1
|
An Y, Wang Q, Cui Y, Liu X, Wang P, Zhou Y, Kang P, Chen Y, Wang Z, Zhou Q, Wang P. Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus). Sci Rep 2024; 14:21060. [PMID: 39256456 PMCID: PMC11387644 DOI: 10.1038/s41598-024-71847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Siberian wildrye (Elymus sibiricus) is a xero-mesophytic forage grass with high nutritional quality and stress tolerance. Among its numerous germplasm resources, some possess superior drought resistance. In this study, we firstly investigated the physiological differences between the leaves of drought-tolerant (DT) and drought-sensitive (DS) genotypes under different field water contents (FWC) in soil culture. The results showed that, under drought stress, DT maintained a lower leaf water potential for water absorption, sustained higher photosynthetic efficiency, and reduced oxidative damage in leaves by efficiently maintaining the ascorbic acid-glutathione (ASA-GSH) cycle to scavenge reactive oxygen species (ROS) compared to DS. Secondly, using RNA sequencing (RNA-seq), we analyzed the gene expression profiles of DT and DS leaves under osmotic stress of hydroponics induced by PEG-6000. Through differential analysis, we identified 1226 candidate unigenes, from which we subsequently screened out 115/212 differentially expressed genes (DEGs) that were more quickly induced/reduced in DT than in DS under osmotic stress. Among them, Unigene0005863 (EsSnRK2), Unigene0053902 (EsLRK10) and Unigene0031985 (EsCIPK5) may be involved in stomatal closure induced by abscisic acid (ABA) signaling pathway. Unigene0047636 (EsCER1) may positively regulates the synthesis of very-long-chain (VLC) alkanes in cuticular wax biosynthesis, influencing plant responses to abiotic stresses. Finally, the contents of wax and cutin were measured by GC-MS under osmotic stress of hydroponics induced by PEG-6000. Corresponding to RNA-seq, contents of wax monomers, especially alkanes and alcohols, showed significant induction by osmotic stress in DT but not in DS. It is suggested that limiting stomatal and cuticle transpiration under drought stress to maintain higher photosynthetic efficiency and water use efficiency (WUE) is one of the critical mechanisms that confer stronger drought resistance to DT. This study provides some insights into the molecular mechanisms underlying drought tolerance in E. sibiricus. The identified genes may provide a foundation for the selection and breeding of drought-tolerant crops.
Collapse
Affiliation(s)
- Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Qian Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yannong Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xin Liu
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Peng Kang
- College of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Youjun Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Zhiwei Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
2
|
Fu Y, Jian S, Yu X. Water use efficiency in China is impacted by climate change and land use and land cover. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42840-42856. [PMID: 38879644 DOI: 10.1007/s11356-024-33842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024]
Abstract
A crucial physiological indicator known as water use efficiency (WUE) (Foley et al.) assesses the trade-off between water loss and carbon uptake. The carbon and water coupling mechanisms, energy balance, and hydrological cycle processes in the ecosystem are impacted by climate change, vegetation dynamics, and land use change. In this study, we employed Sen trend analysis, the Mann-Kendall test, the land-use transfer matrix, and multiple linear regression analysis to investigate the regional and temporal dynamics of WUE and its reaction to climate change and land-use transfer changes in China. According to the findings, the annual average WUE in China was 0.998 gC/mm·m2 from 2000 to 2017. Of the nine major river basins, the Continental Basin had the lowest WUE (0.529 gC/mm·m2), and the Southwest River Basin had the highest WUE (0.691 gC/mm·m2), while the Pearl River Basin and the Southeast River Basin had the highest WUEs (1.184 gC/mm·m2). The Haihe River Basin and the Yellow River Basin were the key regions with elevated WUE. Forest had the greatest WUE (1.134 gC/mm·m2; out of the nine major river basins), followed by shrub (1.109 gC/mm·m2). Vegetation dynamics changes had a higher impact on WUE than climate change and land use changes, when the contributions of climate change, vegetation dynamics changes, and land use changes to WUE were separated. The largest climatic factor influencing variations in WUE was VPD (28.04% ± 3.98%), whereas among the vegetation dynamics factors, NDVI (33.75% ± 6.90%) and LAI (22.21% ± 2.11%) contributed the most. The transition from high to low vegetation cover led to a relative decrease in WUE, and vice versa, according to data on land use change in China from 2000 to 2017. Land use change made a positive impact to WUE change. The findings of this study may be helpful in China for choosing a suitable regional plant cover and managing local water resources sustainably.
