1
|
Huang X, Deng X, Deng X, Xu H, Deng H, Yuan L. Identification of novel compound heterozygous variants in the PEX10 gene in a Han-Chinese family with PEX10-related peroxisome biogenesis disorders. PLoS One 2025; 20:e0322137. [PMID: 40267090 PMCID: PMC12017559 DOI: 10.1371/journal.pone.0322137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025] Open
Abstract
The peroxisome biogenesis disorders (PBDs) are a group of rare inherited autosomal recessive diseases characterized by motor and cognitive neurological dysfunction, hypotonia, seizures, feeding difficulties, retinopathy, sensorineural hearing loss, hepatic and renal abnormalities, and chondrodysplasia punctata of long bones, and the clinical expression is variable. Exome sequencing and Sanger sequencing were used to identify the genetic defect for PBDs in a two-generation non-consanguineous Han-Chinese pedigree. Compound heterozygous variants, a novel splicing variant c.113-2A>G and a reported substitution c.890T>C (p.Leu297Pro), in the peroxisomal biogenesis factor 10 gene (PEX10) were detected. The splicing variant c.113-2A>G led to a canonical splice acceptor site inactivation, exon 2 skipping, and in-frame deletions (p.Ala39_Gly65del). The three patients had similar phenotypes of milder PBDs, which were further genetically determined as PBD6B. The findings extend the PEX10 variant spectrum and may provide new insights into PBDs causation and diagnosis, with implications for genetic counseling and clinical management.
Collapse
Affiliation(s)
- Xiangjun Huang
- Department of General Surgery, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xinyue Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
De Biase I, Yuzyuk T, Cui W, Zuromski LM, Moser AB, Braverman NE. Quantitative analysis of ethanolamine plasmalogen species in red blood cells using liquid chromatography tandem mass spectrometry for diagnosing peroxisome biogenesis disorders. Clin Chim Acta 2023; 542:117295. [PMID: 36914043 DOI: 10.1016/j.cca.2023.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Plasmalogens are glycerophospholipids characterized by a vinyl-ether bond with a fatty alcohol at the sn-1 position, a polyunsaturated fatty acid at the sn-2 position, and a polar head at the sn-3 position, commonly phosphoethanolamine. Plasmalogens play crucial roles in several cellular processes. Reduced levels have been associated with Alzheimer's and Parkinson's disease progression. Markedly reduced plasmalogens are a classic feature of peroxisome biogenesis disorders (PBD) because plasmalogen synthesis requires functional peroxisomes. Particularly, severe plasmalogen deficiency is the biochemical hallmark of rhizomelic chondrodysplasia punctata (RCDP). Traditionally, plasmalogens are evaluated in red blood cells (RBCs) by gas-chromatography/mass-spectrometry (GC-MS), which cannot distinguish individual species. We developed a liquid-chromatography/tandem mass-spectrometry (LC-MS/MS) method to quantify eighteen phosphoethanolamine plasmalogens in RBCs to diagnose PBD patients, especially RCDP. Validation results showed a specific, robust, and precise method with broad analytical range. Age-specific reference intervals were established; control medians were used to assess plasmalogen deficiency in patients' RBCs. Clinical utility was also confirmed in Pex7 deficient mouse models recapitulating severe and milder RCDP clinical phenotypes. To our knowledge, this is the first attempt to replace the GC-MS method in the clinical laboratory. In addition to diagnosing PBDs, structure-specific plasmalogen quantitation could help understand disease pathogenesis and monitor therapy.
Collapse
Affiliation(s)
- Irene De Biase
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA.
| | - Tatiana Yuzyuk
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Wei Cui
- Child Health and Human Development Program, Research Institute of the McGill University, Montreal, Quebec, Canada
| | - Lauren M Zuromski
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ann B Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Nancy E Braverman
- Child Health and Human Development Program, Research Institute of the McGill University, Montreal, Quebec, Canada; Department of Human Genetics and Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Takashima S, Fujita H, Toyoshi K, Ohba A, Hirata Y, Shimozawa N, Oh-Hashi K. Hypomorphic mutation of PEX3 with peroxisomal mosaicism reveals the oscillating nature of peroxisome biogenesis coupled with differential metabolic activities. Mol Genet Metab 2022; 137:68-80. [PMID: 35932552 DOI: 10.1016/j.ymgme.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/18/2022] [Accepted: 07/16/2022] [Indexed: 10/17/2022]
Abstract
Impaired peroxisome assembly caused by mutations in PEX genes results in a human congenital metabolic disease called Zellweger spectrum disorder (ZSD), which impacts the development and physiological function of multiple organs. In this study, we revealed a long-standing problem of heterogeneous peroxisome distribution among cell population, so called "peroxisomal mosaicism", which appears in patients with mild form of ZSD. We mutated PEX3 gene in HEK293 cells and obtained a mutant clone with peroxisomal mosaicism. We found that peroxisomal mosaicism can be reproducibly arise from a single cell, even if the cell has many or no peroxisomes. Using time-lapse imaging and a long-term culture experiment, we revealed that peroxisome biogenesis oscillates over a span of days; this was also confirmed in the patient's fibroblasts. During the oscillation, the metabolic activity of peroxisomes was maintained in the cells with many peroxisomes while depleted in the cells without peroxisomes. Our results indicate that ZSD patients with peroxisomal mosaicism have a cell population whose number and metabolic activities of peroxisomes can be recovered. This finding opens the way to develop novel treatment strategy for ZSD patients with peroxisomal mosaicism, who currently have very limited treatment options.
