1
|
Zhang S, Zhang Z, Wang F, Huang X, Chen X, Wang Y, Li C, Li H. Advancing the comprehensive understanding of soil organic carbon priming effect: definitions, mechanisms, influencing factors, and future perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:201. [PMID: 40343583 DOI: 10.1007/s10653-025-02516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
The soil carbon (C) priming effect (PE), an important phenomenon in soil C cycle research, has garnered extensive attention in recent years. Soil C PE refers to the stimulation or inhibition of the original soil organic C (SOC) decomposition rate by newly added organic matter in the soil. Its mechanism of action involves the activity of soil microorganisms. Fresh organic matter input provides an additional source of energy and nutrients for soil microorganisms, prompting changes in microbial community structure and activity, which in turn affects SOC decomposition. Easily decomposable organic matter may stimulate rapid microbial growth and metabolic activity of microorganisms, thereby the decomposition accelerating of original SOC and producing a positive PE, whereas recalcitrant organic matter may lead microorganisms to preferentially utilise the newly added C source, thereby inhibiting original SOC decomposition and producing a negative PE. There are numerous factors influencing soil C PE, including organic matter properties such as chemical composition, C:N ratio, and lignin content; soil environmental factors such as temperature, humidity, and pH value; and land-use patterns and vegetation types. Research on soil C PE is crucial for an in-depth understanding of the soil C cycle, the accurate assessment of dynamic changes in the soil C pool, and the development of sustainable soil management strategies. This study introduces the definition, change mechanism, influencing factors, and research methods of soil C PE and elaborates on the status and deficiencies of PE research, which is helpful for predicting soil C responses to global climate change and provides a scientific basis for improving soil fertility and reducing greenhouse gas emissions.
Collapse
Affiliation(s)
- Shengman Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, China
| | - Ziyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuchun Wang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Chunyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
Li Z, Li D, Liu S, Zhao H, Li B, Shan S, Zhu Y, Sun J, Hou J. Impact of elevated CO 2 on microbial communities and functions in riparian sediments: Role of pollution levels in modulating effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176481. [PMID: 39341255 DOI: 10.1016/j.scitotenv.2024.176481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The impact of elevated CO2 levels on microorganisms is a focal point in studying the environmental effects of global climate change. A growing number of studies have demonstrated the importance of the direct effects of elevated CO2 on microorganisms, which are confounded by indirect effects that are not easily identified. Riparian zones have become key factor in identifying the environmental effects of global climate change because of their special location. However, the direct effects of elevated CO2 levels on microbial activity and function in riparian zone sediments remain unclear. In this study, three riparian sediments with different pollution risk levels of heavy metals and nutrients were selected to explore the direct response of microbial communities and functions to elevated CO2 excluding plants. The results showed that the short-term effects of elevated CO2 did not change the diversity of the bacterial and fungal communities, but altered the composition of their communities. Additionally, differences were observed in the responses of microbial functions to elevated CO2 levels among the three regions. Elevated CO2 promoted the activities of nitrification and denitrification enzymes and led to significant increases in N2O release in the three sediments, with the greatest increase of 76.09 % observed in the Yuyangshan Bay (YYS). Microbial carbon metabolism was promoted by elevated CO2 in YYS but was significantly inhibited by elevated CO2 in Gonghu Bay and Meiliang Bay. Moreover, TOC, TN, and Pb contents were identified as key factors contributing to the different microbial responses to elevated CO2 in sediments with different heavy metal and nutrient pollution. In conclusion, this study provides in-depth insights into the responses of bacteria and fungi in polluted riparian sediments to elevated CO2, which helps elucidate the complex interactions between microbial activity and environmental stressors.
