1
|
Gümüş E, Özen H. Glycogen storage diseases: An update. World J Gastroenterol 2023; 29:3932-3963. [PMID: 37476587 PMCID: PMC10354582 DOI: 10.3748/wjg.v29.i25.3932] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 04/30/2023] [Indexed: 06/28/2023] Open
Abstract
Glycogen storage diseases (GSDs), also referred to as glycogenoses, are inherited metabolic disorders of glycogen metabolism caused by deficiency of enzymes or transporters involved in the synthesis or degradation of glycogen leading to aberrant storage and/or utilization. The overall estimated GSD incidence is 1 case per 20000-43000 live births. There are over 20 types of GSD including the subtypes. This heterogeneous group of rare diseases represents inborn errors of carbohydrate metabolism and are classified based on the deficient enzyme and affected tissues. GSDs primarily affect liver or muscle or both as glycogen is particularly abundant in these tissues. However, besides liver and skeletal muscle, depending on the affected enzyme and its expression in various tissues, multiorgan involvement including heart, kidney and/or brain may be seen. Although GSDs share similar clinical features to some extent, there is a wide spectrum of clinical phenotypes. Currently, the goal of treatment is to maintain glucose homeostasis by dietary management and the use of uncooked cornstarch. In addition to nutritional interventions, pharmacological treatment, physical and supportive therapies, enzyme replacement therapy (ERT) and organ transplantation are other treatment approaches for both disease manifestations and long-term complications. The lack of a specific therapy for GSDs has prompted efforts to develop new treatment strategies like gene therapy. Since early diagnosis and aggressive treatment are related to better prognosis, physicians should be aware of these conditions and include GSDs in the differential diagnosis of patients with relevant manifestations including fasting hypoglycemia, hepatomegaly, hypertransaminasemia, hyperlipidemia, exercise intolerance, muscle cramps/pain, rhabdomyolysis, and muscle weakness. Here, we aim to provide a comprehensive review of GSDs. This review provides general characteristics of all types of GSDs with a focus on those with liver involvement.
Collapse
Affiliation(s)
- Ersin Gümüş
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| | - Hasan Özen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| |
Collapse
|
2
|
Iizuka K. Recent Progress on Fructose Metabolism-Chrebp, Fructolysis, and Polyol Pathway. Nutrients 2023; 15:nu15071778. [PMID: 37049617 PMCID: PMC10096667 DOI: 10.3390/nu15071778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Excess fructose intake is associated with obesity, fatty liver, tooth decay, cancer, and cardiovascular diseases. Even after the ingestion of fructose, fructose concentration in the portal blood is never high; fructose is further metabolized in the liver, and the blood fructose concentration is 1/100th of the glucose concentration. It was previously thought that fructose was metabolized in the liver and not in the small intestine, but it has been reported that metabolism in the small intestine also plays an important role in fructose metabolism. Glut5 knockout mice exhibit poor fructose absorption. In addition, endogenous fructose production via the polyol pathway has also received attention; gene deletion of aldose reductase (Ar), ketohexokinase (Khk), and triokinase (Tkfc) has been found to prevent the development of fructose-induced liver lipidosis. Carbohydrate response element-binding protein (Chrebp) regulates the expression of Glut5, Khk, aldolase b, and Tkfc. We review fructose metabolism with a focus on the roles of the glucose-activating transcription factor Chrebp, fructolysis, and the polyol pathway.