Collapse
Affiliation(s)
- Shigeo Takashima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan; Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| | - Haruka Fujita
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kayoko Toyoshi
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Akiko Ohba
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Nobuyuki Shimozawa
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan; Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kentaro Oh-Hashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan.
| |
Collapse
|
5
|
Bose M, Yergeau C, D’Souza Y, Cuthbertson DD, Lopez MJ, Smolen AK, Braverman NE. Characterization of Severity in Zellweger Spectrum Disorder by Clinical Findings: A Scoping Review, Meta-Analysis and Medical Chart Review. Cells 2022; 11:1891. [PMID: 35741019 PMCID: PMC9221082 DOI: 10.3390/cells11121891] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Zellweger spectrum disorder (ZSD) is a rare, debilitating genetic disorder of peroxisome biogenesis that affects multiple organ systems and presents with broad clinical heterogeneity. Although severe, intermediate, and mild forms of ZSD have been described, these designations are often arbitrary, presenting difficulty in understanding individual prognosis and treatment effectiveness. The purpose of this study is to conduct a scoping review and meta-analysis of existing literature and a medical chart review to determine if characterization of clinical findings can predict severity in ZSD. Our PubMed search for articles describing severity, clinical findings, and survival in ZSD resulted in 107 studies (representing 307 patients) that were included in the review and meta-analysis. We also collected and analyzed these same parameters from medical records of 136 ZSD individuals from our natural history study. Common clinical findings that were significantly different across severity categories included seizures, hypotonia, reduced mobility, feeding difficulties, renal cysts, adrenal insufficiency, hearing and vision loss, and a shortened lifespan. Our primary data analysis also revealed significant differences across severity categories in failure to thrive, gastroesophageal reflux, bone fractures, global developmental delay, verbal communication difficulties, and cardiac abnormalities. Univariable multinomial logistic modeling analysis of clinical findings and very long chain fatty acid (VLCFA) hexacosanoic acid (C26:0) levels showed that the number of clinical findings present among seizures, abnormal EEG, renal cysts, and cardiac abnormalities, as well as plasma C26:0 fatty acid levels could differentiate severity categories. We report the largest characterization of clinical findings in relation to overall disease severity in ZSD. This information will be useful in determining appropriate outcomes for specific subjects in clinical trials for ZSD.
Collapse
Affiliation(s)
- Mousumi Bose
- Department of Nutrition and Food Studies, College of Education and Human Services, Montclair State University, Montclair, NJ 07043, USA; (M.J.L.); (A.K.S.)
| | - Christine Yergeau
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Yasmin D’Souza
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada;
| | - David D. Cuthbertson
- Health Informatics Institute, College of Medicine, University of South Florida, 3650 Spectrum Blvd., Tampa, FL 33612, USA;
| | - Melisa J. Lopez
- Department of Nutrition and Food Studies, College of Education and Human Services, Montclair State University, Montclair, NJ 07043, USA; (M.J.L.); (A.K.S.)
| | - Alyssa K. Smolen
- Department of Nutrition and Food Studies, College of Education and Human Services, Montclair State University, Montclair, NJ 07043, USA; (M.J.L.); (A.K.S.)
| | - Nancy E. Braverman
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada;
| |
Collapse
|
6
|
Nava E, Hartmann B, Boxheimer L, Capone Mori A, Nuoffer JM, Sargsyan Y, Thoms S, Rosewich H, Boltshauser E. How to Detect Isolated PEX10-Related Cerebellar Ataxia? Neuropediatrics 2022; 53:159-166. [PMID: 35038753 DOI: 10.1055/s-0041-1741383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A 4-year-old boy presented with subacute onset of cerebellar ataxia. Neuroimaging revealed cerebellar atrophy. Metabolic screening tests aiming to detect potentially treatable ataxias showed an increased value (fourfold upper limit of normal) for phytanic acid and elevated very-long-chain fatty acid (VLCFA) ratios (C24:0/C22:0 and C26:0/C22:0), while absolute concentrations of VLCFA were normal. Genetic analysis identified biallelic variants in PEX10. Immunohistochemistry confirmed pathogenicity in the patients' cultured fibroblasts demonstrating peroxisomal mosaicism with a general catalase import deficiency as well as conspicuous peroxisome morphology as an expression of impaired peroxisomal function. We describe for the first time an elongated peroxisome morphology in a patient with PEX10-related cerebellar ataxia.A literature search yielded 14 similar patients from nine families with PEX10-related cerebellar ataxia, most of them presenting their first symptoms between 3 and 8 years of age. In 11/14 patients, the first and main symptom was cerebellar ataxia; in three patients, it was sensorineural hearing impairment. Finally, all 14 patients developed ataxia. Polyneuropathy (9/14) and cognitive impairment (9/14) were common associated findings. In 12/13 patients brain MRI showed cerebellar atrophy. Phytanic acid was elevated in 8/12 patients, while absolute concentrations of VLCFA levels were in normal limits in several patients. VLCFA ratios (C24:0/C22:0 and/or C26:0/C22:0), though, were elevated in 11/11 cases. We suggest including measurement of phytanic acid and VLCFA ratios in metabolic screening tests in unexplained autosomal recessive ataxias with cerebellar atrophy, especially when there is an early onset and symptoms are mild.
