1
|
Hegab MH, El Sayed SM, Ahmed NM, Abdel-Aal EI, Kassem DA, Gaber KM, Haroon AM, Abdel Gawad SS, Goher ME, Hussian AEM. Evaluating the spatial pattern of water quality of the Nile River, Egypt, through multivariate analysis of chemical and biological indicators. Sci Rep 2025; 15:7626. [PMID: 40038343 PMCID: PMC11880377 DOI: 10.1038/s41598-025-89982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
The Nile River, known as the "giver of life," serves as Egypt's main source of fresh water. A total of 28 sites along the Nile River were selected during the winter and summer of 2022 to illustrate spatial-temporal variation and indicate potential sources of pollution. The study showed that all chemical and physical parameters are within permissible limits. Based on the abiotic parameters, discriminant analysis (DA) classified the collected Nile sites into three groups (A, B, and C). Group A included the southern sites characterized by high transparency and low levels of electrical conductivity (EC), pH, dissolved oxygen (DO), biological oxygen demand (BOD), and chemical oxygen demand (COD). Group B included the middle sites and was characterized by the relatively high means of EC, total dissolved solid (TDS), pH, DO, BOD, and COD. Group C included the northern sites, which are characterized by low transparency and the highest value of nutrients and EC. A total of 113 phytoplankton species belonging to seven phyla were recorded, while a total of 52 zooplankton species were recorded. The lowest abundance and diversity of phytoplankton and zooplankton were detected at the southern sites, which increased gradually to attain the highest density and diversity in the northern sites. The submerged macrophyte species were recorded in the study area with low species diversity, and Myriophyllum spicatum was the dominant one. 98 epiphytic diatoms and 30 species of macroinvertebrates attached to macrophytes were recorded. The blood parameters of Oreochromis niloticus were within normal limits except for those collected from the Greater Cairo governorate sites in the north. The study showed an improvement in Nile water quality due to increased water levels and water discharged into the Nile.
Collapse
Affiliation(s)
- Mahmoud H Hegab
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11694, Egypt
| | - Seliem M El Sayed
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11694, Egypt
| | - Nasr M Ahmed
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11694, Egypt
| | - Eman I Abdel-Aal
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11694, Egypt
| | - Doaa A Kassem
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11694, Egypt
| | - Khadiga M Gaber
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11694, Egypt
| | - Amany M Haroon
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11694, Egypt
| | - Soad S Abdel Gawad
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11694, Egypt
| | - Mohamed E Goher
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11694, Egypt.
| | - Abd-Ellatif M Hussian
- Department of Biology, Faculty of Education, Matrouh University, Marsa Matrouh, 51511, Egypt
| |
Collapse
|
2
|
Li S, Guo C, Liao C, Ke J, Hansen AG, Shi X, Zhang T, Jeppesen E, Li W, Liu J. Improvement of water quality through coordinated multi-trophic level biomanipulations: Application to a subtropical emergency water supply lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176888. [PMID: 39419218 DOI: 10.1016/j.scitotenv.2024.176888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Artificial emergency water source lakes have been built in most cities in the middle and lower reaches of the Yangtze River, China, to ensure water safety for residents. However, these new ecosystems are prone to algal blooms or other degraded water quality conditions. A newly built water supply lake in the lower reaches of the Yangtze River was selected as a model system to test whether the coordinated manipulation of fish and submerged macrophyte communities could enhance ecosystem function and quality. The coordinated manipulations spanned a five-year period, aiming to enhance both top-down and bottom-up control of phytoplankton. As a result of these manipulations, the catch per unit effort of small-bodied zooplanktivorous fishes decreased by >95 % from year two and remained low. The coverage and biomass of submerged macrophytes increased year by year. Water transparency increased from 1.07 to 3.33 m. Total phosphorus and total nitrogen showed a decreasing trend (not significant though). The annual mean biomass of Cyanophyta, Chlorophyta and Bacillariophyta decreased from 2.99 to 0.03 mg/L, 3.90 to 0.16 mg/L, and 3.50 to 0.3 mg/L, respectively. The biomass of phytoplankton in different groups decreased in all four seasons. The annual mean biomass of Cladocera and Copepoda remained low. The biomass of Cladocera and Copepoda decreased in summer, fall, and winter. The Ecosystem Health Index - increased from 15.9 to 32.0. The pros and cons of the various top-down and bottom-up control measures employed are discussed. This research presents a valuable case study on the enhancement of ecosystem structure and function in newly constructed emergency water supply lakes and offers insights into the restoration of other subtropical shallow lakes.
