1
|
Sabharwal A, Gupta V, Kv S, Kumar Manokaran R, Verma A, Mishra A, Bhoyar RC, Jain A, Sivadas A, Rawat S, Jolly B, Mohanty S, Gulati S, Gupta N, Kabra M, Scaria V, Sivasubbu S. Whole genome sequencing followed by functional analysis of genomic deletion encompassing ERCC8 and NDUFAF2 genes in a non-consanguineous Indian family reveals dysfunctional mitochondrial bioenergetics leading to infant mortality. Mitochondrion 2024; 75:101844. [PMID: 38237647 DOI: 10.1016/j.mito.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/07/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Genomic investigations on an infant who presented with a putative mitochondrial disorder led to identification of compound heterozygous deletion with an overlapping region of ∼142 kb encompassing two nuclear encoded genes namely ERCC8 and NDUFAF2. Investigations on fetal-derived fibroblast culture demonstrated impaired bioenergetics and mitochondrial dysfunction, which explains the phenotype and observed infant mortality in the present study. The genetic findings from this study extended the utility of whole-genome sequencing as it led to development of a MLPA-based assay for carrier screening in the extended family and the prenatal testing aiding in the birth of two healthy children.
Collapse
Affiliation(s)
- Ankit Sabharwal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States.
| | - Vishu Gupta
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shamsudheen Kv
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Ankit Verma
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Anushree Mishra
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ambily Sivadas
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonali Rawat
- Stem Cell Facility, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Sheffali Gulati
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Neerja Gupta
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Madhulika Kabra
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India.
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Narayanan DL, Tuteja M, McIntyre AD, Hegele RA, Calmels N, Obringer C, Laugel V, Mandal K, Phadke SR. Clinical and Mutation Spectra of Cockayne Syndrome in India. Neurol India 2021; 69:362-366. [PMID: 33904453 DOI: 10.4103/0028-3886.314579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Cockayne syndrome is an autosomal recessive disorder caused by biallelic mutations in ERCC6 or ERCC8 genes. Aims To study the clinical and mutation spectrum of Cockayne syndrome. Setting and Design Medical Genetics Outpatient Department of Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow. This was a prospective study from 2007 to 2015. Materials and Methods Clinical details were recorded, and sequencing of ERCC6 and ERCC8 were performed. Results and Conclusions Of the six families, one family had a homozygous mutation in ERCC8 and the other five families had homozygous mutations in ERCC6. Novel variants in ERCC6 were identified in four families. Phenotypic features may vary from severe to mild, and a strong clinical suspicion is needed for diagnosis during infancy or early childhood. Hence, molecular diagnosis is needed for confirmation of diagnosis in a child with a suspicion of Cockayne syndrome. Prenatal diagnosis can be provided only if molecular diagnosis is established in the proband.
Collapse
Affiliation(s)
- Dhanya L Narayanan
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute, Lucknow, Uttar Pradesh, India
| | - Moni Tuteja
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute, Lucknow, Uttar Pradesh, India
| | - Adam D McIntyre
- Department of Medicine and Robarts Research Institute, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Western University, London, Ontario, Canada
| | - Nadege Calmels
- Laboratory of Genetic Diagnosis, Strasbourg University Hospital, 1 place de l'Hospital, Strasbourg, France
| | - Cathy Obringer
- Laboratory of Medical Genetics, Strasbourg University Hospital, 1 place de l'Hospital, Strasbourg, France
| | - Vincent Laugel
- Laboratory of Medical Genetics, Strasbourg University Hospital, 1 place de l'Hospital, Strasbourg, France
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute, Lucknow, Uttar Pradesh, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Tiwari V, Baptiste BA, Okur MN, Bohr VA. Current and emerging roles of Cockayne syndrome group B (CSB) protein. Nucleic Acids Res 2021; 49:2418-2434. [PMID: 33590097 DOI: 10.1093/nar/gkab085] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cockayne syndrome (CS) is a segmental premature aging syndrome caused primarily by defects in the CSA or CSB genes. In addition to premature aging, CS patients typically exhibit microcephaly, progressive mental and sensorial retardation and cutaneous photosensitivity. Defects in the CSB gene were initially thought to primarily impair transcription-coupled nucleotide excision repair (TC-NER), predicting a relatively consistent phenotype among CS patients. In contrast, the phenotypes of CS patients are pleiotropic and variable. The latter is consistent with recent work that implicates CSB in multiple cellular systems and pathways, including DNA base excision repair, interstrand cross-link repair, transcription, chromatin remodeling, RNAPII processing, nucleolin regulation, rDNA transcription, redox homeostasis, and mitochondrial function. The discovery of additional functions for CSB could potentially explain the many clinical phenotypes of CSB patients. This review focuses on the diverse roles played by CSB in cellular pathways that enhance genome stability, providing insight into the molecular features of this complex premature aging disease.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