Collapse
Affiliation(s)
- Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan
- Food and Nutrition Service Department, Fujita Health University Hospital, Toyoake 470-1192, Japan
| |
Collapse
|
3
|
Bindi V, Eiroa HD, Crespo C, Martinez M, Bay L. Clinical, Biochemical and Molecular Characterization of a Cohort of Glycogen Storage Disease Type I Patients in a High Complexity Hospital in Argentina. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Luisa Bay
- Hospital de Pediatría Juan P. Garrahan, Argentina
| |
Collapse
|
4
|
Causes of secondary non-alcoholic fatty liver disease in non-obese children below 10 years. Eur J Pediatr 2020; 179:719-726. [PMID: 31897838 DOI: 10.1007/s00431-019-03551-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
This study aimed to detect etiologies and histopathological features of non-alcoholic fatty liver disease (NAFLD) in Egyptian children < 10 years from hepatologist perspectives. Infants and children below 10 years of age with biopsy-proven fatty liver over a 6-year period were included. NAFLD activity score was used to detect the presence of non-alcoholic steatohepatitis (NASH). The study included 66 cases whose age ranged between 5 months and 10 years. Transaminases were elevated in 60% patients. Glycogen storage disease (GSD) was the most common diagnosis (33.3%) followed by hepatitis C virus (HCV) (10.6%) and Chanarin-Dorfman syndrome (CDS) (9.1%). The cause of steatosis could not be identified in 28.8% of cases. There was a higher prevalence of secondary causes of NAFLD in patients < 10 years. Liver histopathological examination revealed preserved lobular architecture in 75.7% with minimal-to-mild fibrosis in 79%. Steatosis was macrovesicular in all specimens (severe steatosis in 39.4%). Four patients had NASH. Higher degree of steatosis was associated with more severe fibrosis (P = 0.01).Conclusion: GSD was the commonest cause of secondary NAFLD in Egyptian children < 10 years followed by HCV and CDS with higher degrees of steatosis in younger patients. The degree of fibrosis was significantly related to the degree of steatosis.What is Known:• Primary non-alcoholic fatty liver disease (NAFLD) is rare in children aged less than 10 years.• Secondary causes of NAFLD should be considered in patients who do not have traditional risk factors.What is New:• Glycogen storage disease, hepatitis C virus, and Chanarin-Dorfman syndrome are the commonest causes of secondary NAFLD in Egyptian children (< 10 years) with higher degrees of steatosis in younger patients.• The degree of liver fibrosis is significantly related to the degree of steatosis.
Collapse
|
5
|
Burrage LC, Madan S, Li X, Ali S, Mohammad M, Stroup BM, Jiang MM, Cela R, Bertin T, Jin Z, Dai J, Guffey D, Finegold M, Members of the Urea Cycle Disorders Consortium (UCDC), Nagamani S, Minard CG, Marini J, Masand P, Schady D, Shneider BL, Leung DH, Bali D, Lee B. Chronic liver disease and impaired hepatic glycogen metabolism in argininosuccinate lyase deficiency. JCI Insight 2020; 5:132342. [PMID: 31990680 PMCID: PMC7101134 DOI: 10.1172/jci.insight.132342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDLiver disease in urea cycle disorders (UCDs) ranges from hepatomegaly and chronic hepatocellular injury to cirrhosis and end-stage liver disease. However, the prevalence and underlying mechanisms are unclear.METHODSWe estimated the prevalence of chronic hepatocellular injury in UCDs using data from a multicenter, longitudinal, natural history study. We also used ultrasound with shear wave elastography and FibroTest to evaluate liver stiffness and markers of fibrosis in individuals with argininosuccinate lyase deficiency (ASLD), a disorder with high prevalence of elevated serum alanine aminotransferase (ALT). To understand the human observations, we evaluated the hepatic phenotype of the AslNeo/Neo mouse model of ASLD.RESULTSWe demonstrate a high prevalence of elevated ALT in ASLD (37%). Hyperammonemia and use of nitrogen-scavenging agents, 2 markers of disease severity, were significantly (P < 0.001 and P = 0.001, respectively) associated with elevated ALT in ASLD. In addition, ultrasound with shear wave elastography and FibroTest revealed increased echogenicity and liver stiffness, even in individuals with ASLD and normal aminotransferases. The AslNeo/Neo mice mimic the human disorder with hepatomegaly, elevated aminotransferases, and excessive hepatic glycogen noted before death (3-5 weeks of age). This excessive hepatic glycogen is associated with impaired hepatic glycogenolysis and decreased glycogen phosphorylase and is rescued with helper-dependent adenovirus expressing Asl using a liver-specific (ApoE) promoter.CONCLUSIONOur results link urea cycle dysfunction and impaired hepatic glucose metabolism and identify a mouse model of liver disease in the setting of urea cycle dysfunction.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov (NCT03721367, NCT00237315).FUNDINGFunding was provided by NIH, Burroughs Wellcome Fund, NUCDF, Genzyme/ACMG Foundation, and CPRIT.