Collapse
Affiliation(s)
- Esmeralda Nava
- Department of Pediatric Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Britta Hartmann
- Department of Medical Genetics, Cantonal Hospital Aarau, Institute of Laboratory Medicine, Aarau, Switzerland
| | - Larissa Boxheimer
- Department of Neuroradiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Andrea Capone Mori
- Department of Pediatric Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.,University Children's Hospital Pediatric Endocrinology, Diabetology and Metabolism, Bern, Switzerland
| | - Yelena Sargsyan
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Thoms
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany.,Department of Biochemistry and Molecular Medicine, Medical School, Bielefeld University, Bielefeld, Germany
| | - Hendrik Rosewich
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Eugen Boltshauser
- Department of Pediatric Neurology (emeritus), University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Kumar P, Nerakh G, Katam P, Pratap Oleti T, Pawar S. A Floppy Infant with Facial Dysmorphism. Neoreviews 2022; 23:e45-e48. [PMID: 34970661 DOI: 10.1542/neo.23-1-e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Praneeth Kumar
- Department of Neonatology, Fernandez Hospital, Hyderabad, Andhra Pradesh, India
| | - Gayatri Nerakh
- Department of Fetal Medicine and Genetics, Fernandez Hospital, Hyderabad, Andhra Pradesh, India
| | - Priyanka Katam
- Department of Neonatology, Fernandez Hospital, Hyderabad, Andhra Pradesh, India
| | - Tejo Pratap Oleti
- Department of Neonatology, Fernandez Hospital, Hyderabad, Andhra Pradesh, India
| | - Sunil Pawar
- Department of Neonatology, Fernandez Hospital, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
8
|
Zaki MS, Issa MY, Thomas MM, Elbendary HM, Rafat K, Al Menabawy NM, Selim LA, Ismail S, Abdel-Salam GM, Gleeson JG. A founder mutation in PEX12 among Egyptian patients in peroxisomal biogenesis disorder. Neurol Sci 2020; 42:2737-2745. [PMID: 33123925 DOI: 10.1007/s10072-020-04843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
Abstract
At least 14 distinctive PEX genes function in the biogenesis of peroxisomes. Biallelic alterations in the peroxisomal biogenesis factor 12 (PEX12) gene lead to Zellweger syndrome spectrum (ZSS) with variable clinical expressivity ranging from early lethality to mildly affected with long-term survival. Herein, we define 20 patients derived from 14 unrelated Egyptian families, 19 of which show a homozygous PEX12 in-frame (c.1047_1049del p.(Gln349del)) deletion. This founder mutation, reported rarely outside of Egypt, was associated with a uniformly severe phenotype. Patients showed developmental delay in early life followed by motor and mental regression, progressive hypotonia, unsteadiness, and lack of speech. Seventeen patients had sparse hair or partial alopecia, a striking feature that was not noted previously in PEX12. Neonatal cholestasis was manifested in 2 siblings. Neurodiagnostics showed consistent cerebellar atrophy and variable white matter demyelination, axonal neuropathy in about half, and cardiomyopathy in 10% of patients. A single patient with a compound heterozygous PEX12 mutation exhibited milder features with late childhood onset with gait disturbance and learning disability. Thus, the PEX12 relatively common founder mutation accounts for the majority of PEX12-related disease in Egypt and delineates a uniform clinical and radiographic phenotype.
Collapse
Affiliation(s)
- Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt.
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Manal M Thomas
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Karima Rafat
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Nihal M Al Menabawy
- Neurology and Metabolic Division, Cairo University Children Hospital, Cairo, Egypt
| | - Laila A Selim
- Neurology and Metabolic Division, Cairo University Children Hospital, Cairo, Egypt
| | - Samira Ismail
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Ghada M Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Joseph G Gleeson
- Department of Neurosciences, University of California and Rady Children's Institute for Genomic Medicine, Rady Children's Hospital San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
9
|
Barillari MR, Karali M, Di Iorio V, Contaldo M, Piccolo V, Esposito M, Costa G, Argenziano G, Serpico R, Carotenuto M, Cappuccio G, Banfi S, Melillo P, Simonelli F. Mild form of Zellweger Spectrum Disorders (ZSD) due to variants in PEX1: Detailed clinical investigation in a 9-years-old female. Mol Genet Metab Rep 2020; 24:100615. [PMID: 32596134 PMCID: PMC7306489 DOI: 10.1016/j.ymgmr.2020.100615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/27/2022] Open
Abstract
Peroxisomal biogenesis disorders (PBD) are rare autosomal recessive disorders with various degrees of severity caused by hypomorphic mutations in 13 different peroxin (PEX) genes. In this study, we report the clinical and molecular characterization of a 9-years-old female presenting an apparently isolated pre-lingual sensorineural hearing loss (SNHL) and early onset Retinitis Pigmentosa (RP) that may clinically overlap with Usher syndrome. Genetic testing by clinical exome sequencing identified two variants in PEX1: the missense variant c.274G > C; p.(Val92Leu) that was already reported in a PBD patient, and the variant c.2140_2145dup; p.(Ser714_Gln715dup) which is a novel, non-frameshift variant, absent in control databases. On the basis of the molecular analysis, a thorough clinical examination revealed nail and dental abnormalities, a mild cognitive impairment, learning disabilities and poor feeding, apart from the retinal and audiological features initially identified. The clinical and molecular findings led us to the diagnosis of a mild form of PBD. This study further emphasizes that mild forms of PBD can be a differential diagnosis of Usher syndrome and suggests that patients with mild cognitive impairment associated to visual and hearing loss should perform a comprehensive mutation screening that includes PEX genes.
Collapse
Key Words
- ABR, Auditory Brainstem Responses
- BCVA, Best Corrected Visual Acuity
- CDI, Children’s Depression Inventory
- ERG, full-field electroretinogram
- Enamel defects
- FAF, color fundus and fundus autofluorescence
- GVF, Goldmann Visual Field
- HS, Heimler syndrome
- Mild Zellweger syndrome
- OCT, optical coherence tomography
- PBD, Peroxisomal biogenesis disorders
- PEX genes
- PEX, peroxin
- PTA, Pure Tone Average
- Peroxisomal biogenesis disorders
- RP, retinitis pigmentosa
- Retinitis pigmentosa
- SNHL, sensorineural hearing loss
- Sensorineural hearing loss
- TEOAE, Transient-Evoked Otoacustic Emission
- VLCFA, Very Long Chain Fatty Acid
- WISC-IV, Wechsler Intelligence Scale for Children (4th Edition)
- ZS, Zellweger Syndrome
- ZSD, Zellweger spectrum disorder
Collapse
Affiliation(s)
- Maria Rosaria Barillari
- Division of Phoniatrics and Audiology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 4, 80138 Naples, Italy