4
|
Cho S, Traboulsi EI, Chiang J, Sierpina D. Multimodal imaging in a family with Cockayne syndrome with a novel pathogenic mutation in the ERCC8 gene, and significant phenotypic variability. Doc Ophthalmol 2020; 141:89-97. [PMID: 32048102 DOI: 10.1007/s10633-020-09754-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/03/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cockayne syndrome is a rare autosomal recessive neurodegenerative disorder caused by mutations of either the ERCC6/CSB or ERCC8/CSA genes. Here, we describe two sisters with Cockayne syndrome caused by compound heterozygous mutations in the ERCC8 gene using multimodal imaging. Significant ophthalmic and systemic phenotypic variability is discussed. MATERIALS AND METHODS Multimodal imaging was performed in two affected sisters and included electroretinography, optical coherence tomography, ultra-wide-field confocal scanning laser ophthalmoscopy, fundus autofluorescence and fluorescein angiography, and magnetic resonance imaging. Genetic analyses were performed on the affected sisters, both parents, and three unaffected siblings. RESULTS The older sister (Patient 1) had mental retardation, bilateral hearing loss, ataxia, and decreased visual acuity with retinal dystrophy. Radiographic studies revealed microcephaly, cerebral and cerebellar atrophy, ventriculomegaly, and a diffusely thickened skull. Full-field electroretinography waveforms were severely diminished with attenuation of cone and rod responses. The younger sister (Patient 2) had similar clinical features, including ataxia, bilateral hearing loss, and decreased visual acuity with retinal dystrophy. She also had paranoid schizophrenia. Wide-field fundus autofluorescence showed scattered areas of retinal pigment epithelium atrophy, which was different from her sister. Genetic analysis revealed two mutations in the ERCC8 gene shared by the sisters. These include an unreported missense point mutation: p.Thr328Ser:c.983C > G, and another previously reported pathogenic missense mutation: p.Ala205Pro:c.613G > C. Familial testing showed in trans segregation of these mutations with unaffected siblings inheriting one or neither mutation, but not both. CONCLUSION The clinical presentation and genetic studies confirmed a diagnosis of Cockayne syndrome in both sisters caused by compound heterozygous mutations in the ERCC8 gene on chromosome 10. Multimodal ocular imaging and systemic findings revealed wide phenotypic variability between the affected siblings.
Collapse
Affiliation(s)
- Soungmin Cho
- Loma Linda University Eye Institute, Loma Linda, CA, USA.
| | | | - John Chiang
- Molecular Vision Laboratory, Hillsboro, OR, USA
| | - David Sierpina
- Loma Linda University Eye Institute, Loma Linda, CA, USA
| |
Collapse
|
5
|
Molecular spectrum of excision repair cross-complementation group 8 gene defects in Chinese patients with Cockayne syndrome type A. Sci Rep 2017; 7:13686. [PMID: 29057985 PMCID: PMC5651726 DOI: 10.1038/s41598-017-14034-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023] Open
Abstract
There are two genetics complementary groups Cockayne syndrome type A and B (CS-A and CS-B OMIM 216400, 133540), which is a rare autosomal recessive segmental progeroid syndrome. Homozygous or compound heterozygous mutations in the excision repair cross-complementation group 8 gene (ERCC8) result in CS-A, and mutations in ERCC6 result in CS-B. Homozygous ERCC6/ERCC8 mutations also result in UV-sensitive syndrome. In this study, twenty-one Han Chinese patients with CS were investigated to identify mutations in ERCC8/ERCC6, of which thirteen cases with CS-A were identified with the mutations of ERCC8. There are five types mutations of ERCC8 in our study, such as exon 4 rearrangement, c.394_398delTTACA, c.299insA, c.843 + 2 T > C, and c.2 T > A. An estimated frequency of exon 4 rearrangement accounts for 69.23% and c.394_398delTTACA accounts for 11.53% in our cohort. Haplotype analysis revealed that the exon 4 rearrangement and c.394_398delTTACA mutations originated from a common founder in the Chinese population respectively. With the identification of three novel ERCC8 mutations, this study expanded the molecular spectrum of known ERCC8 defects, and furthermore, suggests that the exon 4 rearrangement and c.394_398delTTACA mutations may be a common underlying cause of CS-A in the Chinese population, which is different from that in other populations.