Collapse
Affiliation(s)
- Yimin Fu
- College of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengqi Jian
- College of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xin Yu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China
| |
Collapse
|
3
|
Kong R, Zhang Z, Yu Z, Huang R, Zhang Y, Chen X, Xu CY. Increasing sensitivity of dryland water use efficiency to soil water content due to rising atmospheric CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167087. [PMID: 37716683 DOI: 10.1016/j.scitotenv.2023.167087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Examining the intricate interplay between ecosystem carbon-water coupling and soil moisture sensitivity serves as a crucial approach to effectively assess the dilemma arising from escalating global carbon emissions and concomitant water scarcity. Using the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ), this study investigated the potential effects of climate change and soil water content (SWC) on terrestrial ecosystem water use efficiency (WUE) across China from 1982 to 2060. The results revealed that: (1) WUE was higher in South China and Northeast China, but lower in Northwest China and it had shown a significant upward trend in the past 40 years, especially in Northwest China where grasslands were widely distributed. The increase in WUE was mainly closely related to the greening of vegetation. In the past 40 years, the area of net primary productivity (NPP), evapotranspiration (ET), and WUE showing an upward trend accounted for 85.85 %, 63.66 %, and 83.88 % of the total area of the country, respectively. Although ET also showed an increasing trend nationwide, the increase of NPP was more obvious; (2) The control experiment showed that WUE showed a significant increase trend in arid and semi-arid areas of Northwest China with the increase of CO2 concentration, while SWC showed a significant drying trend, but both WUE and SWC showed an increasing trend in humid areas. The sensitivity of WUE to SWC was enhanced in arid and semi-arid areas, and the effect of soil drought was partially offset by the increase of WUE; (3) Future climate projections also indicated that the CO2 fertilization effect will contribute to an increase in WUE while causing drier soil moisture conditions in the arid and semi-arid regions. Especially under the SSP5-8.5 scenario, CO2 fertilization in Northwest China contributed more than 14 % to WUE from 2015 to 2060, while the impact on SWC depletion exceeded 3 %. This highlights the potential implications of rising atmospheric CO2 concentration, as it may promote a significant rise in WUE and exacerbate the drying of soil moisture in these areas. These findings emphasize the need for careful attention and consideration in managing water resources in arid and semi-arid regions in the face of future climate change.
Collapse
Affiliation(s)
- Rui Kong
- State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Zengxin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Joint Innovation Center for Modern Forestry Studies, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Zejiang Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Richao Huang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Xi Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Chong-Yu Xu
- Department of Geosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
4
|
Xu X, Liu J, Jiao F, Zhang K, Yang Y, Qiu J, Zhu Y, Lin N, Zou C. Spatial variations and mechanisms for the stability of water use efficiency in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1254395. [PMID: 37810375 PMCID: PMC10552151 DOI: 10.3389/fpls.2023.1254395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
A clearer understanding of the stability of water use efficiency (WUE) and its driving factors contributes to improving water use efficiency and strengthening water resource management. However, the stability of WUE is unclear. Based on the EEMD method, this study analyses the spatial variations and mechanisms for the stability of WUE in China, especially in the National Forest Protection Project (NFPP) areas. It is found that the stable WUE was dominated by non-significant trends and increasing trends in China, accounting for 33.59% and 34.19%, respectively. The non-significant trend of stable WUE was mainly located in the Three-North shelterbelt program area, and the increasing trend of stable WUE was in Huaihe and Taihu, Taihang Mountains, and Pearl River shelterbelt program areas. Precipitation and soil moisture promoted the stable WUE in these project areas. The unstable WUE was dominated by positive reversals or negative reversals of WUE trends. The positive reversals of unstable WUE were mainly located in the Yellow River shelterbelt program areas, which was promoted by temperature and radiation, while the negative reversals of unstable WUE were mainly distributed in the Yangtze River and Liaohe shelterbelt program areas, which were mainly induced by saturation water vapor pressure difference (VPD). Our results highlight that some ecological restoration programs need to be improved to cope with the negative climate impact on the stability of WUE.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Jing Liu
- Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Fusheng Jiao
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Kun Zhang
- Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Yue Yang
- Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Jie Qiu
- Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Yingying Zhu
- Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Naifeng Lin
- Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Changxin Zou
- Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| |
Collapse
|
5
|
Shah WUH, Lu Y, Hao G, Yan H, Yasmeen R. Impact of "Three Red Lines" Water Policy (2011) on Water Usage Efficiency, Production Technology Heterogeneity, and Determinant of Water Productivity Change in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16459. [PMID: 36554340 PMCID: PMC9779420 DOI: 10.3390/ijerph192416459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This research evaluates the effects of the Three Red Lines policy on water usage efficiency (WUE), production technology heterogeneity, and water productivity change in 31 Chinese provinces between 2006 and 2020. SMB-DEA, Meta-frontier analysis, and Malmquist-Luenberger index (MLI) techniques were employed for estimation. Results revealed that the mean WUE (2006-2020) in all Chinese provinces was 0.52, with an improvement potential of 48%. Shanghai, Beijing, Shaanxi, and Tianjin were the best performers. The WUE scores before (2006-2011) and after (2012-2020) water policy implementation were 0.58 and 0.48, respectively; on average, there was more than a 9% decline in WUE after the implementation of the water policy. The eastern region has the most advanced water utilization technology as its technology gap ratio (TGR) is nearly 1. The average MLI (2006-2020) score was 1.13, suggesting that the MLI has increased by 12.57% over the study period. Further technology change (TC) is the key predictor of MLI growth, whereas efficiency change (EC) diminished from 2006 to 2020. The mean MLI score for 2006-2011 was 1.16, whereas the MLI Score for the period 2012-2020 was 1.10, indicating a modest decline following the implementation of the water policy. All three Chinese regions experienced MLI growth during 2006-2020, with TC the main change factor.
Collapse
Affiliation(s)
| | - Yuting Lu
- School of Management, Zhejiang Shuren University, Hangzhou 310015, China
| | - Gang Hao
- Department of Management Sciences, City University of Hong Kong, Hong Kong
| | - Hong Yan
- School of Management, Zhejiang Shuren University, Hangzhou 310015, China
| | - Rizwana Yasmeen
- School of Economics and Management, Panzhihua University, Panzhihua 617000, China
| |
Collapse
|