Collapse
Affiliation(s)
- Shiqi Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chuansong Liao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Ke
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adam G Hansen
- Colorado Parks and Wildlife, Aquatic Research Section, Fort Collins, CO, USA
| | - Xuefeng Shi
- Jiangsu Sino-French Water Co., LTD, Changshu 215500, China
| | - Tanglin Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erik Jeppesen
- Department of Ecoscience and WATEC, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Wei Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiashou Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Lv C, Shan H, Tian Y, Zhao X, Wen Z, Yin C, Li Z, Su H, Wang W, Chou Q, Li K, Zhang X, Cao T. The dual role of benthic fish: Effects on water quality in the presence and absence of submerged macrophytes. WATER RESEARCH 2024; 267:122466. [PMID: 39303580 DOI: 10.1016/j.watres.2024.122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Rebuilding a clear-water state dominated by submerged macrophytes is essential for addressing eutrophication, yet the impact of benthic fish on water quality is complex. We conducted two experiments to explore the interaction of submerged plants and benthic fish on the water quality. Experiment I investigated the water clearing effects of submerged macrophytes with varying coverage (from 0% to 40%) before and after the removal of benthic fish. Experiment II explored the impacts of benthic fish at different densities on aquatic ecosystems with and without submerged macrophytes. The results showed that an increase in submerged macrophytes coverage significantly enhanced the reduction of some major water quality parameters. We assert that the coverage of submerged macrophytes should not be lower than 40% to establish and sustain a clear-water state in shallow lakes. However, benthic fish significantly weaken the ability of submerged macrophytes to improve water quality. Surprisingly, the presence or absence of macrophytes may reverse the role of benthic fish in freshwater ecosystems. When macrophytes are present, benthic fish can cause water quality to deteriorate. Conversely, when macrophytes are absent, benthic fish with a density of ≤ 10 g/m3 can restrict the growth of phytoplankton by directly consuming algae or by disturbing sediments to increase turbidity, thereby potentially improving water quality. But the detrimental effects of benthic fish with higher densities may gradually outweigh their benefits to water clarity. Therefore, the percentage of submerged macrophyte cover in combination with the density of benthic fish play crucial roles in shaping the ecological effects of benthic fish and overall ecosystem dynamics. These findings underscore the importance of understanding ecosystem interactions and have practical implications for the management of shallow lakes.
Collapse
Affiliation(s)
- Chaochao Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hang Shan
- College of Life Sciences, Zhejiang University, Hangzhou 310050, China
| | - Yuqing Tian
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Xingchen Zhao
- School of Life Sciences, Henan University, Kaifeng 450002, China
| | - Zihao Wen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chengjie Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zheng Li
- College of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; China Geo-Engineering Corporation, Beijing 100093, China
| | - Haojie Su
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Weijie Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaolin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Te Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
4
|
Cai G, Ge Y, Dong Z, Liao Y, Chen Y, Wu A, Li Y, Liu H, Yuan G, Deng J, Fu H, Jeppesen E. Temporal shifts in the phytoplankton network in a large eutrophic shallow freshwater lake subjected to major environmental changes due to human interventions. WATER RESEARCH 2024; 261:122054. [PMID: 38986279 DOI: 10.1016/j.watres.2024.122054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Phytoplankton communities are crucial components of aquatic ecosystems, and since they are highly interactive, they always form complex networks. Yet, our understanding of how interactive phytoplankton networks vary through time under changing environmental conditions is limited. Using a 29-year (339 months) long-term dataset on Lake Taihu, China, we constructed a temporal network comprising monthly sub-networks using "extended Local Similarity Analysis" and assessed how eutrophication, climate change, and restoration efforts influenced the temporal dynamics of network complexity and stability. The network architecture of phytoplankton showed strong dynamic changes with varying environments. Our results revealed cascading effects of eutrophication and climate change on phytoplankton network stability via changes in network complexity. The network stability of phytoplankton increased with average degree, modularity, and nestedness and decreased with connectance. Eutrophication (increasing nitrogen) stabilized the phytoplankton network, mainly by increasing its average degree, while climate change, i.e., warming and decreasing wind speed enhanced its stability by increasing the cohesion of phytoplankton communities directly and by decreasing the connectance of network indirectly. A remarkable shift and a major decrease in the temporal dynamics of phytoplankton network complexity (average degree, nestedness) and stability (robustness, persistence) were detected after 2007 when numerous eutrophication mitigation efforts (not all successful) were implemented, leading to simplified phytoplankton networks and reduced stability. Our findings provide new insights into the organization of phytoplankton networks under eutrophication (or re-oligotrophication) and climate change in subtropical shallow lakes.
