep-sea environments may require special management to maintain ecosystem functioning under human disturbance. We promote further investigation of BEF relationships in non-traditional resource environments and emphasize that deep-sea conservation should consider 'functioning hotspots' alongside biodiversity hotspots.
Collapse
Affiliation(s)
- Oliver S Ashford
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA
| | - Shuzhe Guan
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA
| | - Dante Capone
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA.,University of California, Santa Cruz, CA 95064, USA
| | - Katherine Rigney
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA.,Carleton College, Northfield, MN 55057, USA
| | - Katelynn Rowley
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA
| | - Erik E Cordes
- Department of Biology, Temple University, Temple, PA 19122, USA
| | - Jorge Cortés
- CIMAR, Universidad de Costa Rica, San José, Costa Rica
| | - Greg W Rouse
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA
| | - Guillermo F Mendoza
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA
| | - Andrew K Sweetman
- The Lyell Centre for Earth and Marine Science and Technology, Heriot-Watt University, Edinburgh, UK
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA.,Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
6
|
Kahma TI, Karlson AML, Liénart C, Mörth CM, Humborg C, Norkko A, Rodil IF. Food-web comparisons between two shallow vegetated habitat types in the Baltic Sea. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105402. [PMID: 34246890 DOI: 10.1016/j.marenvres.2021.105402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Coastal vegetated habitats maintain highly diverse communities, where the contribution of macrophyte production is significant for macroinvertebrate primary consumers. In the brackish-waters of the Baltic Sea, the taxonomical diversity of different macrophytes includes both marine and limnic species. To study the basal food-web differences of two key vegetated habitat types, either dominated by a perennial brown macroalgae (Fucus vesiculosus) or by angiosperm plants, 13C and 15N compositions of different primary producers and macroinvertebrate consumers were examined, and their diets were estimated by Bayesian mixing models. Carbon isotope diversity of primary producers was high especially in the hard-bottom Fucus-dominated habitats, which was also reflected in a larger consumer isotope niche. However, consumer isotope niche among sites was similar within the same habitat type. Our models indicated that the perennial macrophyte dietary median contribution was about 25% for deposit feeders and omnivores in both habitat types, while epigrazers preferred filamentous algae (30-60%). The niche positions of the abundant clams L. balthica, M. arenaria and C. glaucum differed between the two habitats, but they showed only small (<10% units) differences in their macrophyte dietary contributions. The isotopic compositions of the dominating primary producer assemblage reflected significantly in the isotope niche structure of the associated primary consumers.
Collapse
Affiliation(s)
- T I Kahma
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland.
| | - A M L Karlson
- Department of Ecology, Environment and Plant Science, Stockholm University, Stockholm, Sweden; Baltic Sea Centre, Stockholm University, Stockholm, Sweden.
| | - C Liénart
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland; Baltic Sea Centre, Stockholm University, Stockholm, Sweden.
| | - C-M Mörth
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden.
| | - C Humborg
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland; Baltic Sea Centre, Stockholm University, Stockholm, Sweden.
| | - A Norkko
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland; Baltic Sea Centre, Stockholm University, Stockholm, Sweden.
| | - I F Rodil
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland; Baltic Sea Centre, Stockholm University, Stockholm, Sweden; Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), University of Cádiz, Spain.
| |
Collapse
|
7
|
Carstensen J, Conley DJ, Almroth-Rosell E, Asmala E, Bonsdorff E, Fleming-Lehtinen V, Gustafsson BG, Gustafsson C, Heiskanen AS, Janas U, Norkko A, Slomp C, Villnäs A, Voss M, Zilius M. Factors regulating the coastal nutrient filter in the Baltic Sea. AMBIO 2020; 49:1194-1210. [PMID: 31707582 PMCID: PMC7128010 DOI: 10.1007/s13280-019-01282-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 05/30/2023]
Abstract
The coastal zone of the Baltic Sea is diverse with strong regional differences in the physico-chemical setting. This diversity is also reflected in the importance of different biogeochemical processes altering nutrient and organic matter fluxes on the passage from land to sea. This review investigates the most important processes for removal of nutrients and organic matter, and the factors that regulate the efficiency of the coastal filter. Nitrogen removal through denitrification is high in lagoons receiving large inputs of nitrate and organic matter. Phosphorus burial is high in archipelagos with substantial sedimentation, but the stability of different burial forms varies across the Baltic Sea. Organic matter processes are tightly linked to the nitrogen and phosphorus cycles. Moreover, these processes are strongly modulated depending on composition of vegetation and fauna. Managing coastal ecosystems to improve the effectiveness of the coastal filter can reduce eutrophication in the open Baltic Sea.