| | - Marianthi Karali
- Telethon Institute of Genetics and Medicine, Pozzuoli, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Via Pansini 5, 80131 Naples, Italy
| | - Maria Contaldo
- Dental Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 6, 80138 Naples, Italy
| | - Vincenzo Piccolo
- Pediatric Dermatology, Dermatology Unit, University of Campania Luigi Vanvitelli, Via Pansini 5, 80131 Naples, Italy
| | - Maria Esposito
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, 80131 Naples, Italy
| | - Giuseppe Costa
- Division of Phoniatrics and Audiology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 4, 80138 Naples, Italy
| | - Giuseppe Argenziano
- Pediatric Dermatology, Dermatology Unit, University of Campania Luigi Vanvitelli, Via Pansini 5, 80131 Naples, Italy
| | - Rosario Serpico
- Dental Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 6, 80138 Naples, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, 80131 Naples, Italy
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Translational Medicine, Section of Paediatrics, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Via Pansini 5, 80131 Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
10
|
Daich Varela M, Jani P, Zein WM, D'Souza P, Wolfe L, Chisholm J, Zalewski C, Adams D, Warner BM, Huryn LA, Hufnagel RB. The peroxisomal disorder spectrum and Heimler syndrome: Deep phenotyping and review of the literature. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:618-630. [PMID: 32866347 DOI: 10.1002/ajmg.c.31823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
The spectrum of peroxisomal disorders is wide and comprises individuals that die in the first year of life, as well as people with sensorineural hearing loss, retinal dystrophy and amelogenesis imperfecta. In this article, we describe three patients; two diagnosed with Heimler syndrome and a third one with a mild-intermediate phenotype. We arrived at these diagnoses by conducting complete ophthalmic (National Eye Institute), auditory (National Institute of Deafness and Other Communication Disorders), and dental (National Institute of Dental and Craniofacial Research) evaluations, as well as laboratory and genetic testing. Retinal degeneration with macular cystic changes, amelogenesis imperfecta, and sensorineural hearing loss were features shared by the three patients. Patients A and C had pathogenic variants in PEX1 and Patient B, in PEX6. Besides analyzing these cases, we review the literature regarding mild peroxisomal disorders, their pathophysiology, genetics, differential diagnosis, diagnostic methods, and management. We suggest that peroxisomal disorders are considered in every child with sensorineural hearing loss and retinal degeneration. These patients should have a dental evaluation to rule out amelogenesis imperfecta as well as audiologic examination and laboratory testing including peroxisomal biomarkers and genetic testing. Appropriate diagnosis can lead to better genetic counseling and management of the associated comorbidities.
Collapse
Affiliation(s)
- Malena Daich Varela
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Priyam Jani
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lynne Wolfe
- Undiagnosed Diseases Program, Common Fund, NIH, Bethesda, Maryland, USA
| | - Jennifer Chisholm
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Christopher Zalewski
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - David Adams
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.,Undiagnosed Diseases Program, Common Fund, NIH, Bethesda, Maryland, USA
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
11
|
Honsho M, Okumoto K, Tamura S, Fujiki Y. Peroxisome Biogenesis Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:45-54. [PMID: 33417206 DOI: 10.1007/978-3-030-60204-8_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peroxisomes are presented in all eukaryotic cells and play essential roles in many of lipid metabolic pathways, including β-oxidation of fatty acids and synthesis of ether-linked glycerophospholipids, such as plasmalogens. Impaired peroxisome biogenesis, including defects of membrane assembly, import of peroxisomal matrix proteins, and division of peroxisome, causes peroxisome biogenesis disorders (PBDs). Fourteen complementation groups of PBDs are found, and their complementing genes termed PEXs are isolated. Several new mutations in peroxins from patients with mild PBD phenotype or patients with phenotypes unrelated to the commonly observed impairments of PBD patients are found by next-generation sequencing. Exploring a dysfunctional step(s) caused by the mutation is important for unveiling the pathogenesis of novel mutation by means of cellular and biochemical analyses.
Collapse
Affiliation(s)
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | | | - Yukio Fujiki
- Institute of Rheological Functions of Food, Fukuoka, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
12
|
Atypical PEX16 peroxisome biogenesis disorder with mild biochemical disruptions and long survival. Brain Dev 2019; 41:57-65. [PMID: 30078639 DOI: 10.1016/j.braindev.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/22/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mutations in PEX16 cause peroxisome biogenesis disorder (PBD). Zellweger syndrome characterized by neurological dysfunction, dysmorphic features, liver disease and early death represents the severe end of this clinical spectrum. Here we discuss the diagnostic challenge of atypical PEX16 related PBD in 3 patients from highly inbred kindred and describe the role of specific metabolites analyses, fibroblasts studies, whole-exome sequencing (WES) and metabolomics profiling to establish the diagnosis. METHODS AND PATIENTS The proband is a 12-year-old male born to consanguineous parents. Despite normal development in the first year, regression and progressive spastic diplegia, poor coordination and dysarthria occurred thereafter. Patient 2 (3-year old female) and Patient 3 (19-month old female) shared similar clinical course with the proband. Biochemical studies on plasma and fibroblasts, WES and global metabolomics analyses were performed. RESULTS Very-long-chain fatty acids analysis showed subtle elevations in C26 and C26/C22. Global Metabolomics-Assisted Pathway profiling was not remarkable. Immunocytochemical investigations on fibroblasts revealed fewer catalase and PMP70-containing particles indicating aberrant peroxisomal assembly. Complementation studies were inconclusive. WES revealed a novel homozygous variant in PEX16 (c.859C>T). The biochemical profiles of Patient 2 and Patient 3 were similar to the proband and the same genotype was confirmed. CONCLUSION This paper highlights the diagnostic challenge of PEX16 patients due to the widely variable clinical and biochemical phenotypes. It also emphasizes the important roles of combined biochemical assays with next generation sequencing techniques in reaching diagnosis in the context of atypical clinical presentations, subtle biomarker abnormalities and consanguinity.