Collapse
Affiliation(s)
- Guojun Cai
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China; Institute of Mountain Resources, Guizhou Academy of Science, Guiyang 550001, China
| | - Yili Ge
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Dong
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Yu Liao
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Yaoqi Chen
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Aiping Wu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Youzhi Li
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Huanyao Liu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Guixiang Yuan
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hui Fu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China.
| | - Erik Jeppesen
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China; imnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Fu H, Ge Y, Cai G, Deng J, Liu H, Wu A, Li Y, Li W, Yuan G, Jeppesen E. Weakened casual feedback loops following intensive restoration efforts and climate changes in a large shallow freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169601. [PMID: 38159751 DOI: 10.1016/j.scitotenv.2023.169601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Understanding how phytoplankton interacts with local and regional drivers as well as their feedbacks is a great challenge, and quantitative analyses of the regulating role of human activities and climate changes on these feedback loops are also limited. By using monthly monitoring dataset (2000-2017) from Lake Taihu and empirical dynamic modelling to construct causal networks, we quantified the strengths of causal feedbacks among phytoplankton, local environments, zooplankton, meteorology as well as global climate oscillation. Prevalent bidirectional causal linkages between phytoplankton biomass (chlorophyll a) and the tested drivers were found, providing holistic and quantitative evidence of the ubiquitous feedback loops. Phytoplankton biomass exhibited the highest feedbacks with total inorganic nitrogen and ammonia and the lowest with nitrate. The feedbacks between phytoplankton biomass and environmental factors from 2000 to 2017 could be classified into two groups: the local environments (e.g., nutrients, pH, transparency, zooplankton biomass)-driven enhancement loops promoting the response of the phytoplankton biomass, and the climate (e.g., wind speed)-driven regulatory loops suppressing it. The two counterbalanced groups modified the emergent macroecological patterns. Our findings revealed that the causal feedback networks loosened significantly after 2007 following nutrient loading reduction and unsuccessful biomanipulation restoration attempts by stocking carp. The strength of enhancement loops underwent marked decreases leading to reduced phytoplankton responses to the tested drivers, while the climate (decreasing wind speed, warming winter)-driven regulatory loops increased- like a tug-of-war. To counteract the self-amplifying feedback loops, the present eutrophication mitigation efforts, especially nutrient reduction, should be continued, and introduction of alternative measures to indirectly regulate the critical components (e.g., pH, Secchi depth, zooplankton biomass) of the loops would be beneficial.
Collapse
Affiliation(s)
- Hui Fu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yili Ge
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Guojun Cai
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Jianmin Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Huanyao Liu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Aiping Wu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Youzhi Li
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Wei Li
- Research Institute of Ecology & Environmental Sciences, Nanchang Institute of Technology, Nanchang 330099, PR China
| | - Guixiang Yuan
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Erik Jeppesen
- Department of Bioscience and Centre for Water Technology/WATEC, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, PR China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, 33731 Erdemli-Mersin, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, PR China
| |
Collapse
|
6
|
Li N, Zhang Y, Zhang Y, Shi K, Qian H, Yang H, Niu Y, Qin B, Zhu G, Woolway RI, Jeppesen E. The unprecedented 2022 extreme summer heatwaves increased harmful cyanobacteria blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165312. [PMID: 37414191 DOI: 10.1016/j.scitotenv.2023.165312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Heatwaves are increasing and expected to intensify in coming decades with global warming. However, direct evidence and knowledge of the mechanisms of the effects of heatwaves on harmful cyanobacteria blooms are limited and unclear. In 2022, we measured chlorophyll-a (Chla) at 20-s intervals based on a novel ground-based proximal sensing system (GBPSs) in the shallow eutrophic Lake Taihu and combined in situ Chla measurements with meteorological data to explore the impacts of heatwaves on cyanobacterial blooms and the potential relevant mechanisms. We found that three unprecedented summer heatwaves (July 4-15, July 22-August 16, and August 18-23) lasting a total of 44 days were observed with average maximum air temperatures (MATs) of 38.1 ± 1.9 °C, 38.7 ± 1.9 °C, and 40.2 ± 2.1 °C, respectively, and that these heatwaves were characterized by high air temperature, strong PAR, low wind speed and rainfall. The daily Chla significantly increased with increasing MAT and photosynthetically active radiation (PAR) and decreasing wind speed, revealing a clear promotion effect on harmful cyanobacteria blooms from the heatwaves. Moreover, the combined effects of high temperature, strong PAR and low wind, enhanced the stability of the water column, the light availability and the phosphorus release from the sediment which ultimately boosted cyanobacteria blooms. The projected increase in heatwave occurrence under future climate change underscores the urgency of reducing nutrient input to eutrophic lakes to combat cyanobacteria growth and of improving early warning systems to ensure secure water management.