Collapse
Affiliation(s)
- Ziyu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huilin Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sujie Shan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yizhi Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jingqiu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
3
|
Yun H, Ciais P, Zhu Q, Chen D, Zohner CM, Tang J, Qu Y, Zhou H, Schimel J, Zhu P, Shao M, Christensen JH, Wu Q, Chen A, Elberling B. Changes in above- versus belowground biomass distribution in permafrost regions in response to climate warming. Proc Natl Acad Sci U S A 2024; 121:e2314036121. [PMID: 38857391 PMCID: PMC11194490 DOI: 10.1073/pnas.2314036121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/04/2024] [Indexed: 06/12/2024] Open
Abstract
Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.
Collapse
Affiliation(s)
- Hanbo Yun
- State Key Laboratory of Frozen Soil Engineering, Beilu'He Observation and Research Station on Tibetan Plateau, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen DK1350, Denmark
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47906
| | - Philippe Ciais
- IPSL-Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Énergie Atomique et aux Énergies Alternatives CNRS UVSQ Université ParisSaclay, Centre d'Etudes Orme des Merisiers, Gif sur Yvette 91191, France
| | - Qing Zhu
- Climate Sciences Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Deliang Chen
- Department of Earth Sciences, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Constantin M Zohner
- Institute of Integrative Biology, Eidgenössische Technische Hochschule Zurich (Swiss Federal Institute of Technology), Zurich 168092, Switzerland
| | - Jing Tang
- Department of Biology, Terrestrial Ecology and Center of Volatile Interactions, University of Copenhagen, Copenhagen DK-2100, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund SE-22236, Sweden
| | - Yang Qu
- Institute for Global Innovation and Development, East China Normal University, Shanghai 200062, China
| | - Hao Zhou
- Department of Physical Geography and Ecosystem Science, Lund University, Lund SE-22236, Sweden
| | - Joshua Schimel
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93108
| | - Peng Zhu
- Department of Geography, The University of Hong Kong, Hong Kong 999077, Special Administrative Region of China
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong 999077, Special Administrative Region of China
| | - Ming Shao
- Key laboratory of oil and gas resources exploration and development in Gansu province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | | | - Qingbai Wu
- State Key Laboratory of Frozen Soil Engineering, Beilu'He Observation and Research Station on Tibetan Plateau, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523
| | - Bo Elberling
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen DK1350, Denmark
| |
Collapse
|
4
|
Yuan M, Na M, Hicks LC, Rousk J. Limiting resources for soil microbial growth in climate change simulation treatments in the subarctic. Ecology 2024; 105:e4210. [PMID: 37989722 DOI: 10.1002/ecy.4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 11/23/2023]
Abstract
The microbial use of resources to sustain life and reproduce influences for example, decomposition and plant nutrient provisioning. The study of "limiting factors" has shed light on the interaction between plants and their environment. Here, we investigated whether carbon (C), nitrogen (N), or phosphorus (P) was limiting for soil microorganisms in a subarctic tundra heath, and how changes in resource availability associated with climate change affected this. We studied samples in which changes in resource availability due to climate warming were simulated by the addition of birch litter and/or inorganic N. To these soils, we supplied factorial C (as glucose), N (as NH4 NO3 ), and P (as KH2 PO4 /K2 HPO4 ) additions ("limiting factor assays," LFA), to determine the limiting factors. The combination of C and P induced large growth responses in all soils and, combined with a systematic tendency for growth increases by C, this suggested that total microbial growth was primarily limited by C and secondarily by P. The C limitation was alleviated by the field litter treatment and strengthened by N fertilization. The microbial growth response to the LFA-C and LFA-P addition was strongest in the field-treatment that combined litter and N addition. We also found that bacteria were closer to P limitation than fungi. Our results suggest that, under a climate change scenario, increased C availability resulting from Arctic greening, treeline advance, and shrubification will reduce the microbial C limitation, while increased N availability resulting from warming will intensify the microbial C limitation. Our results also suggest that the synchronous increase of both C and N availability might lead to a progressive P limitation of microbial growth, primarily driven by bacteria being closer to P limitation. These shifts in microbial resource limitation might lead to a microbial targeting of the limiting element from organic matter, and also trigger competition for nutrients between plants and microorganisms, thus modulating the productivity of the ecosystem.