Collapse
|
6
|
Two Novel Heterozygous Mutations in ERCC8 Cause Cockayne Syndrome in a Chinese Patient. Pediatr Neurol 2015; 53:262-5. [PMID: 26173784 DOI: 10.1016/j.pediatrneurol.2015.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/15/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cockayne syndrome (MIM #133540, Cockayne syndrome B; 216400, Cockayne syndrome A) is a rare autosomal recessive inherited disease in which the characteristic symptoms are premature aging, cachectic dwarfism, lack of subcutaneous fat, neurological alterations, light sensitivity, and failure to thrive. The mutated gene responsible for this syndrome has been identified as usually either CSA (CKN1, ERCC8) or CSB (ERCC6). In this study, we describe the case of a 7-year-old Chinese boy with characteristic symptoms of Cockayne syndrome A and the conduction of mutation screening of the CSA gene. METHODS The patient was diagnosed with Cockayne syndrome in the pediatrics clinic for growth failure and developmental delay. We collected peripheral blood samples of the patient and his parents and then extracted the genomic DNA. DNA samples from control subjects and the patient were subjected to polymerase chain reaction amplification. All exons and the flanking intron-exon boundaries of CSA were amplified; then, the polymerase chain reaction products were directly sequenced for mutation screening. RESULTS Two novel heterozygous CSA mutations, c.551-2A>C and c.394_398delTTACA, were identified in the patient. The c.551-2A>C mutation originates from his father and changed the splice acceptor site AG to CG, thus possibly causing alternative splicing. The c.394_398delTTACA from his mother caused a frameshift after the amino acid at position 132, thus introducing a premature stop codon in the gene sequence. CONCLUSIONS These mutations extend the mutation spectrum of Cockayne syndrome in the context of Chinese race and provide possibilities of prenatal diagnosis for future offsprings in this family.
Collapse
|
7
|
Identification of Reproduction-Related Gene Polymorphisms Using Whole Transcriptome Sequencing in the Large White Pig Population. G3-GENES GENOMES GENETICS 2015; 5:1351-60. [PMID: 25917919 PMCID: PMC4502369 DOI: 10.1534/g3.115.018382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent developments in high-throughput sequencing techniques have enabled large-scale analysis of genetic variations and gene expression in different tissues and species, but gene expression patterns and genetic variations in livestock are not well-characterized. In this study, we have used high-throughput transcriptomic sequencing of the Finnish Large White to identify gene expression patterns and coding polymorphisms within the breed in the testis and oviduct. The main objective of this study was to identify polymorphisms within genes that are highly and specifically expressed in male and/or female reproductive organs. The differential expression (DE) analysis underlined 1234 genes highly expressed in the testis and 1501 in the oviduct. Furthermore, we used a novel in-house R-package hoardeR for the identification of novel genes and their orthologs, which underlined 55 additional DE genes based on orthologs in the human, cow, and sheep. Identification of polymorphisms in the dataset resulted in a total of 29,973 variants, of which 10,704 were known coding variants. Fifty-seven nonsynonymous SNPs were present among genes with high expression in the testis and 67 were present in the oviduct, underlining possible influential genes for reproduction traits. Seven genes (PGR, FRAS1, TCF4, ADAT1, SPAG6, PIWIL2, and DNAH8) with polymorphisms were highlighted as reproduction-related based on their biological function. The expression and SNPs of these genes were confirmed using RT-PCR and Sanger sequencing. The identified nonsynonymous mutations within genes highly expressed in the testis or oviduct provide a list of candidate genes for reproduction traits within the pig population and enable identification of biomarkers for sow and boar fertility.