Collapse
|
13
|
Rydzanicz M, Stradomska TJ, Jurkiewicz E, Jamroz E, Gasperowicz P, Kostrzewa G, Płoski R, Tylki-Szymańska A. Mild Zellweger syndrome due to a novel PEX6 mutation: correlation between clinical phenotype and in silico prediction of variant pathogenicity. J Appl Genet 2017; 58:475-480. [PMID: 29047053 DOI: 10.1007/s13353-017-0414-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/26/2023]
Abstract
Zellweger syndrome (ZS) is a consequence of a peroxisome biogenesis disorder (PBD) caused by the presence of a pathogenic mutation in one of the 13 genes from the PEX family. ZS is a severe multisystem condition characterized by neonatal appearance of symptoms and a shorter life. Here, we report a case of ZS with a mild phenotype, due to a novel PEX6 gene mutation. The patient presented subtle craniofacial dysmorphic features and slightly slower psychomotor development. At the age of 2 years, he was diagnosed with adrenal insufficiency, hypoacusis, and general deterioration. Magnetic resonance imaging showed a symmetrical hyperintense signal in the frontal and parietal white matter. Biochemical tests showed elevated liver transaminases, elevated serum very long chain fatty acids, and phytanic acid. After the death of the child at the age of 6 years, molecular diagnostics were continued in order to provide genetic counseling for his parents. Next generation sequencing (NGS) analysis with the TruSight One™ Sequencing Panel revealed a novel homozygous PEX6 p.Ala94Pro mutation. In silico prediction of variant severity suggested its possible benign effect. To conclude, in the milder phenotypes, adrenal insufficiency, hypoacusis, and leukodystrophy together seem to be pathognomonic for ZS.
Collapse
Affiliation(s)
- Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, Pawinskiego 3c, 02-106, Warsaw, Poland
| | - Teresa Joanna Stradomska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Elżbieta Jurkiewicz
- Department of Diagnostic Imaging, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Ewa Jamroz
- Department of Child Neurology, Medical University of Silesia, Medykow 16, 40-752, Katowice, Poland
| | - Piotr Gasperowicz
- Department of Medical Genetics, Medical University of Warsaw, Pawinskiego 3c, 02-106, Warsaw, Poland
| | - Grażyna Kostrzewa
- Department of Forensic Medicine, Medical University of Warsaw, W. Oczki 1, 02-007, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Pawinskiego 3c, 02-106, Warsaw, Poland.
| | - Anna Tylki-Szymańska
- Department of Pediatric, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| |
Collapse
|
14
|
Takashima S, Toyoshi K, Itoh T, Kajiwara N, Honda A, Ohba A, Takemoto S, Yoshida S, Shimozawa N. Detection of unusual very-long-chain fatty acid and ether lipid derivatives in the fibroblasts and plasma of patients with peroxisomal diseases using liquid chromatography-mass spectrometry. Mol Genet Metab 2017; 120:255-268. [PMID: 28089346 DOI: 10.1016/j.ymgme.2016.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/10/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
Metabolic changes occur in patients with peroxisomal diseases owing to impairments in the genes involved in peroxisome function. For diagnostic purposes, saturated very-long-chain fatty acids (VLCFAs) such as C24:0 and C26:0, phytanic acid, pristanic acid, and plasmalogens are often measured as metabolic hallmarks. As the direct pathology of peroxisomal disease is yet to be fully elucidated, we sought to explore the fatty acid species that accumulate in patients with peroxisomal diseases. We developed a method for detecting a range of fatty acids implicated in peroxisomal diseases such as Zellweger syndrome (ZS) and X-linked adrenoleukodystrophy (X-ALD). To this end, we employed an ultra-performance liquid chromatography-mass spectrometry (LC-MS) coupled with negatively charged electrospray ionization. Fatty acids from patients and control subjects were extracted from total lipids by acid-hydrolysis and compared. In accordance with previous results, the amounts of VLCFAs, phytanic acid, and pristanic acid differed between the two groups. We identified extremely long and highly polyunsaturated VLCFAs (ultra-VLC-PUFAs) such as C44:12 in ZS samples. Moreover, three unknown molecules were prominent in control samples but scarcely detectable in ZS samples. LC-MS/MS analysis identified these as 1-alkyl-sn-glycerol 3-phosphates derived from ether lipids containing fatty alcohols such as C16:0, C18:0, or C18:1. Our method provides an approach to observing a wide range of lipid-derived fatty acids and related molecules in order to understand the metabolic changes involved in peroxisomal diseases. This technique can therefore be used in identifying metabolic markers and potential clinical targets for future treatment.
Collapse
Affiliation(s)
- Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan.
| | - Kayoko Toyoshi
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| | - Takahiro Itoh
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Japan
| | - Naomi Kajiwara
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| | - Ayako Honda
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| | - Akiko Ohba
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| | - Shoko Takemoto
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| | - Satoshi Yoshida
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| |
Collapse
|
15
|
Lee MY, Sumpter R, Zou Z, Sirasanagandla S, Wei Y, Mishra P, Rosewich H, Crane DI, Levine B. Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep 2016; 18:48-60. [PMID: 27827795 PMCID: PMC5210156 DOI: 10.15252/embr.201642443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 11/24/2022] Open
Abstract
PEX13 is an integral membrane protein on the peroxisome that regulates peroxisomal matrix protein import during peroxisome biogenesis. Mutations in PEX13 and other peroxin proteins are associated with Zellweger syndrome spectrum (ZSS) disorders, a subtype of peroxisome biogenesis disorder characterized by prominent neurological, hepatic, and renal abnormalities leading to neonatal death. The lack of functional peroxisomes in ZSS patients is widely accepted as the underlying cause of disease; however, our understanding of disease pathogenesis is still incomplete. Here, we demonstrate that PEX13 is required for selective autophagy of Sindbis virus (virophagy) and of damaged mitochondria (mitophagy) and that disease‐associated PEX13 mutants I326T and W313G are defective in mitophagy. The mitophagy function of PEX13 is shared with another peroxin family member PEX3, but not with two other peroxins, PEX14 and PEX19, which are required for general autophagy. Together, our results demonstrate that PEX13 is required for selective autophagy, and suggest that dysregulation of PEX13‐mediated mitophagy may contribute to ZSS pathogenesis.