Collapse
Affiliation(s)
- Na Li
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China.
| | - Yibo Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China; Nanjing Zhongke Deep Insight Technology Research Institute Co., Ltd., Nanjing 211899, China
| | - Kun Shi
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China; Nanjing Zhongke Deep Insight Technology Research Institute Co., Ltd., Nanjing 211899, China
| | - Haiming Qian
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China; School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Huayin Yang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yongkang Niu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China; Nanjing Zhongke Deep Insight Technology Research Institute Co., Ltd., Nanjing 211899, China
| | - Guangwei Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China; Nanjing Zhongke Deep Insight Technology Research Institute Co., Ltd., Nanjing 211899, China
| | - R Iestyn Woolway
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, Wales, United Kingdom
| | - Erik Jeppesen
- Department of Ecoscience and WATEC, Aarhus University, 6000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences, Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, 06800 Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, 33731 Mersin, Turkey
| |
Collapse
|
7
|
Ma SN, Xu YF, Wang HJ, Wang HZ, Li Y, Dong XM, Xu JL, Yu Q, Søndergaard M, Jeppesen E. Mechanisms of high ammonium loading promoted phosphorus release from shallow lake sediments: A five-year large-scale experiment. WATER RESEARCH 2023; 245:120580. [PMID: 37708778 DOI: 10.1016/j.watres.2023.120580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
The unprecedented global increase in the anthropogenic-derived nitrogen (N) input may have profound effects on phosphorus (P) dynamics and may potentially lead to enhanced eutrophication as demonstrated in short-term mesocosm experiments. However, the role of N-influenced P release is less well studied in large-scale ecosystems. To gain more insight into ecosystem effects, we conducted a five-year large-scale experiment in ten ponds (700-1000 m2 each) with two types of sediments and five targeted total N concentrations (TN) by adding NH4Cl fertilizer (0.5, 1, 5, 10, and 25 mg N L-1). The results showed that: (ⅰ) The sediment P release increased significantly when TN exceeded 10-25 mg N L-1. (ⅱ) The most pronounced sediment P release increase occurred in summer and from sediments rich in organic matter (OMSed). (ⅲ) TN, algal biomass, fish biomass, non-algal turbidity, sediment pH, and OMSed were the dominant factors explaining the sediment P release, as suggested by piecewise structural equation modeling. We propose several mechanisms that may have stimulated P release, i.e. high ammonium input causes a stoichiometric N:P imbalance and induce alkaline phosphatase production and dissolved P uptake by phytoplankton, leading to enhanced inorganic P diffusion gradient between sediment and water; higher pelagic fish production induced by the higher phytoplankton production may have led increased sediment P resuspension through disturbance; low oxygen level in the upper sediment caused by nitrification and organic decomposition of the settled phytoplankton and, finally, long-term N application-induced sediment acidification as a net effect of ammonium hydrolysis, nitrification, denitrification; The mechanisms revealed by this study shed new light on the complex processes underlying the N-stimulated sediment P release, with implications also for the strategies used for restoring eutrophicated lakes.
Collapse
Affiliation(s)
- Shuo-Nan Ma
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; School of Marine Sciences, Ningbo University, Ningbo 315832, PR China
| | - Yuan-Feng Xu
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China
| | - Hai-Jun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, PR China.
| | - Hong-Zhu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Yan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Xu-Meng Dong
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China
| | - Ji-Lin Xu
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China
| | - Qing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Martin Søndergaard
- Department of Ecoscience and WATEC, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, China
| | - Erik Jeppesen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, PR China; Department of Ecoscience and WATEC, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey
| |
Collapse
|
8
|
Zhang Y, Shen R, Gu X, Li K, Chen H, He H, Mao Z, Johnson RK. Simultaneous increases of filter-feeding fish and bivalves are key for controlling cyanobacterial blooms in a shallow eutrophic lake. WATER RESEARCH 2023; 245:120579. [PMID: 37688854 DOI: 10.1016/j.watres.2023.120579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Eutrophication and cyanobacterial blooms have severely affected many freshwater ecosystems. We studied the effects of filter-feeding fish and bivalves on algal populations using a mesocosm experiment and long-term monitoring data from Lake Taihu (China). The mesocosm study, comprised of a two-way factorial design with the clam Corbicula fluminea and the fish Aristichthys nobilis at three biomass levels, resulted in lower chlorophyll a (Chl a) in high fish treatments, but no significant differences in the low and medium fish treatments. Chl a also decreased with an increase in clam biomass in the high fish treatments. Moreover, filter-feeding fish resulted in a decrease in algal sizes (e.g., the colony size of Microcystis aeruginosa was inversely related to fish biomass) which likely increased the filter-feeding efficiency of bivalves. Biomass of filter-feeding fish was found to be a key factor driving the synergistic effects of filter-feeding fish and bivalves in waters dominated by Microcystis colonies. Long-term monitoring revealed increasing trends in Chl a concentration, total fish catch per unit effort (TF-CPUE), and filter-feeding fish (FF-CPUE), and slightly decreasing trends in bivalve biomass and nitrogen to phosphorus ratios (N:P) from 2006 to 2016. Bivalve biomass and N:P were negatively correlated with Chl a, while FF-CPUE was not significantly related to Chl a. The current filter-feeding fish biomass in Lake Taihu is estimated to be too low to drive synergistic algal control effects together with bivalves. Furthermore, the lack of filter feeders in Lake Taihu may lead to top-down control by predators that cannot counteract the bottom-up effects of nutrients on phytoplankton. Collectively, these long-term monitoring and experimental data support the combined use filter-feeding fish and bivalves for managing cyanobacteria blooms in Lake Taihu.