Collapse
Affiliation(s)
- Jacob Carstensen
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Daniel J. Conley
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | | | - Eero Asmala
- Tvärminne Zoological Station, University of Helsinki, J.A. Palmenin tie 260, 10900 Hanko, Finland
| | - Erik Bonsdorff
- Environmental and Marine Biology, Åbo Akademi University, BioCity, 20500 Turku, Finland
| | | | - Bo G. Gustafsson
- Tvärminne Zoological Station, University of Helsinki, J.A. Palmenin tie 260, 10900 Hanko, Finland
- Stockholm University Baltic Sea Centre, 106 91 Stockholm, Sweden
| | - Camilla Gustafsson
- Tvärminne Zoological Station, University of Helsinki, J.A. Palmenin tie 260, 10900 Hanko, Finland
| | | | - Urzsula Janas
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, al. Marsz. J. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Alf Norkko
- Tvärminne Zoological Station, University of Helsinki, J.A. Palmenin tie 260, 10900 Hanko, Finland
| | - Caroline Slomp
- Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
| | - Anna Villnäs
- Tvärminne Zoological Station, University of Helsinki, J.A. Palmenin tie 260, 10900 Hanko, Finland
| | - Maren Voss
- Department of Biological Oceanography, Leibniz Institute of Baltic Sea Research, Seestr. 15, 18119 Rostock, Germany
| | - Mindaugas Zilius
- Marine Research Institute, Universiteto al. 17, 92294 Klaipeda, Lithuania
| |
Collapse
|
8
|
Rodil IF, Attard KM, Norkko J, Glud RN, Norkko A. Estimating Respiration Rates and Secondary Production of Macrobenthic Communities Across Coastal Habitats with Contrasting Structural Biodiversity. Ecosystems 2019. [DOI: 10.1007/s10021-019-00427-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Virta L, Gammal J, Järnström M, Bernard G, Soininen J, Norkko J, Norkko A. The diversity of benthic diatoms affects ecosystem productivity in heterogeneous coastal environments. Ecology 2019; 100:e02765. [DOI: 10.1002/ecy.2765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Leena Virta
- Department of Geosciences and Geography University of Helsinki PO Box 64 FIN‐00014 Helsinki Finland
- Tvärminne Zoological Station University of Helsinki J.A. Palméns väg 260 FI‐10900 Hangö Finland
| | - Johanna Gammal
- Tvärminne Zoological Station University of Helsinki J.A. Palméns väg 260 FI‐10900 Hangö Finland
| | - Marie Järnström
- Environmental and Marine Biology Åbo Akademi University Artillerigatan 6 20520 Åbo Finland
| | | | - Janne Soininen
- Department of Geosciences and Geography University of Helsinki PO Box 64 FIN‐00014 Helsinki Finland
| | - Joanna Norkko
- Tvärminne Zoological Station University of Helsinki J.A. Palméns väg 260 FI‐10900 Hangö Finland
| | - Alf Norkko
- Tvärminne Zoological Station University of Helsinki J.A. Palméns väg 260 FI‐10900 Hangö Finland
- Baltic Sea Centre Stockholm University Stockholm Sweden
| |
Collapse
|
10
|
Abstract
Coastal lagoons display a wide range of physico-chemical conditions that shape benthic macrofauna communities. In turn, benthic macrofauna affects a wide array of biogeochemical processes as a consequence of feeding, bioirrigation, ventilation, and excretion activities. In this work, we have measured benthic respiration and solute fluxes in intact sediment cores with natural macrofauna communities collected from four distinct areas within the Sacca di Goro Lagoon (NE Adriatic Sea). The macrofauna community was characterized at the end of the incubations. Redundancy analysis (RDA) was used to quantify and test the interactions between the dominant macrofauna species and solute fluxes. Moreover, the relevance of macrofauna as driver of benthic nitrogen (N) redundancy analysis revealed that up to 66% of the benthic fluxes and metabolism variance was explained by macrofauna microbial-mediated N processes. Nitrification was stimulated by the presence of shallow (corophiids) in combination with deep burrowers (spionids, oligochaetes) or ammonium-excreting clams. Deep burrowers and clams increase ammonium availability in burrows actively ventilated by corophiids, which creates optimal conditions to nitrifiers. However, the stimulatory effect of burrowing macrofauna on nitrification does not necessarily result in higher denitrification as processes are spatially separated.
Collapse
|