Collapse
Affiliation(s)
- Ming Y Lee
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhea Sumpter
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhongju Zou
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shyam Sirasanagandla
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yongjie Wei
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prashant Mishra
- Children's Medical Center Research Institute at the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hendrik Rosewich
- Department of Pediatrics and Pediatric Neurology, Georg August University, Göttingen, Germany
| | - Denis I Crane
- Eskitis Institute for Drug Discovery and School of Natural Sciences Griffith University, Nathan, Qld, Australia
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Affiliation(s)
| | - Maria Daniela D'Agostino
- McGill University Department of Human Genetics and McGill University Health Center, Department of Medical Genetics, Montreal, QC, Canada
| | - Nancy Braverman
- McGill University Department of Human Genetics and Pediatrics, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
17
|
Ratbi I, Jaouad IC, Elorch H, Al-Sheqaih N, Elalloussi M, Lyahyai J, Berraho A, Newman WG, Sefiani A. Severe early onset retinitis pigmentosa in a Moroccan patient with Heimler syndrome due to novel homozygous mutation of PEX1 gene. Eur J Med Genet 2016; 59:507-11. [PMID: 27633571 DOI: 10.1016/j.ejmg.2016.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 11/29/2022]
Abstract
Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. It is the mildest form known to date of peroxisome biogenesis disorder caused by hypomorphic mutations of PEX1 and PEX6 genes. We report on a second Moroccan family with Heimler syndrome with early onset, severe visual impairment and important phenotypic overlap with Usher syndrome. The patient carried a novel homozygous missense variant c.3140T > C (p.Leu1047Pro) of PEX1 gene. As standard biochemical screening of blood for evidence of a peroxisomal disorder did not provide a diagnosis in the individuals with HS, patients with SNHL and retinal pigmentation should have mutation analysis of PEX1 and PEX6 genes.
Collapse
Affiliation(s)
- Ilham Ratbi
- Centre de génomique humaine, Faculté de médecine et pharmacie, Mohammed V University in Rabat, 10100, Morocco; Département de génétique médicale, Institut National d'Hygiène, BP 769 Agdal, 10090 Rabat, Morocco.
| | - Imane Cherkaoui Jaouad
- Centre de génomique humaine, Faculté de médecine et pharmacie, Mohammed V University in Rabat, 10100, Morocco; Département de génétique médicale, Institut National d'Hygiène, BP 769 Agdal, 10090 Rabat, Morocco
| | - Hamza Elorch
- Service d'Ophtalmologie B, Hôpital des Spécialités, CHU Rabat, Morocco
| | - Nada Al-Sheqaih
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Mustapha Elalloussi
- Departement de Pédodontie-Prévention, Faculté de Médecine Dentaire, Université Mohammed V, BP 6212 Madinat Al Irfane, 10100 Rabat, Morocco
| | - Jaber Lyahyai
- Centre de génomique humaine, Faculté de médecine et pharmacie, Mohammed V University in Rabat, 10100, Morocco
| | - Amina Berraho
- Service d'Ophtalmologie B, Hôpital des Spécialités, CHU Rabat, Morocco
| | - William G Newman
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Abdelaziz Sefiani
- Centre de génomique humaine, Faculté de médecine et pharmacie, Mohammed V University in Rabat, 10100, Morocco; Département de génétique médicale, Institut National d'Hygiène, BP 769 Agdal, 10090 Rabat, Morocco
| |
Collapse
|
18
|
Maxit C, Denzler I, Marchione D, Agosta G, Koster J, Wanders RJA, Ferdinandusse S, Waterham HR. Novel PEX3 Gene Mutations Resulting in a Moderate Zellweger Spectrum Disorder. JIMD Rep 2016; 34:71-75. [PMID: 27557811 PMCID: PMC5509555 DOI: 10.1007/8904_2016_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/28/2016] [Accepted: 07/14/2016] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Peroxisome biogenesis disorders (PBDs) may have a variable clinical expression, ranging from severe, lethal to mild phenotypes with progressive evolution. PBDs are autosomal recessive disorders caused by mutations in PEX genes, which encode proteins called peroxins, involved in the assembly of the peroxisome. Patient Description: We herein report a patient who is currently 9 years old and who is compound heterozygous for two novel mutations in the PEX3 gene. RESULTS Mild biochemical abnormalities of the peroxisomal parameters suggested a Zellweger spectrum defect in the patient. Sequence analysis of the PEX3 gene identified two novel heterozygous, pathogenic mutations. CONCLUSION Mutations in PEX3 usually result in a severe, early lethal phenotype. We report a patient compound heterozygous for two novel mutations in the PEX3 gene, who is less affected than previously reported patients with a defect in the PEX3 gene. Our findings indicate that PEX3 defects may cause a disease spectrum similar as previously observed for other PEX gene defects.
Collapse
Affiliation(s)
- C Maxit
- Department of Child Neurology, Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - I Denzler
- Department of Child Neurology, Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina.
| | - D Marchione
- Department of Child Neurology, Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - G Agosta
- Department of Child Neurology, Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - J Koster
- Laboratory Genetic Metabolic Diseases, Academic Medical Centre, Amsterdam, The Netherlands
| | - R J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Centre, Amsterdam, The Netherlands
| | - S Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Centre, Amsterdam, The Netherlands
| | - H R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Renaud M, Guissart C, Mallaret M, Ferdinandusse S, Cheillan D, Drouot N, Muller J, Claustres M, Tranchant C, Anheim M, Koenig M. Expanding the spectrum of PEX10-related peroxisomal biogenesis disorders: slowly progressive recessive ataxia. J Neurol 2016; 263:1552-8. [PMID: 27230853 DOI: 10.1007/s00415-016-8167-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 11/24/2022]
Abstract
Peroxisomal biogenesis disorders (PBDs) consist of a heterogeneous group of autosomal recessive diseases, in which peroxisome assembly and proliferation are impaired leading to severe multisystem disease and early death. PBDs include Zellweger spectrum disorders (ZSDs) with a relatively mild clinical phenotype caused by PEX1, (MIM# 602136), PEX2 (MIM# 170993), PEX6 (MIM# 601498), PEX10 (MIM# 602859), PEX12 (MIM# 601758), and PEX16 (MIM# 603360) mutations. Three adult patients are reported belonging to a non-consanguineous French family affected with slowly progressive cerebellar ataxia, axonal neuropathy, and pyramidal signs. Mental retardation and diabetes mellitus were optional. The age at onset was in childhood or in adolescence (3-15 years). Brain MRI showed marked cerebellar atrophy. Biochemical blood analyses suggested a mild peroxisomal defect. With whole exome sequencing, two mutations in PEX10 were found in the three patients: c.827G>T (novel) causing the missense change p.Cys276Phe and c.932G>A causing the missense change p.Arg311Gln. The phenotypic spectrum related to PEX10 mutations includes slowly progressive, syndromic recessive ataxia.