Collapse
|
8
|
Cui YP, Chen YY, Wang XM, Wang XL, Nan X, Zhao H. WITHDRAWN: Two Novel Heterozygous Mutations of CSA Cause Cockayne Syndrome in a Chinese Family. Pediatr Neurol 2014:S0887-8994(14)00160-X. [PMID: 25824604 DOI: 10.1016/j.pediatrneurol.2014.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Yun-Pu Cui
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yi-Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China; Human Disease Genomics Center, Peking University, Beijing, China
| | - Xue-Mei Wang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Xin-Li Wang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Xu Nan
- Human Disease Genomics Center, Peking University, Beijing, China; Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hongshan Zhao
- Human Disease Genomics Center, Peking University, Beijing, China; Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Khobta A, Epe B. Repair of oxidatively generated DNA damage in Cockayne syndrome. Mech Ageing Dev 2013; 134:253-60. [PMID: 23518175 DOI: 10.1016/j.mad.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 11/16/2022]
Abstract
Defects in the repair of endogenously (especially oxidatively) generated DNA modifications and the resulting genetic instability can potentially explain the clinical symptoms of Cockayne syndrome (CS), a hereditary disease characterized by developmental defects and neurological degeneration. In this review, we describe the evidence for the involvement of CSA and CSB proteins, which are mutated in most of the CS patients, in the repair and processing of DNA damage induced by reactive oxygen species and the implications for the induction of cell death and mutations. Taken together, the data demonstrate that CSA and CSB, in addition to their established role in transcription-coupled nucleotide excision repair, can modulate the base excision repair (BER) of oxidized DNA bases both directly (by interaction with BER proteins) and indirectly (by modulating the expression of the DNA repair genes). Both nuclear and mitochondrial DNA repair is affected by mutations in CSA and CSB genes. However, the observed retardations of repair and the resulting accumulation of unrepaired endogenously generated DNA lesions are often mild, thus pointing to the relevance of additional roles of the CS proteins, e.g. in the mitochondrial response to oxidatively generated DNA damage and in the maintenance of gene transcription.
Collapse
Affiliation(s)
- Andriy Khobta
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| | | |
Collapse
|
10
|
Laugel V, Dalloz C, Durand M, Sauvanaud F, Kristensen U, Vincent MC, Pasquier L, Odent S, Cormier-Daire V, Gener B, Tobias ES, Tolmie JL, Martin-Coignard D, Drouin-Garraud V, Heron D, Journel H, Raffo E, Vigneron J, Lyonnet S, Murday V, Gubser-Mercati D, Funalot B, Brueton L, Sanchez Del Pozo J, Muñoz E, Gennery AR, Salih M, Noruzinia M, Prescott K, Ramos L, Stark Z, Fieggen K, Chabrol B, Sarda P, Edery P, Bloch-Zupan A, Fawcett H, Pham D, Egly JM, Lehmann AR, Sarasin A, Dollfus H. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat 2010; 31:113-26. [PMID: 19894250 DOI: 10.1002/humu.21154] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription-coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late-onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype-phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web-based locus-specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/).
Collapse
Affiliation(s)
- V Laugel
- Laboratory of Medical Genetics, University of Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Conte C, D'Apice MR, Botta A, Sangiuolo F, Novelli G. Prenatal diagnosis of Cockayne syndrome type A based on the identification of two novel mutations in the ERCC8 gene. Genet Test Mol Biomarkers 2009; 13:127-31. [PMID: 19309286 DOI: 10.1089/gtmb.2008.0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Back Cockayne syndrome (CS; MIM 133540-216400) is a rare autosomal recessive neurodegenerative disorder characterized by progressive growth failure, microcephaly, mental retardation, retinal pigmentary degeneration, deafness, photosensitivity, accelerated systemic degeneration of somatic tissue, and premature death. Complementation assays have defined Cockayne syndrome group A (CSA) and Cockayne syndrome group B (CSB), caused by mutations in ERCC8 and ERCC6. The aim of this work was to perform a molecular analysis in a family with an affected son, who died at the age of 12, presenting clinical features typical of CSA. Molecular analysis of ERCC8 allowed us to characterize two novel mutations: a maternally inherited deletion encompassing exons 5 and 6, and a nonsense mutation located in exon 4, segregating from the father. Based on this molecular characterization, we successively performed a prenatal diagnosis on chorionic villus sampling, at 11th week of pregnancy. Molecular prenatal analysis of the ERCC8 was done by analyzing fetal DNA and RNA, looking for both mutations identified in the proband. A linkage analysis was performed using microsatellite markers located on chromosome 5q11 with the purpose to follow the segregation of the mutated alleles within the family. The fetal genotype at CSA locus resulted wild type and was confirmed at birth on biological material isolated from placenta. This study documents for the first time a molecular prenatal diagnosis of CSA, which results in the preferred approach if the mutation within the family is identified in a timely manner.