Collapse
Affiliation(s)
- Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Simran Madan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine and
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Saima Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mahmoud Mohammad
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Food Science and Nutrition, National Research Centre, Dokki, Giza, Egypt
| | - Bridget M. Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Racel Cela
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Terry Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zixue Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Dai
- Department of Pediatrics, Duke Health, Durham, North Carolina, USA
| | - Danielle Guffey
- Dan L. Duncan Institute for Clinical and Translational Research and
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Sandesh Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | | | - Juan Marini
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Prakash Masand
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Deborah Schady
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin L. Shneider
- Texas Children’s Hospital, Houston, Texas, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel H. Leung
- Texas Children’s Hospital, Houston, Texas, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas, USA
| | - Deeksha Bali
- Department of Pediatrics, Duke Health, Durham, North Carolina, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
6
|
Yıldız Y, Sivri HS. Inborn errors of metabolism in the differential diagnosis of fatty liver disease. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:3-16. [PMID: 32009609 DOI: 10.5152/tjg.2019.19367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease across all age groups. Obesity, diabetes, and metabolic syndrome, are the primary causes that are closely linked with the development of NAFLD. However, in young children, rare inborn errors of metabolism are predominant secondary causes of NAFLD. Furthermore, inborn errors of metabolism causing hepatosteatosis are often misdiagnosed as NAFLD in adolescents and adults. Many inborn errors of metabolism are treatable disorders and therefore require special consideration. This review aims to summarize the basic characteristics and diagnostic clues of inborn errors of metabolism associated with fatty liver disease. A suggested clinical and laboratory diagnostic approach is also discussed.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Pediatric Metabolic Diseases Unit, Dr. Sami Ulus Training and Research Hospital for Maternity and Children's Health and Diseases, Ankara, Turkey
| | - Hatice Serap Sivri
- Division of Metabolic Diseases, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Gusarov I, Nudler E. Glycogen at the Crossroad of Stress Resistance, Energy Maintenance, and Pathophysiology of Aging. Bioessays 2018; 40:e1800033. [DOI: 10.1002/bies.201800033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/31/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York NY 10016 USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York NY 10016 USA
- Howard Hughes Medical Institute; New York University School of Medicine; New York NY 10016 USA
| |
Collapse
|
8
|
Santos BL, de Souza CF, Schuler‐Faccini L, Refosco L, Epifanio M, Nalin T, Vieira SM, Schwartz IV. Glycogen storage disease type I: clinical and laboratory profile. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2014. [DOI: 10.1016/j.jpedp.2014.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Santos BL, Souza CFMD, Schuler-Faccini L, Refosco L, Epifanio M, Nalin T, Vieira SMG, Schwartz IVD. Glycogen storage disease type I: clinical and laboratory profile. J Pediatr (Rio J) 2014; 90:572-9. [PMID: 25019649 DOI: 10.1016/j.jped.2014.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 02/28/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To characterize the clinical, laboratory, and anthropometric profile of a sample of Brazilian patients with glycogen storage disease type I managed at an outpatient referral clinic for inborn errors of metabolism. METHODS This was a cross-sectional outpatient study based on a convenience sampling strategy. Data on diagnosis, management, anthropometric parameters, and follow-up were assessed. RESULTS Twenty-one patients were included (median age 10 years, range 1-25 years), all using uncooked cornstarch therapy. Median age at diagnosis was 7 months (range, 1-132 months), and 19 patients underwent liver biopsy for diagnostic confirmation. Overweight, short stature, hepatomegaly, and liver nodules were present in 16 of 21, four of 21, nine of 14, and three of 14 patients, respectively. A correlation was found between height-for-age and BMI-for-age Z-scores (r=0.561; p=0.008). CONCLUSIONS Diagnosis of glycogen storage disease type I is delayed in Brazil. Most patients undergo liver biopsy for diagnostic confirmation, even though the combination of a characteristic clinical presentation and molecular methods can provide a definitive diagnosis in a less invasive manner. Obesity is a side effect of cornstarch therapy, and appears to be associated with growth in these patients.
Collapse
Affiliation(s)
- Berenice L Santos
- Post-Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carolina F M de Souza
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lavinia Schuler-Faccini
- Post-Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lilia Refosco
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Matias Epifanio
- Pontifícia Universidade Católica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS, Brazil; Hospital São Lucas, Porto Alegre, RS, Brazil
| | - Tatiele Nalin
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sandra M G Vieira
- Medical Pediatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Post-Graduate Program in Gastroenterology Science and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ida V D Schwartz
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Baertling F, Mayatepek E, Gerner P, Baba HA, Franzel J, Schlune A, Meissner T. Liver cirrhosis in glycogen storage disease Ib. Mol Genet Metab 2013; 108:198-200. [PMID: 23357201 DOI: 10.1016/j.ymgme.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/05/2013] [Indexed: 01/30/2023]
Abstract
Glycogen storage disease Ib is an inborn error of carbohydrate metabolism leading to impaired glycogenolysis and gluconeogenesis. Cardinal symptoms include fasting hypoglycemia, lactic acidosis and hepatomegaly as well as neutropenia. We report for the first time on the development of liver cirrhosis in a nine-year-old boy in the course of glycogen storage disease Ib and discuss possible underlying pathomechanisms.
