1
|
Xia C, Liu G, Liu J, Ronaghy A, Tadros S, Wang W, Fang H, Zhang S, Khoury JD, Tang Z. The Heterogeneity of 13q Deletions in Chronic Lymphocytic Leukemia: Diagnostic Challenges and Clinical Implications. Genes (Basel) 2025; 16:252. [PMID: 40149404 PMCID: PMC11941828 DOI: 10.3390/genes16030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common type of adult leukemia, particularly in Western countries. CLL can present indolently or aggressively, influenced by various factors, including chromosomal alterations. Fluorescent in situ hybridization (FISH), targeting specific genes/loci frequently affected in CLL patients, has established a standard for stratifying five CLL prognostic groups: del(11q)/ATM, trisomy 12, del(13q) as a sole aberration, del(17p)/TP53, and normal CLL FISH panel results. Among these, del(13q) as a sole aberration is associated with a favorable prognosis, while the others are considered intermediate (normal CLL FISH panel result and trisomy 12) or unfavorable (del(11q)/ATM and del(17p)/TP53) prognostic markers. However, significant heterogeneity in del(13q) aberrations has been observed among CLL patients with isolated del(13q), which should be considered when predicting prognosis and planning clinical management for individual CLL patients with this aberration. This review discusses the variations in del(13q) aberrations in CLL, including a minimally deleted region (MDR), the anatomic sizes of deleted 13q regions, affected alleles, the clone sizes of del(13q), and their dynamic changes during disease progression. The impact of del(13q) heterogeneity on various diagnostic tests such as karyotyping, the FISH panel, chromosomal microarray (CMA), and optical genome mapping (OGM), prognostic prediction, and clinical management is illustrated through authentic clinical scenarios.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Chromosome Deletion
- Chromosomes, Human, Pair 13/genetics
- Prognosis
- In Situ Hybridization, Fluorescence
- Genetic Heterogeneity
- Chromosome Disorders
Collapse
Affiliation(s)
- Changqing Xia
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guang Liu
- Sonora Quest Laboratories, Department of Pathology, University of Arizona College of Medicine, Phoenix, AZ 85034, USA
| | - Jinglan Liu
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arash Ronaghy
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Saber Tadros
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77015, USA
| | - Shanxiang Zhang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Tunç E, Ilgaz S. Robertsonian translocation (13;14) and its clinical manifestations: A literature review. Reprod Biomed Online 2022; 45:563-573. [PMID: 35810081 DOI: 10.1016/j.rbmo.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
3
|
|
4
|
Privitera F, Calonaci A, Doddato G, Papa FT, Baldassarri M, Pinto AM, Mari F, Longo I, Caini M, Galimberti D, Hadjistilianou T, De Francesco S, Renieri A, Ariani F. 13q Deletion Syndrome Involving RB1: Characterization of a New Minimal Critical Region for Psychomotor Delay. Genes (Basel) 2021; 12:1318. [PMID: 34573300 PMCID: PMC8471443 DOI: 10.3390/genes12091318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Retinoblastoma (RB) is an ocular tumor of the pediatric age caused by biallelic inactivation of the RB1 gene (13q14). About 10% of cases are due to gross-sized molecular deletions. The deletions can involve the surrounding genes delineating a contiguous gene syndrome characterized by RB, developmental anomalies, and peculiar facial dysmorphisms. Overlapping deletions previously found by traditional and/or molecular cytogenetic analysis allowed to define some critical regions for intellectual disability (ID) and multiple congenital anomalies, with key candidate genes. In the present study, using array-CGH, we characterized seven new patients with interstitial 13q deletion involving RB1. Among these cases, three patients with medium or large 13q deletions did not present psychomotor delay. This allowed defining a minimal critical region for ID that excludes the previously suggested candidate genes (HTR2A, NUFIP1, PCDH8, and PCDH17). The region contains 36 genes including NBEA, which emerged as the candidate gene associated with developmental delay. In addition, MAB21L1, DCLK1, EXOSC8, and SPART haploinsufficiency might contribute to the observed impaired neurodevelopmental phenotype. In conclusion, this study adds important novelties to the 13q deletion syndrome, although further studies are needed to better characterize the contribution of different genes and to understand how the haploinsufficiency of this region can determine ID.