Collapse
Affiliation(s)
- Mathilde Renaud
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 67098, Strasbourg Cedex, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67404, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Claire Guissart
- Laboratoire de Génétique de Maladies Rares, Institut Universitaire de Recherche Clinique, EA7402, Université de Montpellier, CHU Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France
| | - Martial Mallaret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67404, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Service de Neurologie, Centre Hospitalier de Haguenau, 67500, Haguenau, France
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - David Cheillan
- Hospices Civils de Lyon: Service des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, INSERM U.1060: Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Lyon, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67404, Illkirch, France
| | - Jean Muller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67404, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mireille Claustres
- Laboratoire de Génétique de Maladies Rares, Institut Universitaire de Recherche Clinique, EA7402, Université de Montpellier, CHU Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France
| | - Christine Tranchant
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 67098, Strasbourg Cedex, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67404, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 67098, Strasbourg Cedex, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67404, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, Institut Universitaire de Recherche Clinique, EA7402, Université de Montpellier, CHU Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
| |
Collapse
|
20
|
Braverman NE, Raymond GV, Rizzo WB, Moser AB, Wilkinson ME, Stone EM, Steinberg SJ, Wangler MF, Rush ET, Hacia JG, Bose M. Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab 2016; 117:313-21. [PMID: 26750748 PMCID: PMC5214431 DOI: 10.1016/j.ymgme.2015.12.009] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Peroxisome biogenesis disorders in the Zellweger spectrum (PBD-ZSD) are a heterogeneous group of genetic disorders caused by mutations in PEX genes responsible for normal peroxisome assembly and functions. As a result of impaired peroxisomal activities, individuals with PBD-ZSD can manifest a complex spectrum of clinical phenotypes that typically result in shortened life spans. The extreme variability in disease manifestation ranging from onset of profound neurologic symptoms in newborns to progressive degenerative disease in adults presents practical challenges in disease diagnosis and medical management. Recent advances in biochemical methods for newborn screening and genetic testing have provided unprecedented opportunities for identifying patients at the earliest possible time and defining the molecular bases for their diseases. Here, we provide an overview of current clinical approaches for the diagnosis of PBD-ZSD and provide broad guidelines for the treatment of disease in its wide variety of forms. Although we anticipate future progress in the development of more effective targeted interventions, the current guidelines are meant to provide a starting point for the management of these complex conditions in the context of personalized health care.
Collapse
Affiliation(s)
- Nancy E Braverman
- McGill University Health Centre, 1001 Décarie Blvd Block E, EM02230, Montreal, QC H4A3J1, Canada.
| | - Gerald V Raymond
- Department of Neurology, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA,.
| | - William B Rizzo
- Department of Pediatrics, University of Nebraska Medical Center, 985456 Nebraska Medical Center - MMI 3062, Omaha, NE 68198-5456, USA.
| | - Ann B Moser
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD 21205, USA.
| | - Mark E Wilkinson
- Carver College of Medicine, Department of Ophthalmology and Visual Sciences, University of Iowa, Stephen A. Wynn Institute for Vision Research, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Edwin M Stone
- Carver College of Medicine, Department of Ophthalmology and Visual Sciences, University of Iowa, Stephen A. Wynn Institute for Vision Research, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Steven J Steinberg
- Institute of Genetic Medicine and Department of Neurology, Johns Hopkins University School of Medicine, CMSC1004B, 600 N Wolfe Street, Baltimore, MD 21287, USA.
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Duncan Neurological Research Institute, DNRI-1050, Houston, TX 77030, USA.
| | - Eric T Rush
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, 985440 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Biology, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA.
| | - Mousumi Bose
- Global Foundation for Peroxisomal Disorders, 5147 S. Harvard Avenue, Suite 181, Tulsa, OK 74135, USA.
| |
Collapse
|
21
|
Klouwer FCC, Berendse K, Ferdinandusse S, Wanders RJA, Engelen M, Poll-The BT. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis 2015; 10:151. [PMID: 26627182 PMCID: PMC4666198 DOI: 10.1186/s13023-015-0368-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/22/2015] [Indexed: 11/15/2022] Open
Abstract
Zellweger spectrum disorders (ZSDs) represent the major subgroup within the peroxisomal biogenesis disorders caused by defects in PEX genes. The Zellweger spectrum is a clinical and biochemical continuum which can roughly be divided into three clinical phenotypes. Patients can present in the neonatal period with severe symptoms or later in life during adolescence or adulthood with only minor features. A defect of functional peroxisomes results in several metabolic abnormalities, which in most cases can be detected in blood and urine. There is currently no curative therapy, but supportive care is available. This review focuses on the management of patients with a ZSD and provides recommendations for supportive therapeutic options for all those involved in the care for ZSD patients.
Collapse
Affiliation(s)
- Femke C C Klouwer
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Kevin Berendse
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands.
| | - Bwee Tien Poll-The
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Ratbi I, Falkenberg KD, Sommen M, Al-Sheqaih N, Guaoua S, Vandeweyer G, Urquhart JE, Chandler KE, Williams SG, Roberts NA, El Alloussi M, Black GC, Ferdinandusse S, Ramdi H, Heimler A, Fryer A, Lynch SA, Cooper N, Ong KR, Smith CEL, Inglehearn CF, Mighell AJ, Elcock C, Poulter JA, Tischkowitz M, Davies SJ, Sefiani A, Mironov AA, Newman WG, Waterham HR, Van Camp G. Heimler Syndrome Is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6. Am J Hum Genet 2015; 97:535-45. [PMID: 26387595 PMCID: PMC4596894 DOI: 10.1016/j.ajhg.2015.08.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/21/2015] [Indexed: 11/17/2022] Open
Abstract
Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. We ascertained eight families affected by HS and, by using a whole-exome sequencing approach, identified biallelic mutations in PEX1 or PEX6 in six of them. Loss-of-function mutations in both genes are known causes of a spectrum of autosomal-recessive peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS-affected family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define HS as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6.