Collapse
Affiliation(s)
- Fabian Baertling
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Duesseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Duesseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I. J Hepatol 2013; 58:350-7. [PMID: 23046672 DOI: 10.1016/j.jhep.2012.09.030] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/25/2012] [Accepted: 09/30/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatocellular adenomas (HCA) are benign liver tumors mainly related to oral contraception and classified into 4 molecular subgroups: inflammatory (IHCA), HNF1A-inactivated (H-HCA), β-catenin-activated (bHCA) or unclassified (UHCA). Glycogen storage disease type I (GSD) is a rare hereditary metabolic disease that predisposes to HCA development. The aim of our study was to characterize the molecular profile of GSD-associated HCA. METHODS We characterized a series of 25 HCAs developed in 15 patients with GSD by gene expression and DNA sequence of HNF1A, CTNNB1, IL6ST, GNAS, and STAT3 genes. Moreover, we searched for glycolysis, gluconeogenesis, and fatty acid synthesis alterations in GSD non-tumor livers and compared our results to those observed in a series of sporadic H-HCA and various non-GSD liver samples. RESULTS GSD adenomas were classified as IHCA (52%) mutated for IL6ST or GNAS, bHCA (28%) or UHCA (20%). In contrast, no HNF1A inactivation was observed, showing a different molecular subtype distribution in GSD-associated HCA from that observed in sporadic HCA (p = 0.0008). In non-tumor GSD liver samples, we identified glycolysis and fatty acid synthesis activation with gluconeogenesis repression. Interestingly, this gene expression profile was similar to that observed in sporadic H-HCA. CONCLUSIONS Our study showed a particular molecular profile in GSD-related HCA characterized by a lack of HNF1A inactivation. This exclusion could be explained by similar metabolic defects observed with HNF1A inactivation and glucose-6-phosphatase deficiency. Inversely, the high frequency of β-catenin mutations could be related to the increased frequency of malignant transformation in hepatocellular carcinoma.
Collapse
|
12
|
Floettmann E, Gregory L, Teague J, Myatt J, Hammond C, Poucher SM, Jones HB. Prolonged Inhibition of Glycogen Phosphorylase in Livers of Zucker Diabetic Fatty Rats Models Human Glycogen Storage Diseases. Toxicol Pathol 2010; 38:393-401. [DOI: 10.1177/0192623310362707] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The preclinical efficacy and safety of GPi921, a glycogen phosphorylase inhibitor, was assessed following twenty-eight days of administration to Zucker Diabetic Fatty (ZDF) rats. The ZDF rat is an animal model of type 2 diabetes mellitus (TTDM) which develops severe hyperglycemia. Inhibition of glycogen phosphorylase throughout the duration of the study was demonstrated by reductions in twenty-four-hour glucose profiles and glycated hemoglobin levels. In addition, progression towards hyperglycemia was halted in treated but not control animals, which developed hyperglycemia over the twenty-eight days of the study. Biochemical and histopathological analysis revealed large increases in hepatic glycogen, which closely paralleled the development of hepatomegaly and ultimately resulted in increases in hepatic lipids. Furthermore, prolonged glycogen phosphorylase inhibition resulted in an increased incidence and severity of other adverse pathological findings in the liver, such as inflammation, fibrosis, hemorrhage, and necrosis. The observed biochemical and histopathological phenotype of the liver closely resembled that seen in severe cases of human glycogen storage diseases (GSD) and hepatic glycogenosis in poorly controlled diabetes mellitus. These findings revealed that although glycogen phosphorylase inhibitors are efficacious agents for the control of hyperglycemia, prolonged treatment might have the potential to cause significant clinical hepatic complications that resemble those seen in GSD and hepatic glycogenosis.
