1
|
Benedetti Y, Callaghan CT, Ulbrichová I, Galanaki A, Kominos T, Abou Zeid F, Ibáñez-Álamo JD, Suhonen J, Díaz M, Markó G, Bussière R, Tryjanowski P, Bukas N, Mägi M, Leveau L, Pruscini F, Jerzak L, Ciebiera O, Jokimäki J, Kaisanlahti-Jokimäki ML, Møller AP, Morelli F. EVI and NDVI as proxies for multifaceted avian diversity in urban areas. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2808. [PMID: 36691190 DOI: 10.1002/eap.2808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Most ecological studies use remote sensing to analyze broad-scale biodiversity patterns, focusing mainly on taxonomic diversity in natural landscapes. One of the most important effects of high levels of urbanization is species loss (i.e., biotic homogenization). Therefore, cost-effective and more efficient methods to monitor biological communities' distribution are essential. This study explores whether the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) can predict multifaceted avian diversity, urban tolerance, and specialization in urban landscapes. We sampled bird communities among 15 European cities and extracted Landsat 30-meter resolution EVI and NDVI values of the pixels within a 50-m buffer of bird sample points using Google Earth Engine (32-day Landsat 8 Collection Tier 1). Mixed models were used to find the best associations of EVI and NDVI, predicting multiple avian diversity facets: Taxonomic diversity, functional diversity, phylogenetic diversity, specialization levels, and urban tolerance. A total of 113 bird species across 15 cities from 10 different European countries were detected. EVI mean was the best predictor for foraging substrate specialization. NDVI mean was the best predictor for most avian diversity facets: taxonomic diversity, functional richness and evenness, phylogenetic diversity, phylogenetic species variability, community evolutionary distinctiveness, urban tolerance, diet foraging behavior, and habitat richness specialists. Finally, EVI and NDVI standard deviation were not the best predictors for any avian diversity facets studied. Our findings expand previous knowledge about EVI and NDVI as surrogates of avian diversity at a continental scale. Considering the European Commission's proposal for a Nature Restoration Law calling for expanding green urban space areas by 2050, we propose NDVI as a proxy of multiple facets of avian diversity to efficiently monitor bird community responses to land use changes in the cities.
Collapse
Affiliation(s)
- Yanina Benedetti
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Corey T Callaghan
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA
| | - Iva Ulbrichová
- Faculty of Forestry and Wood Sciences, Department of Forest Ecology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Antonia Galanaki
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Kominos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Farah Abou Zeid
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Jukka Suhonen
- Department of Biology, University of Turku, Turku, Finland
| | - Mario Díaz
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (BGC-MNCN-CSIC), Madrid, Spain
| | - Gábor Markó
- Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Marko Mägi
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Lucas Leveau
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | | | - Leszek Jerzak
- Institute of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | - Olaf Ciebiera
- Institute of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | - Jukka Jokimäki
- Nature Inventory and EIA-services, Arctic Centre, University of Lapland, Rovaniemi, Finland
| | | | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay Cedex, France
| | - Federico Morelli
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|