Collapse
Affiliation(s)
- Flavia Privitera
- Medical Genetics, University of Siena, 53100 Siena, Italy; (F.P.); (G.D.); (F.T.P.); (M.B.); (F.M.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Arianna Calonaci
- Unit of Pediatrics, Department of Maternal, Newborn and Child Health, Azienda Ospedaliera Universitaria Senese, Policlinico ‘Santa Maria alle Scotte’, 53100 Siena, Italy; (A.C.); (M.C.); (D.G.)
| | - Gabriella Doddato
- Medical Genetics, University of Siena, 53100 Siena, Italy; (F.P.); (G.D.); (F.T.P.); (M.B.); (F.M.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Filomena Tiziana Papa
- Medical Genetics, University of Siena, 53100 Siena, Italy; (F.P.); (G.D.); (F.T.P.); (M.B.); (F.M.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, 53100 Siena, Italy; (F.P.); (G.D.); (F.T.P.); (M.B.); (F.M.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (A.M.P.); (I.L.)
| | - Francesca Mari
- Medical Genetics, University of Siena, 53100 Siena, Italy; (F.P.); (G.D.); (F.T.P.); (M.B.); (F.M.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (A.M.P.); (I.L.)
| | - Ilaria Longo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (A.M.P.); (I.L.)
| | - Mauro Caini
- Unit of Pediatrics, Department of Maternal, Newborn and Child Health, Azienda Ospedaliera Universitaria Senese, Policlinico ‘Santa Maria alle Scotte’, 53100 Siena, Italy; (A.C.); (M.C.); (D.G.)
| | - Daniela Galimberti
- Unit of Pediatrics, Department of Maternal, Newborn and Child Health, Azienda Ospedaliera Universitaria Senese, Policlinico ‘Santa Maria alle Scotte’, 53100 Siena, Italy; (A.C.); (M.C.); (D.G.)
| | - Theodora Hadjistilianou
- Unit of Ophthalmology and Retinoblastoma Referral Center, Department of Surgery, University of Siena, Policlinico ‘Santa Maria alle Scotte’, 53100 Siena, Italy; (T.H.); (S.D.F.)
| | - Sonia De Francesco
- Unit of Ophthalmology and Retinoblastoma Referral Center, Department of Surgery, University of Siena, Policlinico ‘Santa Maria alle Scotte’, 53100 Siena, Italy; (T.H.); (S.D.F.)
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy; (F.P.); (G.D.); (F.T.P.); (M.B.); (F.M.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (A.M.P.); (I.L.)
| | - Francesca Ariani
- Medical Genetics, University of Siena, 53100 Siena, Italy; (F.P.); (G.D.); (F.T.P.); (M.B.); (F.M.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (A.M.P.); (I.L.)