Collapse
Affiliation(s)
- You Zhang
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Ruijie Shen
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Hu He
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China.
| | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| |
Collapse
|
9
|
Peng K, Dong R, Qin B, Cai Y, Deng J, Gong Z. Macroinvertebrate Response to Internal Nutrient Loading Increases in Shallow Eutrophic Lakes. BIOLOGY 2023; 12:1247. [PMID: 37759646 PMCID: PMC10525641 DOI: 10.3390/biology12091247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
In eutrophic lakes, even if external loading is controlled, internal nutrient loading delays the recovery of lake eutrophication. When the input of external pollutants is reduced, the dissolved oxygen environment at the sediment interface improves in a season without algal blooms. As an important part of lake ecosystems, macroinvertebrates are sensitive to hypoxia caused by eutrophication; however, how this change affects macroinvertebrates is still unknown. In this study, we analysed the monitoring data of northern Lake Taihu from 2007 to 2019. After 2007, the external loading of Lake Taihu was relatively stable, but eutrophication began to intensify after 2013, and the nutrients in the sediments also began to decline, which was related to the efficient use of nutrients by algal blooms. The community structure and population density of macroinvertebrates showed different responses in different stages. In particular, the density of oligochaetes and the Shannon-Wiener index showed significant differences in their response to different stages, and their sensitivity to eutrophication was significantly reduced. Under eutrophication conditions dominated by internal loading, frequent hypoxia occurs at the sediment interface only when an algal bloom erupts. When there is no bloom, the probability of sediment hypoxia is significantly reduced under the disturbance of wind. Our results indicate that the current method for evaluating lake eutrophication based on oligochaetes and the Shannon-Wiener diversity index may lose its sensitivity.
Collapse
Affiliation(s)
- Kai Peng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
| | - Rui Dong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
- School of Geography & Ocean Science, Nanjing University, 163 Xianlin Street, Nanjing 210023, China
| | - Yongjiu Cai
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
| | - Zhijun Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
10
|
Zhang Y, Shen R, Li K, Li Q, Chen H, He H, Gu X, Mao Z, Johnson RK. Top-down effects of filter-feeding fish and bivalves moderate bottom-up effects of nutrients on phytoplankton in subtropical shallow lakes: An outdoor mesocosm study. Ecol Evol 2023; 13:e10567. [PMID: 37753309 PMCID: PMC10518750 DOI: 10.1002/ece3.10567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Biomanipulation has been widely used in the ecological restoration of eutrophic lakes for decades. However, biomanipulation is prone to failure if external nutrient loads are not reduced. In order to explore the importance of filter-feeding fish and bivalves on algal control, an outdoor mesocosm experiment was conducted using different nutrient concentrations. Four treatments simulating daily loads of nutrients in Lake Taihu were studied: current, two times, and three times average daily loads of nutrients with both fish (Aristichthys nobilis) and Asian clam (Corbicula fluminea) and as a control current daily loads without fish or bivalves. Results showed that stocking of filter-feeding fish and bivalves (80 g m-3 bighead carp; 200 g cm-2 clams) at two times daily nutrient loads could effectively control water column Chl a concentrations and phytoplankton biomass. At higher nutrient concentrations (TN ≥ 260 μg L-1 d-1; TP ≥ 10 μg L-1 d-1), top-down control of filter-feeding fish and bivalves was less effective and bottom-up effects resulted in significant increases of Chl a concentration. Thus, as phytoplankton biomass in freshwater ecosystems is determined by both the top-down effects of predators and the bottom-up effects of nutrients, external loadings should be controlled when filter-feeding fish and bivalves are used for algal control to ensure the efficacy of biomanipulation.
Collapse
Affiliation(s)
- You Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Ruijie Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
| | - Qisheng Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
- Huaiyin Normal UniversityHuaiyinChina
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Richard K. Johnson
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
11
|
Lin Q, Zhang K, McGowan S, Huang S, Xue Q, Capo E, Zhang C, Zhao C, Shen J. Characterization of lacustrine harmful algal blooms using multiple biomarkers: Historical processes, driving synergy, and ecological shifts. WATER RESEARCH 2023; 235:119916. [PMID: 37003114 DOI: 10.1016/j.watres.2023.119916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Harmful algal blooms (HABs) producing toxic metabolites are increasingly threatening environmental and human health worldwide. Unfortunately, long-term process and mechanism triggering HABs remain largely unclear due to the scarcity of temporal monitoring. Retrospective analysis of sedimentary biomarkers using up-to-date chromatography and mass spectrometry techniques provide a potential means to reconstruct the past occurrence of HABs. By combining aliphatic hydrocarbons, photosynthetic pigments, and cyanotoxins, we quantified herein century-long changes in abundance, composition, and variability of phototrophs, particularly toxigenic algal blooms, in China's third largest freshwater Lake Taihu. Our multi-proxy limnological reconstruction revealed an abrupt ecological shift in the 1980s characterized by elevated primary production, Microcystis-dominated cyanobacterial blooms, and exponential microcystin production, in response to nutrient enrichment, climate change, and trophic cascades. The empirical results from ordination analysis and generalized additive models support climate warming and eutrophication synergy through nutrient recycling and their feedback through buoyant cyanobacterial proliferation, which sustain bloom-forming potential and further promote the occurrence of increasingly-toxic cyanotoxins (e.g., microcystin-LR) in Lake Taihu. Moreover, temporal variability of the lake ecosystem quantified using variance and rate of change metrics rose continuously after state change, indicating increased ecological vulnerability and declined resilience following blooms and warming. With the persistent legacy effects of lake eutrophication, nutrient reduction efforts mitigating toxic HABs probably be overwhelmed by climate change effects, emphasizing the need for more aggressive and integrated environmental strategies.