Collapse
Affiliation(s)
- Chiara Conte
- Fondazione Policlinico Tor Vergata, Rome, Italy.
| | | | | | | | | |
Collapse
|
12
|
A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc Natl Acad Sci U S A 2009; 106:6209-14. [PMID: 19329487 DOI: 10.1073/pnas.0902113106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UV-sensitive syndrome (UV(S)S) is a recently-identified autosomal recessive disorder characterized by mild cutaneous symptoms and defective transcription-coupled repair (TC-NER), the subpathway of nucleotide excision repair (NER) that rapidly removes damage that can block progression of the transcription machinery in actively-transcribed regions of DNA. Cockayne syndrome (CS) is another genetic disorder with sun sensitivity and defective TC-NER, caused by mutations in the CSA or CSB genes. The clinical hallmarks of CS include neurological/developmental abnormalities and premature aging. UV(S)S is genetically heterogeneous, in that it appears in individuals with mutations in CSB or in a still-unidentified gene. We report the identification of a UV(S)S patient (UV(S)S1VI) with a novel mutation in the CSA gene (p.trp361cys) that confers hypersensitivity to UV light, but not to inducers of oxidative damage that are notably cytotoxic in cells from CS patients. The defect in UV(S)S1VI cells is corrected by expression of the WT CSA gene. Expression of the p.trp361cys-mutated CSA cDNA increases the resistance of cells from a CS-A patient to oxidative stress, but does not correct their UV hypersensitivity. These findings imply that some mutations in the CSA gene may interfere with the TC-NER-dependent removal of UV-induced damage without affecting its role in the oxidative stress response. The differential sensitivity toward oxidative stress might explain the difference between the range and severity of symptoms in CS and the mild manifestations in UV(s)S patients that are limited to skin photosensitivity without precocious aging or neurodegeneration.
Collapse
|
13
|
Saldivar JS, Wu X, Follen M, Gershenson D. Nucleotide excision repair pathway review I: Implications in ovarian cancer and platinum sensitivity. Gynecol Oncol 2007; 107:S56-71. [PMID: 17884153 DOI: 10.1016/j.ygyno.2007.07.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 02/03/2023]
Abstract
Platinum-based chemotherapy has been the mainstay of treatment for advanced gynecological cancers following cytoreductive surgery and in radiation sensitization of cervical cancer. Despite its initial high overall clinical response rate, a significant number of patients develop resistance to platinum combination therapies. The precise mechanism of platinum-resistance is multifactorial and accumulation of multiple genetic changes may lead to the drug-resistant phenotype. Platinum chemotherapy exerts its cytotoxic effect by forming DNA adducts and subsequently inhibiting DNA replication. It is now clear that the nucleotide excision repair (NER) pathway repairs platinum-DNA adducts in cellular DNA. Evaluation of genetic polymorphisms in cancer susceptibility as one etiology for platinum resistance may help us to understand the significance of these factors in the identification of individuals at higher risk of developing resistance to anti-cancer drug therapies. In this review, we summarized the relevant studies, both in vitro and in vivo, that pertain to NER in ovarian cancer and platinum resistance. It is evident also that there are a few limited studies in genetic polymorphisms of NER and ovarian cancer. These studies reviewed suggest that concurrent up-regulation of genes involved in NER may be important in clinical resistance to platinum-based chemotherapy in ovarian cancer. In the future, larger and well-designed population-based studies will be needed for a more complete understanding of relevant genetic factors that may result in improved strategies for determining both chemotherapy choice and efficacy in patients with advanced ovarian and cervical cancer. Review II will focus on the NER pathway in cervical cancer and platinum sensitivity.