| |
Collapse
|
5
|
Bestetti I, Sironi A, Catusi I, Mariani M, Giardino D, Manoukian S, Milani D, Larizza L, Castronovo C, Finelli P. 13q mosaic deletion including RB1 associated to mild phenotype and no cancer outcome - case report and review of the literature. Mol Cytogenet 2018; 11:53. [PMID: 30250511 PMCID: PMC6148795 DOI: 10.1186/s13039-018-0401-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background The 13q deletion syndrome is a rare chromosome disorder associated with wide phenotypic spectrum, which is related to size and location of the deleted region and includes intellectual disability, growth retardation, craniofacial dysmorphisms, congenital malformations, and increased risk of retinoblastoma. Case presentation Here, we report on a teenage boy with a mild phenotype characterized by obesity, hyperactivity, dysphagia, dysgraphia, sleep disturbance, and minor dysmorphic features (round face, bushy eyebrows, and stubby hands). Array Comparative Genomic Hybridization on blood identified a mosaic 13q14.13-13q31.1 deletion, with a mosaicism rate around 40%, which was confirmed by quantitative PCR and interphase Fluorescent In Situ Hybridization (iFISH) on both blood genomic DNA and cultured/uncultured blood lymphocytes, respectively. Conversely, karyotype analysis on blood estimated a mosaicism rate of 24% and iFISH on buccal smears revealed a borderline value of 0.4%, suggesting the absence of 13q deletion in this cell line. Conclusions The comparison with previous patients carrying similar deletions informed that the proband clinical presentation is the mildest reported to date, thus supporting the burden of mosaicism in modulating the phenotype also in case of large chromosomal rearrangements. Characterization of further cases by in-depth mosaicism rate in tissues with different embryonic origins might contribute in the future to a better definition of genotype-phenotype correlation, including tumor risk.
Collapse
Affiliation(s)
- Ilaria Bestetti
- 1Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, via Ariosto 13, 20145 Milan, Italy.,2Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandra Sironi
- 1Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, via Ariosto 13, 20145 Milan, Italy.,2Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Catusi
- 1Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, via Ariosto 13, 20145 Milan, Italy
| | - Milena Mariani
- 3Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniela Giardino
- 1Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, via Ariosto 13, 20145 Milan, Italy
| | - Siranoush Manoukian
- 3Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Donatella Milani
- 4Medical Genetics Unit, Pediatric Highly Intensive Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lidia Larizza
- 1Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, via Ariosto 13, 20145 Milan, Italy
| | - Chiara Castronovo
- 1Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, via Ariosto 13, 20145 Milan, Italy
| | - Palma Finelli
- 1Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, via Ariosto 13, 20145 Milan, Italy.,2Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Yin X, Xiang T, Mu J, Mao H, Li L, Huang X, Li C, Feng Y, Luo X, Wei Y, Peng W, Ren G, Tao Q. Protocadherin 17 functions as a tumor suppressor suppressing Wnt/β-catenin signaling and cell metastasis and is frequently methylated in breast cancer. Oncotarget 2018; 7:51720-51732. [PMID: 27351130 PMCID: PMC5239510 DOI: 10.18632/oncotarget.10102] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/28/2016] [Indexed: 11/29/2022] Open
Abstract
Protocadherins play important roles in the regulation of cell adhesion and signaling transduction. Aberrant expression of protocadherins has been shown to be associated with multiple tumorigenesis. We previously identified PCDH17, encoding protocadherin 17, as a frequently methylated and downregulated tumor suppressor gene (TSG) in gastric and colorectal cancers. Here, we examined the abnormalities and functions of PCDH17 in breast cancer pathogenesis. We used PCR and immunohistochemistry to check its expression pattern in breast tumor cell lines and primary tumors. Methylation-specific PCR (MSP) was applied to examine its promoter methylation status in breast tumor cell lines and primary tumors. The biological functions of PCDH17 in breast tumor cells were assessed using in vitro and in vivo assays. We found that PCDH17 was frequently downregulated or silenced in 78% (7/9) of breast tumor cell lines, as well as 89% (32/36) of primary tumors. Downregulation of PCDH17 in breast cancer was mainly due to the methylation of its promoter. Ectopic expression of PCDH17 in breast tumor cells inhibited cell proliferation and mobility through arresting cell cycle and inducing apoptosis. In breast tumor cells, PCDH17 significantly suppressed the active β-catenin level and its downstream target gene expression. Thus, we found that PCDH17 functions as a tumor suppressor inhibiting Wnt/β-catenin signaling and metastasis in breast cancer but is frequently methylated in primary tumors which could be a potential biomarker.