Collapse
Affiliation(s)
- Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ke Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Suzanne McGowan
- Department of Aquatic Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708PB Wageningen, Netherlands
| | - Shixin Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Eric Capo
- Department of Marine Biology, Institut de Ciències del Mar, CSIC, DC 08003 Barcelona, Spain
| | - Can Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Zhao
- School of Geography and Oceanography Sciences, Nanjing University, Nanjing 210023, China
| | - Ji Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Geography and Oceanography Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Mao Z, Cao Y, Gu X, Cai Y, Chen H, Zeng Q, Jeppesen E. Effects of nutrient reduction and habitat heterogeneity on benthic macroinvertebrate assemblages in a large shallow eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161538. [PMID: 36640891 DOI: 10.1016/j.scitotenv.2023.161538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The Taihu Lake ecosystem has been subjected to numerous anthropogenic stressors during the past decades, leading to substantial changes in nutrient dynamics and habitat quality. For instance, the northwestern lake bays receive large amounts of nutrient-rich wastewater and have frequently experienced algal blooms, while the eastern lake region is still dominated by submersed macrophytes. Such changes in environmental characteristics can greatly impact benthic macroinvertebrate communities. We used a 15-year monitoring data series collected by the Taihu Laboratory for Lake Ecosystem Research to examine the spatial and temporal variations of the benthic invertebrate fauna and evaluate its status and trends. We found that three major communities could be distinguished based on taxonomic group composition and abundance, and these corresponded well with three lake habitat types: algal-dominated, macrophyte-dominated, and open-lake zone. An analysis of temporal trends showed major changes in the macroinvertebrates during the study period, largely driven by a lake-wide and significant decline in the abundance of pollution-tolerant taxa. The spatial and temporal variations of macroinvertebrate communities were mainly explained by nutrients (e.g., total nitrogen and ammonium concentrations) and habitat factors (e.g., sediment substrates and macrophyte biomass) as indicated by Random Forests regression, but the major drivers of macroinvertebrate density differed among the three lake zones at the temporal scale. Moreover, our findings suggest that benthic invertebrates were more sensitive to the improvement of the lake's environmental conditions than the pelagic community was. This study provides insights into the responses of macroinvertebrates to ecological dynamics in lakes and highlights the importance of continued monitoring for tracking long-term changes.
Collapse
Affiliation(s)
- Zhigang Mao
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yong Cao
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Xiaohong Gu
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Huaiyin Normal University, Huaiyin 223300, China.
| | - Yongjiu Cai
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Huihui Chen
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Aarhus C 8000C, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin 33731, Turkey
| |
Collapse
|
13
|
Mao Z, Cao Y, Gu X, Zeng Q, Chen H, Jeppesen E. Response of zooplankton to nutrient reduction and enhanced fish predation in a shallow eutrophic lake. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2750. [PMID: 36151866 DOI: 10.1002/eap.2750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As a key link between top-down regulators and bottom-up factors, zooplankton responds sensitively to environmental variations and provides information on the ecological state of freshwater systems. Although the response of zooplankton to anthropogenic pressures and fluctuating natural conditions, such as nutrient loading and climate change, has been extensively examined, findings have varied markedly. The mechanistic basis for the correlation between environmental variability and the zooplankton community is still debated, particularly for subtropical eutrophic lakes. We used two methods to analyze physicochemical and selected biological variables derived from long-term monitoring of Lake Taihu, a subtropical shallow lake in China. We first applied random forest regression to examine how changes in zooplankton were related to a set of environmental variables on interannual time scales. Then we used the results to guide the construction of a conceptual model for piecewise structural equation modeling (pSEM) to quantify more precisely the zooplankton-environment relationship. Zooplanktivorous fish and nutrient concentrations were the most important predictors of long-term trends in zooplankton in RF regression. Intensification of planktivorous fish predation led to a lower zooplankton biomass and smaller individuals through the removal of larger crustaceans. Moreover, suppression of zooplankton can in part be explained by increases in inedible algae, triggered by a combination of reduced nutrient concentrations and weakened grazer control. These results were also confirmed in the pSEM, which further indicated that top-down regulators might be more important than bottom-up factors for the zooplankton community in Lake Taihu. Our results suggest that stocking of filter-feeding fish in the lake did not meet the expectation that they would control algae, but that the use of biomanipulation measures considering both water quality and fishery management seems promising. This study offers insights into how indicator metrics of zooplankton can improve our understanding of the associations between plankton communities and ecosystem alterations.