Collapse
Affiliation(s)
- J Salvador Saldivar
- Center for Biomedical Engineering, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
14
|
Frosina G. The current evidence for defective repair of oxidatively damaged DNA in Cockayne syndrome. Free Radic Biol Med 2007; 43:165-77. [PMID: 17603927 DOI: 10.1016/j.freeradbiomed.2007.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/31/2007] [Accepted: 04/02/2007] [Indexed: 12/21/2022]
Abstract
Cockayne syndrome (CS) is a rare recessive disorder characterized by a number of developmental abnormalities and premature aging. Two complementation groups (A and B) have been identified so far in CS cases. Defective transcription-coupled nucleotide excision repair is the hallmark of these patients, but in recent years evidence has been presented for a possible defect in the base excision repair pathway that removes oxidized bases. Recent results indicate that both A and B complementation groups are involved but the phenotypical consequences of this flaw remain undetermined.
Collapse
Affiliation(s)
- Guido Frosina
- Department of Translational Oncology, Experimental Oncology "B" Laboratory, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi n. 10, 16132 Genova, Italy.
| |
Collapse
|
15
|
Kleppa L, Kanavin ØJ, Klungland A, Strømme P. A novel splice site mutation in the Cockayne syndrome group A gene in two siblings with Cockayne syndrome. Neuroscience 2007; 145:1397-406. [PMID: 17084038 DOI: 10.1016/j.neuroscience.2006.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 01/26/2023]
Abstract
Cockayne syndrome (CS) is mainly caused by mutations in the Cockayne syndrome group A or B (CSA or CSB) genes which are required for a sub-pathway of nucleotide excision repair entitled transcription coupled repair. Approximately 20% of the CS patients have mutations in CSA, which encodes a 44 kDa tryptophane (Trp, W) and aspartic acid (Asp, D) amino acids (WD) repeat protein. Up to now, nine different CSA mutations have been identified. We examined two Somali siblings 9 and 12 years old with clinical features typical of CS including skin photosensitivity, progressive ataxia, spasticity, hearing loss, central and peripheral demyelination and intracranial calcifications. Molecular analysis showed a novel splice acceptor site mutation, a G to A transition in the -1 position of intervening sequence 6 (g.IVS6-1G>A), in the CSA (excision repair cross-complementing 8 (ERCC8)) gene. IVS6-1G>A results in a new 28 amino acid C-terminus and premature termination of the CSA protein (G184DFs28X). A review of the CSA protein and the 10 known CSA mutations is also presented.
Collapse
Affiliation(s)
- L Kleppa
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet HF, University of Oslo, N-0027 Oslo, Norway.
| | | | | | | |
Collapse
|
16
|
Jin J, Arias EE, Chen J, Harper JW, Walter JC. A Family of Diverse Cul4-Ddb1-Interacting Proteins Includes Cdt2, which Is Required for S Phase Destruction of the Replication Factor Cdt1. Mol Cell 2006; 23:709-21. [PMID: 16949367 DOI: 10.1016/j.molcel.2006.08.010] [Citation(s) in RCA: 503] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
Cul4 E3 ubiquitin ligases contain the cullin 4 scaffold and the triple beta propeller Ddb1 adaptor protein, but few substrate receptors have been identified. Here, we identify 18 Ddb1- and Cul4-associated factors (DCAFs), including 14 containing WD40 repeats. DCAFs interact with multiple surfaces on Ddb1, and the interaction of WD40-containing DCAFs with Ddb1 requires a conserved "WDXR" motif. DCAF2/Cdt2, which is related to S. pombe Cdt2, functions in Xenopus egg extracts and human cells to destroy the replication licensing protein Cdt1 in S phase and after DNA damage. Depletion of human Cdt2 causes rereplication and checkpoint activation. In Xenopus, Cdt2 is recruited to replication forks via Cdt1 and PCNA, where Cdt1 ubiquitylation occurs. These studies uncover diverse substrate receptors for Cul4 and identify Cdt2 as a conserved component of the Cul4-Ddb1 E3 that is essential to destroy Cdt1 and ensure proper cell cycle regulation of DNA replication.
Collapse
Affiliation(s)
- Jianping Jin
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
17
|
Bertola DR, Cao H, Albano LMJ, Oliveira DP, Kok F, Marques-Dias MJ, Kim CA, Hegele RA. Cockayne syndrome type A: novel mutations in eight typical patients. J Hum Genet 2006; 51:701-705. [PMID: 16865293 DOI: 10.1007/s10038-006-0011-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/07/2006] [Indexed: 10/24/2022]
Abstract
Cockayne syndrome is a rare autosomal recessive neurodegenerative disorder. It is considered to be a heterogeneous condition based on complementation in cell fusion studies, with two major forms, namely CS-A and CS-B. CKN1 is the gene responsible for CS-A, whose mutations disrupt the transcription-coupled repair system of the actively transcribed DNA. Mutation analysis of the CKN1 gene in eight typical CS-A Brazilian patients from six families showed a gene alteration in all of them. We found a total of five novel mutations that were absent from healthy control subjects. Six affected subjects were simple homozygotes and two affected siblings were each compound heterozygotes. While the findings extend the range of mutations in CS-A, there is no obvious genotype-phenotype correlation across the mutational spectrum.