Collapse
Affiliation(s)
- Xuedong Yin
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Mao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Xin Huang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Chunhong Li
- Oncology Department, Suining Sichuan Center Hospital, Sichuan, China
| | - Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinrong Luo
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| |
Collapse
|
7
|
Signorini C, De Felice C, Leoncini S, Møller RS, Zollo G, Buoni S, Cortelazzo A, Guerranti R, Durand T, Ciccoli L, D’Esposito M, Ravn K, Hayek J. MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome. PLoS One 2016; 11:e0150101. [PMID: 26930212 PMCID: PMC4773238 DOI: 10.1371/journal.pone.0150101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients and murine models. To date, no data on oxidative stress have been reported for the MECP2 gain-of-function mutations in patients with MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS was investigated (subjects n = 6) and compared to RTT (subjects n = 24) and healthy condition (subjects n = 12). Patients with MECP2 gain-of-function mutations showed increased oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein bound iron, F2-isoprostanes, and F4-neuroprostanes), as compared to healthy controls (P ≤ 0.05). Such increases were similar to those observed in RTT patients except for higher plasma F2-isoprostanes levels (P < 0.0196). Moreover, plasma levels of F2-isoprostanes were significantly correlated (P = 0.0098) with the size of the amplified region. The present work shows unique data in patients affected by MDS. For the first time MECP2 gain-of-function mutations are indicated to be linked to an oxidative damage and related clinical symptoms overlapping with those of MECP2 loss-of-function mutations. A finely tuned balance of MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding light on the relevance of the redox balance in the central nervous system integrity.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Rikke S. Møller
- Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Gloria Zollo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sabrina Buoni
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies,University of Siena, Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Montpellier, France
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maurizio D’Esposito
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy
- IRCSS Neuromed, Pozzilli, Italy
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
8
|
Wei JS, Johansson P, Chen L, Song YK, Tolman C, Li S, Hurd L, Patidar R, Wen X, Badgett TC, Cheuk ATC, Marshall JC, Steeg PS, Vaqué Díez JP, Yu Y, Gutkind JS, Khan J. Massively parallel sequencing reveals an accumulation of de novo mutations and an activating mutation of LPAR1 in a patient with metastatic neuroblastoma. PLoS One 2013; 8:e77731. [PMID: 24147068 PMCID: PMC3797724 DOI: 10.1371/journal.pone.0077731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 09/04/2013] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is one of the most genomically heterogeneous childhood malignances studied to date, and the molecular events that occur during the course of the disease are not fully understood. Genomic studies in neuroblastoma have showed only a few recurrent mutations and a low somatic mutation burden. However, none of these studies has examined the mutations arising during the course of disease, nor have they systemically examined the expression of mutant genes. Here we performed genomic analyses on tumors taken during a 3.5 years disease course from a neuroblastoma patient (bone marrow biopsy at diagnosis, adrenal primary tumor taken at surgical resection, and a liver metastasis at autopsy). Whole genome sequencing of the index liver metastasis identified 44 non-synonymous somatic mutations in 42 genes (0.85 mutation/MB) and a large hemizygous deletion in the ATRX gene which has been recently reported in neuroblastoma. Of these 45 somatic alterations, 15 were also detected in the primary tumor and bone marrow biopsy, while the other 30 were unique to the index tumor, indicating accumulation of de novo mutations during therapy. Furthermore, transcriptome sequencing on the 3 tumors demonstrated only 3 out of the 15 commonly mutated genes (LPAR1, GATA2, and NUFIP1) had high level of expression of the mutant alleles, suggesting potential oncogenic driver roles of these mutated genes. Among them, the druggable G-protein coupled receptor LPAR1 was highly expressed in all tumors. Cells expressing the LPAR1 R163W mutant demonstrated a significantly increased motility through elevated Rho signaling, but had no effect on growth. Therefore, this study highlights the need for multiple biopsies and sequencing during progression of a cancer and combinatorial DNA and RNA sequencing approach for systematic identification of expressed driver mutations.