Collapse
Affiliation(s)
- Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Yong Cao
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Huaiyin Normal University, Huaiyin, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Sino-Danish Centre for Education and Research, Beijing, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| |
Collapse
|
14
|
Dong B, Zhou Y, Jeppesen E, Qin B, Shi K. Six decades of field observations reveal how anthropogenic pressure changes the coverage and community of submerged aquatic vegetation in a eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156878. [PMID: 35752244 DOI: 10.1016/j.scitotenv.2022.156878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Six decades field observation data series on submerged aquatic vegetation (SAV), water level and water quality from Lake Taihu were compiled to reveal the dynamics in coverage and species composition of SAV and their anthropogenic drivers. We found that both SAV species composition and coverage area declined significantly in Lake Taihu during the period, and the increasing nutrient levels and water level as well as decreasing water clarity were responsible for these change trends. Specifically, the decrease in species richness could be particularly well predicted by total nitrogen (TN) and the ratio of water clarity (i.e., Secchi disk depth (SDD)) to water level (WL), contributing 47.3 % and 32.3 %, respectively, while the coverage of macrophytes was most strongly related to the water level, accounting for 70.1 % of the variation. A classification tree analysis revealed a threshold of TN of 3.2 mg/L and SDD/WL of 0.14 that caused a shift to a eutrophic low-macrophyte dominated state. Our results highlight that SDD/WL must be improved for SAV recolonization, rather than merely reducing nutrient input and regulating water level. Our findings provide scientific information for lake managers to prevent plant degradation in macrophyte-dominant lakes and facilitate a shift to a macrophyte-dominant state in eutrophic lakes.
Collapse
Affiliation(s)
- Baili Dong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, 100049 Beijing, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Shi
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
He H, Qian T, Shen R, Yu J, Li K, Liu Z, Jeppesen E. Piscivore stocking significantly suppresses small fish but does not facilitate a clear-water state in subtropical shallow mesocosms: A biomanipulation experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156967. [PMID: 35764152 DOI: 10.1016/j.scitotenv.2022.156967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Biomanipulation by piscivore stocking has been widely used to combat eutrophication in north temperate lakes, but its applicability in warm lakes has not yet been well elucidated. Here, we used experimental mesocosms to test the effects of a native benthi-piscivore (snakehead, Channa argus Cantor) on water clarity under subtropical conditions where small omni-benthivorous fish like crucian carp (Carassius carassius L.) prevail. Our results showed that, despite of a great reduction of crucian carp biomass, snakehead stocking did not create a strong trophic cascade as neither (herbivorous) zooplankton biomass nor their grazing pressure, indicated by biomass ratio of (herbivorous) zooplankton to phytoplankton, changed significantly. Moreover, snakehead stocking significantly increased water non-algal turbidity as well as nutrient and chlorophyll-a concentrations, suggesting that these benthi-piscivores also disturbed sediments like crucian carp did. Our study showed that biomanipulation by stocking of snakehead does not facilitate clear-water state in warm shallow lakes, even on the short-term.
Collapse
Affiliation(s)
- Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Tian Qian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ruijie Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengwen Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China; Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China; Department of Ecoscience, Aarhus University, Silkeborg 8600, Denmark; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin 33731, Turkey
| |
Collapse
|
16
|
Yin C, He W, Guo L, Gong L, Yang Y, Yang J, Ni L, Chen Y, Jeppesen E. Can top-down effects of planktivorous fish removal be used to mitigate cyanobacterial blooms in large subtropical highland lakes? WATER RESEARCH 2022; 218:118483. [PMID: 35489149 DOI: 10.1016/j.watres.2022.118483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Removal of planktivorous fish is used extensively in northern temperate lakes to reduce phytoplankton abundance via enhanced zooplankton grazing. However, whether this method would work also in large subtropical highland lakes to alleviate cyanobacterial blooms is unknown. We conducted a one-year pilot in situ experiment where we removed a substantial biomass of fish in a fenced-in area, followed by a 3-year whole-lake experiment where the dominant fish species (Japanese smelt) was removed in Lake Erhai in southwest China. The fencing experiments showed that between July and November, when the biomass of the removed stock reached 4 g/m2, the zooplankton biomass inside the fence increased significantly compared to a control fence. In the full-lake experiment, we found that sustained removal of Japanese smelt led to an increase in the biomass of cladocerans (Daphnia spp. but especially of Bosmina spp.) and a significant decrease in the biomass of Cyanobacteria and Chlorophyta. Additionally, a marked increase in the ratio of zooplankton to phytoplankton biomass, as well as an increase in the body size of cladocerans, emphasising the importance of enhanced top-down control for mitigating cyanobacterial blooms following extensive fish removal. Our results reveal that removal of small fish (here Japanese smelt) can lead to a reduction of the phytoplankton and cyanobacteria biomass through a trophic cascade in highland deep subtropical lakes. Thus fish removal may be a feasible additional restoration tool to external nutrient loading reduction in such lakes.