Collapse
Affiliation(s)
- Eike Floettmann
- Global Safety Assessment, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Laraine Gregory
- Cardiovascular & Gastrointestinal Research Department, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Joanne Teague
- Cardiovascular & Gastrointestinal Research Department, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - John Myatt
- Global Safety Assessment, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Clare Hammond
- Drug Metabolism and Pharmacokinetics, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Simon M. Poucher
- Cardiovascular & Gastrointestinal Research Department, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Huw B. Jones
- Global Safety Assessment, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| |
Collapse
|
13
|
Kwon JE, Park YN. [Hepatic adenomatosis in glycogen storage disease]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 14:108-12. [PMID: 18367864 DOI: 10.3350/kjhep.2008.14.1.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ji Eun Kwon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | | |
Collapse
|
14
|
Chopra AR, Louet JF, Saha P, An J, DeMayo F, Xu J, York B, Karpen S, Finegold M, Moore D, Chan L, Newgard CB, O'Malley BW. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease. Science 2008; 322:1395-9. [PMID: 19039140 PMCID: PMC2668604 DOI: 10.1126/science.1164847] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatic glucose production is critical for basal brain function and survival when dietary glucose is unavailable. Glucose-6-phosphatase (G6Pase) is an essential, rate-limiting enzyme that serves as a terminal gatekeeper for hepatic glucose release into the plasma. Mutations in G6Pase result in Von Gierke's disease (glycogen storage disease-1a), a potentially fatal genetic disorder. We have identified the transcriptional coactivator SRC-2 as a regulator of fasting hepatic glucose release, a function that SRC-2 performs by controlling the expression of hepatic G6Pase. SRC-2 modulates G6Pase expression directly by acting as a coactivator with the orphan nuclear receptor RORalpha. In addition, SRC-2 ablation, in both a whole-body and liver-specific manner, resulted in a Von Gierke's disease phenotype in mice. Our results position SRC-2 as a critical regulator of mammalian glucose production.
Collapse
Affiliation(s)
- Atul R. Chopra
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jean-Francois Louet
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Pradip Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jie An
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Franco DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Saul Karpen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Lawrence Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Bert W. O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
15
|
Lee JY, Shim JO, Yang HR, Chang JY, Shin CH, Ko JS, Seo JK, Kim WS, Kang GH, Song JH, Kim JW. A case of simultaneously identified glycogen storage disease and mucopolysaccharidosis. KOREAN JOURNAL OF PEDIATRICS 2008. [DOI: 10.3345/kjp.2008.51.6.650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ju Young Lee
- Department of Pediatrics,Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Ok Shim
- Department of Pediatrics,Seoul National University College of Medicine, Seoul, Korea
| | - Hye Ran Yang
- Department of Pediatrics,Seoul National University College of Medicine, Seoul, Korea
| | - Ju Young Chang
- Department of Pediatrics,Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics,Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Ko
- Department of Pediatrics,Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Kee Seo
- Department of Pediatrics,Seoul National University College of Medicine, Seoul, Korea
| | - Woo Sun Kim
- Department of Radiology,Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology,Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Han Song
- Department of Laboratory Medicine,Seoul National University College of Medicine, Seoul, Korea
| | - Jong Won Kim
- Department of Laboratory Medicine, Samsung Seoul Hospital, Sungkyunkwan University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Ozen H. Glycogen storage diseases: new perspectives. World J Gastroenterol 2007; 13:2541-2553. [PMID: 17552001 PMCID: PMC4146814 DOI: 10.3748/wjg.v13.i18.2541] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 03/30/2007] [Accepted: 03/31/2007] [Indexed: 02/06/2023] Open
Abstract
Glycogen storage diseases (GSD) are inherited metabolic disorders of glycogen metabolism. Different hormones, including insulin, glucagon, and cortisol regulate the relationship of glycolysis, gluconeogenesis and glycogen synthesis. The overall GSD incidence is estimated 1 case per 20000-43000 live births. There are over 12 types and they are classified based on the enzyme deficiency and the affected tissue. Disorders of glycogen degradation may affect primarily the liver, the muscle, or both. Type Ia involves the liver, kidney and intestine (and Ib also leukocytes), and the clinical manifestations are hepatomegaly, failure to thrive, hypoglycemia, hyperlactatemia, hyperuricemia and hyperlipidemia. Type IIIa involves both the liver and muscle, and IIIb solely the liver. The liver symptoms generally improve with age. Type IV usually presents in the first year of life, with hepatomegaly and growth retardation. The disease in general is progressive to cirrhosis. Type VI and IX are a heterogeneous group of diseases caused by a deficiency of the liver phosphorylase and phosphorylase kinase system. There is no hyperuricemia or hyperlactatemia. Type XI is characterized by hepatic glycogenosis and renal Fanconi syndrome. Type II is a prototype of inborn lysosomal storage diseases and involves many organs but primarily the muscle. Types V and VII involve only the muscle.
Collapse
Affiliation(s)
- Hasan Ozen
- Division of Gastroenterology, Hepatology and Nutrition, Hacettepe University Children's Hospital, Ankara, Turkey.
| |
Collapse
|