Collapse
Affiliation(s)
- Jun S. Wei
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: ; (JK)
| | - Peter Johansson
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Li Chen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Young K. Song
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Catherine Tolman
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Samuel Li
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Laura Hurd
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rajesh Patidar
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xinyu Wen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
- The Advanced Biomedical Computing Center, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Frederick, Maryland, United States of America
| | - Thomas C. Badgett
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Adam T. C. Cheuk
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jean-Claude Marshall
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Patricia S. Steeg
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - José P. Vaqué Díez
- Cell Growth Regulation Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Yanlin Yu
- Cancer Modeling Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - J. Silvio Gutkind
- Cell Growth Regulation Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: ; (JK)
| |
Collapse
|
9
|
Castéra L, Dehainault C, Michaux D, Lumbroso-Le Rouic L, Aerts I, Doz F, Pelet A, Couturier J, Stoppa-Lyonnet D, Gauthier-Villars M, Houdayer C. Fine mapping of whole RB1 gene deletions in retinoblastoma patients confirms PCDH8 as a candidate gene for psychomotor delay. Eur J Hum Genet 2012; 21:460-4. [PMID: 22909775 DOI: 10.1038/ejhg.2012.186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Retinoblastoma (Rb) results from inactivation of both alleles of the RB1 gene located in 13q14.2. Whole-germline monoallelic deletions of the RB1 gene (6% of RB1 mutational spectrum) sometimes cause a variable degree of psychomotor delay and several dysmorphic abnormalities. Breakpoints in 12 Rb patients with or without psychomotor delay were mapped to specifically define the role of chromosomal regions adjacent to RB1 in psychomotor delay. A high-resolution CGH array focusing on RB1 and its flanking region was designed to precisely map the deletion. Comparative analysis detected a 4-Mb critical interval, including a candidate gene protocadherin 8 (PCDH8). PCDH8 is thought to function in signalling pathways and cell adhesion in a central nervous system-specific manner, making loss of PCDH8 one of the probable causes of psychomotor delay in RB1-deleted patients. Consequently, we propose to systematically use high-resolution CGH in cases of partial or complete RB1 deletion encompassing the telomeric flanking region to characterize the putative loss of PCDH8 and to better define genotype/phenotype correlations, eventually leading to optimized genetic counselling and psychomotor follow-up.
Collapse
Affiliation(s)
- Laurent Castéra
- Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
13q deletion syndrome and retinoblastoma in identical dichorionic diamniotic monozygotic twins. Eur J Ophthalmol 2012; 22:857-60. [PMID: 22505049 DOI: 10.5301/ejo.5000151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2012] [Indexed: 11/20/2022]
Abstract
PURPOSE To report the case of identical dichorionic diamniotic female twins with unilateral retinoblastoma in 13q deletion syndrome. METHODS Clinical and ophthalmoscopic evaluation, combination of multiple ligation-dependent probe amplification, array-comparative genomic hybridization analyses, and magnetic resonance imaging were performed. RESULTS Peculiar facial features, marked hypotonia, gastroesophageal reflux, interatrial septal defect with left to right shunt and light dilatation of right chambers, 5th finger hypoplasia, 3rd-5th toes clinodactyly, 2nd toe overlapped to 3rd toe, and cutis marmorata were found. Ophthalmoscopic evaluation revealed unilateral retinoblastoma in both girls. Magnetic resonance imaging detected corpus callosum hypoplasia in both twins. A 34.4-Mb deletion involving bands 13q13.2-q21.33 and including the RB1 gene was identified in both twins. The deletion was not present in the DNA of their parents and older brother. CONCLUSIONS Dysmorphic features in children must be always suspicious of 13q deletion syndrome and a short ophthalmoscopic follow-up is necessary to detect the presence of a retinoblastoma.