Collapse
Affiliation(s)
- Chengjie Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanchao He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longgen Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalan Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaojiao Yang
- Kunming Dianchi & Plateau Lakes Institute, Kunming 650000, China
| | - Leyi Ni
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yushun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research, Beijing, China; Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey; Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| |
Collapse
|
17
|
Liu X, Li Y, Shen R, Zhang M, Chen F. Reducing nutrient increases diatom biomass in a subtropical eutrophic lake, China-Do the ammonium concentration and nitrate to ammonium ratio play a role? WATER RESEARCH 2022; 218:118493. [PMID: 35489153 DOI: 10.1016/j.watres.2022.118493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Response of aquatic organisms to eutrophication have been well reported, while less studies are available for the recovery of eutrophic lakes following a reduction in the external loading, especially for systems where nitrogen is reduced but the phosphorus concentration is maintained high due to internal loading. Diatoms are nitrate (NO3-N) opportunists but can also use ammonium (NH4-N). They may, therefore, be more sensitive to nitrogen reduction than other algae that typically prefer NH4-N. We document the variations of nutrients and diatoms in subtropical, eutrophic Lake Taihu over 28 yr during which a reduction of the external loading resulted from lake management. According to the results of change point analysis, data on environmental variables were divided into two periods (P1: 1992-2006; P2: 2007-2019) with two different seasons (WS: Winter-Spring; SA: Summer-Autumn), respectively. Compared with P1-WS, the concentration of NH4-N decreased significantly whereas NO3-N showed no significant change in P2-WS. In contrast, NH4-N concentrations were low and showed no significant changes in P1-SA and P2-SA and NO3-N decreased significantly in the latter period. Accordingly, NO3-N: NH4-N mass ratios in P1-SA and P2-WS were all significantly higher than those in P2-SA and P1-WS, respectively. The biomass of WS diatom increased significantly and the timing of the peak biomass shifted from P1-SA to P2-WS since 2007. The SEM analysis showed that NO3-N was retained as a statistically significant predictor for diatom biomass in P1-SA and significant effects of windspeed, zooplankton and NH4-N on diatom biomass in P2-WS. Windspeed and zooplankton have further changed the biomass of diatoms in the case of declining inorganic nitrogen. We conclude that the magnitude of vernal suppression or stimulation of diatom assemblages has increased, concomitant with the variations of NH4-N and NO3-N: NH4-N mass ratios. Diatoms response to NH4-N or NO3-N is apparently changing in response to water temperature in this eutrophic shallow lake. Thus, parallel reductions in external nitrogen loading, along with variations in dominant inorganic nitrogen, will stimulate the growth of diatom and therefore increase the total biomass of phytoplankton in still high internal phosphorus loading, which is should be regarded as a good sign of restoration measures.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China.
| | - Yun Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Ruijie Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Feizhou Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
18
|
Is Zooplankton Body Size an Indicator of Water Quality in (Sub)tropical Reservoirs in China? Ecosystems 2021. [DOI: 10.1007/s10021-021-00656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Omnivorous Carp (Carassius gibelio) Increase Eutrophication in Part by Preventing Development of Large-Bodied Zooplankton and Submerged Macrophytes. WATER 2021. [DOI: 10.3390/w13111497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fish, being an important consumer in aquatic ecosystems, plays a significant role by affecting the key processes of aquatic ecosystems. Omnivorous fish consume a variety of food both from pelagic and benthic habitats and may directly or indirectly affect the plankton community as well as the lake trophic state. We conducted a 72-day outdoor experiment in mesocosms with and without Prussian carp (Carassius auratus) to evaluate the effect of this often-stocked omnivorous fish on the plankton community and water quality. We found that the presence of fish increased the biomass of planktonic algae, total and inorganic suspended solids, leading to decreased light intensity in the water and a lower biomass of benthic algae. Fish also prevented development of submerged macrophytes and the establishment of large-bodied zooplankton. However, the fish did not increase nitrogen concentrations and even was lowered total phosphorus levels, in part due to nutrient storage in the fish. We conclude that stocking of Prussian carp should be avoided, or removed where stocked and abundant, to obtain good ecological quality of shallow lakes, characterized by clear water and high abundance of macrophytes.
Collapse
|