Collapse
Affiliation(s)
- Debora R Bertola
- Genetics Clinic Unit, Instituto da Criança do Hospital das Clínicas, University of São Paulo, Sao Paulo, Brazil.
- , Av. Dr. Enéas Carvalho de Aguiar, 647, Sao Paulo, 05403-900, Brazil.
| | - Henian Cao
- Robarts Research Institute, 406-100 Perth Drive, London, ON, Canada, N6A 5K8
| | - Lilian M J Albano
- Genetics Clinic Unit, Instituto da Criança do Hospital das Clínicas, University of São Paulo, Sao Paulo, Brazil
| | | | - Fernando Kok
- Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Chong A Kim
- Genetics Clinic Unit, Instituto da Criança do Hospital das Clínicas, University of São Paulo, Sao Paulo, Brazil
| | - Robert A Hegele
- Robarts Research Institute, 406-100 Perth Drive, London, ON, Canada, N6A 5K8
| |
Collapse
|
18
|
Puzianowska-Kuznicka M, Kuznicki J. Genetic alterations in accelerated ageing syndromes. Int J Biochem Cell Biol 2005; 37:947-60. [PMID: 15743670 DOI: 10.1016/j.biocel.2004.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/25/2004] [Accepted: 10/26/2004] [Indexed: 02/04/2023]
Abstract
The molecular mechanisms leading to human senescence are still not known mostly because of the complexity of the process. Different research approaches are used to study ageing including studies of monogenic segmental progeroid syndromes. None of the known progerias represents true precocious ageing. Some of them, including Werner (WS), Bloom (BS), and Rothmund-Thomson syndromes (RTS) as well as combined xeroderma pigmentosa-Cockayne syndrome (XP-CS) are characterised by features resembling precocious ageing and the increased risk of malignant disease. Such phenotypes result from the mutations of the genes encoding proteins involved in the maintenance of genomic integrity, in most cases DNA helicases. Defective functioning of these proteins affects DNA repair, recombination, replication and transcription. Other segmental progeroid syndromes, such as Hutchinson-Gilford progeria (HGPS) and Cockayne syndrome are not associated with an increased risk of cancer. In this paper we present the clinical and molecular features of selected progeroid syndromes and describe the potential implications of these data for studies of ageing and cancer development.
Collapse
Affiliation(s)
- Monika Puzianowska-Kuznicka
- Department of Endocrinology, Medical Research Center, Polish Academy of Sciences, 1a Banacha Street, 02-097 Warsaw, Poland.
| | | |
Collapse
|
19
|
Ridley AJ, Colley J, Wynford-Thomas D, Jones CJ. Characterisation of novel mutations in Cockayne syndrome type A and xeroderma pigmentosum group C subjects. J Hum Genet 2005; 50:151-154. [PMID: 15744458 DOI: 10.1007/s10038-004-0228-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 12/19/2004] [Indexed: 10/25/2022]
Abstract
We report that a subject with Cockayne syndrome type A (CS3BE) was a compound heterozygote for mutations in CKN1, the gene encoding the CSA protein (MIM 216400). CS3BE displayed a novel missense mutation (A160V) and a previously described nonsense mutation (E13X). Although residing between the second and third WD-40 repeats characteristic of the CSA protein, A160 is completely conserved in all species that possess a CKN1 homologue. We also describe a mutation in a previously uncharacterised xeroderma pigmentosum group C subject (XP8CA) in the XPC gene (MIM 278720). XP8CA was homozygous for a 2 bp TG deletion in codon 547 resulting in premature termination at codon 572. Immunoblotting of XP8CA extracts confirmed the absence of full-length XPC protein that was present in unaffected cell lines.
Collapse
Affiliation(s)
- Andrew J Ridley
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - James Colley
- Wales Gene Park, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - David Wynford-Thomas
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Christopher J Jones
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|