Collapse
|
11
|
Mitter D, Ullmann R, Muradyan A, Klein-Hitpass L, Kanber D, Ounap K, Kaulisch M, Lohmann D. Genotype-phenotype correlations in patients with retinoblastoma and interstitial 13q deletions. Eur J Hum Genet 2011; 19:947-58. [PMID: 21505449 DOI: 10.1038/ejhg.2011.58] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Patients with an interstitial 13q deletion that contains the RB1 gene show retinoblastoma and variable clinical features. Relationship between phenotypic expression and loss of specific neighboring genes are unresolved, yet. We obtained clinical, cytogenetic and molecular data in 63 patients with an interstitial 13q deletion involving RB1. Whole-genome array analysis or customized high-resolution array analysis for 13q14.11q14.3 was performed in 38 patients, and cytogenetic analysis was performed in 54 patients. Deletion sizes ranged between 4.2 kb and more than 33.43 Mb; breakpoints were non-recurrent. Sequence analysis of deletion junctions in five patients revealed microhomology and insertion of 2-34 base pairs suggestive of non-homologous end joining. Milder phenotypic expression of retinoblastoma was observed in patients with deletions larger than 1 Mb, which contained the MED4 gene. Clinical features were compared between patients with small (within 13q14), medium (within 13q12.3q21.2) and large (within 13q12q31.2) deletions. Patients with a small deletion can show macrocephaly, tall stature, obesity, motor and/or speech delay. Patients with a medium deletion show characteristic facial features, mild to moderate psychomotor delay, short stature and microcephaly. Patients with a large deletion have characteristic craniofacial dysmorphism, short stature, microcephaly, mild to severe psychomotor delay, hypotonia, constipation and feeding problems. Additional features included deafness, seizures and brain and heart anomalies. We found no correlation between clinical features and parental origin of the deletion. Our data suggest that hemizygous loss of NUFIP1 and PCDH8 may contribute to psychomotor delay, deletion of MTLR1 to microcephaly and loss of EDNRB to feeding difficulties and deafness.
Collapse
Affiliation(s)
- Diana Mitter
- Institut für Humangenetik, Universitätsklinikum Essen, Philipp-Rosenthal-Straße 55, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
O'Driscoll MC, Black GCM, Clayton-Smith J, Sherr EH, Dobyns WB. Identification of genomic loci contributing to agenesis of the corpus callosum. Am J Med Genet A 2010; 152A:2145-59. [DOI: 10.1002/ajmg.a.33558] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Kogan JM, Egelhoff JC, Saal HM. Interstitial deletion of 13q associated with polymicrogyria. Am J Med Genet A 2008; 146A:910-6. [PMID: 18324687 DOI: 10.1002/ajmg.a.32188] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interstitial deletion of the long arm of chromosome 13 is a rare condition characterized by multiple clinical findings. We report a male dizygotic twin with an interstitial deletion of 13q and failure to thrive, hypotonia, polymicrogyria, bilateral foci of retinoblastoma, hearing loss, bilateral inguinal hernias, submucous cleft palate, and dysmorphic features including a triangular shaped face, broad forehead, small chin, prominent eyes, downslanting palpebral fissures, and a downturned mouth. Chromosome analysis showed an interstitial deletion of chromosome 13 which was confirmed by fluorescence in situ hybridization analysis to include the Rb locus, but spare the 13q subtelomeric region. The karyotype was 46,XY,del(13)(q14.1q31.2).ish del(13)(RB1-,D13S327+) de novo. Breakpoints were further characterized by SNP-based microarray. Retinoblastoma tumors are a well-known complication of deletion of the retinoblastoma susceptibility gene, located at chromosome 13q14.2. Growth retardation is another common feature that has been described in other patients with a deletion of 13q. Additionally, this patient had brain findings on MRI consistent with bilateral polymicrogyria with predominance of the frontal lobes, as well as prominent infratentorial and supratentorial vasculature. There are a variety of polymicrogyria syndromes that are distinguished by the cortical location of the abnormal folding. Several of the subtypes have known genetic loci associated with them. To our knowledge, this is the only report of polymicrogyria in association with a deletion of chromosome 13.
Collapse
Affiliation(s)
- Jillene M Kogan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|