Collapse
Affiliation(s)
- Mingyue Yuan
- Section of Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Meng Na
- Section of Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Lettice C Hicks
- Section of Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Johannes Rousk
- Section of Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
5
|
N/P Addition Is More Likely Than N Addition Alone to Promote a Transition from Moss-Dominated to Graminoid-Dominated Tundra in the High-Arctic. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nutrient availability for tundra vegetation could change drastically due to increasing temperatures and frequency of nitrogen deposition in the Arctic. Few studies have simultaneously examined the response of plant communities to these two pressures over a long period. This study aims to assess which driver between increasing nitrogen (N) and phosphorus (P) availability through global warming and increasing N availability alone via N deposition is more likely to transform arctic wetland vegetation and whether there is a time lag in this response. An annual fertilization experiment simulating these nutrient inputs was conducted for 17 years in the Canadian High-Arctic to assess the impact on aboveground net primary productivity, floristic composition, and plant nutrient concentration. While the primary productivity of mosses remains unchanged by fertilization after 17 years, productivity of graminoids was increased slightly by N addition (36% increase at the highest dose). In contrast, the primary productivity of graminoids increased strongly with N/P addition (over 227% increase). We noted no difference in graminoid productivity between the 2nd and 5th year of the experiment, but we observed a 203% increase between the 5th and 17th year in the N/P addition treatments. We also noted a 49% decrease in the total moss cover and an 155% increase in the total graminoid cover between the 2nd and 17th year of N/P addition. These results indicate that the impact of warming through increased N/P availability was greater than those of N deposition alone (N addition) and promoted the transition from a moss-dominated tundra to a graminoid-dominated tundra. However, this transition was subject to a time lag of up to 17 years, suggesting that increased productivity of graminoids resulted from a release of nutrients via the decomposition of lower parts of the moss mat.
Collapse
|
6
|
Alvarenga DO, Rousk K. Indirect effects of climate change inhibit N 2 fixation associated with the feathermoss Hylocomium splendens in subarctic tundra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148676. [PMID: 34247067 DOI: 10.1016/j.scitotenv.2021.148676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Mosses can be responsible for up to 100% of net primary production in arctic and subarctic tundra, and their associations with diazotrophic cyanobacteria have an important role in increasing nitrogen (N) availability in these pristine ecosystems. Predictions about the consequences of climate change in subarctic environments point to increased N mineralization in soil and higher litter deposition due to warming. It is not clear yet how these indirect climate change effects impact moss-cyanobacteria associations and N2 fixation. This work aimed to evaluate the effects of increased N and litter input on biological N2 fixation rates associated with the feathermoss Hylocomium splendens from a tundra heath. H. splendens samples were collected near Abisko, northern Sweden, from a field experiment with annual additions of ammonium chloride and dried birch litter and the combination of both for three years. Samples were analyzed for N2 fixation, cyanobacterial colonization, C and N content and pH. Despite the high N additions, no significant differences in moss N content were found. However, differences between treatments were observed in N2 fixation rates, cyanobacterial colonization and pH, with the combined ammonium+litter treatment causing a significant reduction in the number of branch-colonizing cyanobacteria and N2 fixation, and ammonium additions significantly lowering moss pH. A significant, positive relationship was found between N2 fixation rates, moss colonization by cyanobacteria and pH levels, showing a clear drop in N2 fixation rates at lower pH levels even if larger cyanobacterial populations were present. These results suggest that increased N availability and litter deposition resulting from climate change not only interferes with N2 fixation directly, but also acidifies moss microhabitats and reduces the abundance of associated cyanobacteria, which could eventually impact the N cycle in the Subarctic.
Collapse
Affiliation(s)
- Danillo O Alvarenga
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark.
| | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| |
Collapse
|