Collapse
Affiliation(s)
- Ilham Ratbi
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco
| | - Kim D Falkenberg
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Manou Sommen
- Department of Medical Genetics, University of Antwerp, Antwerp 2610, Belgium
| | - Nada Al-Sheqaih
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Soukaina Guaoua
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp 2610, Belgium
| | - Jill E Urquhart
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Simon G Williams
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Neil A Roberts
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Mustapha El Alloussi
- Département de Pédodontie-Prévention, Faculté de Médecine Dentaire, Université Mohammed V, BP 6212 Madinat Al Irfane, 10100 Rabat, Morocco; Service d'Odontologie, Hôpital Militaire d'Instruction Mohamed V, Avenue des Far, Hay Riad, 10100 Rabat, Morocco
| | - Graeme C Black
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Hind Ramdi
- Département de Pédodontie-Prévention, Faculté de Médecine Dentaire, Université Mohammed V, BP 6212 Madinat Al Irfane, 10100 Rabat, Morocco
| | - Audrey Heimler
- Division of Human Genetics, Schneider Children's Hospital of Long Island Jewish Medical Center, New Hyde Park, NY 11042, USA
| | - Alan Fryer
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool L8 7SS, UK
| | - Sally-Ann Lynch
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; Department of Genetics, Children's University Hospital, Dublin 12, Ireland
| | - Nicola Cooper
- West Midlands Regional Genetics Service, Birmingham Women's Hospital NHS Trust, Birmingham B15 2TG, UK
| | - Kai Ren Ong
- West Midlands Regional Genetics Service, Birmingham Women's Hospital NHS Trust, Birmingham B15 2TG, UK
| | - Claire E L Smith
- Leeds Institute of Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Christopher F Inglehearn
- Leeds Institute of Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Alan J Mighell
- Leeds Institute of Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK; School of Dentistry, University of Leeds, Leeds LS2 9JT, UK
| | - Claire Elcock
- Academic Unit of Oral Health and Development, School of Clinical Dentistry, University of Sheffield, S10 2TA, UK
| | - James A Poulter
- Leeds Institute of Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Marc Tischkowitz
- Department of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Clinical Genetics, East Anglian Regional Genetics Service, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Sally J Davies
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco; Département de Génétique Médicale, Institut National d'Hygiène, BP 769 Agdal, 10090 Rabat, Morocco
| | | | - William G Newman
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands.
| | - Guy Van Camp
- Department of Medical Genetics, University of Antwerp, Antwerp 2610, Belgium.
| |
Collapse
|
23
|
Sá MJN, Rocha JC, Almeida MF, Carmona C, Martins E, Miranda V, Coutinho M, Ferreira R, Pacheco S, Laranjeira F, Ribeiro I, Fortuna AM, Lacerda L. Infantile Refsum Disease: Influence of Dietary Treatment on Plasma Phytanic Acid Levels. JIMD Rep 2015; 26:53-60. [PMID: 26303611 DOI: 10.1007/8904_2015_487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 04/04/2023] Open
Abstract
Infantile Refsum disease (IRD) is one of the less severe of Zellweger spectrum disorders (ZSDs), a group of peroxisomal biogenesis disorders resulting from a generalized peroxisomal function impairment. Increased plasma levels of very long chain fatty acids (VLCFA) and phytanic acid are biomarkers used in IRD diagnosis. Furthermore, an increased plasma level of phytanic acid is known to be associated with neurologic damage. Treatment of IRD is symptomatic and multidisciplinary.The authors report a 3-year-old child, born from consanguineous parents, who presented with developmental delay, retinitis pigmentosa, sensorineural deafness and craniofacial dysmorphisms. While the relative level of plasma C26:0 was slightly increased, other VLCFA were normal. Thus, a detailed characterization of the phenotype was essential to point to a ZSD. Repeatedly increased levels of plasma VLCFA, along with phytanic acid and pristanic acid, deficient dihydroxyacetone phosphate acyltransferase activity in fibroblasts and identification of the homozygous pathogenic mutation c.2528G>A (p.Gly843Asp) in the PEX1 gene, confirmed this diagnosis. Nutritional advice and follow-up was proposed aiming phytanic acid dietary intake reduction. During dietary treatment, plasma levels of phytanic acid decreased to normal, and the patient's development evaluation showed slow progressive acquisition of new competences.This case report highlights the relevance of considering a ZSD in any child with developmental delay who manifests hearing and visual impairment and of performing a systematic biochemical investigation, when plasma VLCFA are mildly increased. During dietary intervention, a biochemical improvement was observed, and the long-term clinical effect of this approach needs to be evaluated.
Collapse
Affiliation(s)
- Maria João Nabais Sá
- Department of Medical Genetics, Centro de Genética Médica Dr. Jacinto de Magalhães/Centro Hospitalar do Porto, Porto, Portugal.
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, Porto, Portugal.
| | - Júlio C Rocha
- Centro de Genética Médica Doutor Jacinto de Magalhães, CHP EPE, Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | - Manuela F Almeida
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, Porto, Portugal
- Centro de Genética Médica Doutor Jacinto de Magalhães, CHP EPE, Porto, Portugal
| | - Carla Carmona
- Department of Medical Genetics, Centro de Genética Médica Dr. Jacinto de Magalhães/Centro Hospitalar do Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, Porto, Portugal
| | - Esmeralda Martins
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, Porto, Portugal
- Metabolic Disorders Consultation/Department of Pediatrics, Hospital de Santo António/Centro Hospitalar do Porto, Porto, Portugal
| | - Vasco Miranda
- Department of Ophthalmology, Hospital de Santo António/Centro Hospitalar do Porto, Porto, Portugal
| | - Miguel Coutinho
- Department of ENT, Hospital de Santo António/Centro Hospitalar do Porto, Porto, Portugal
| | - Rita Ferreira
- Unit of Biochemical Genetics, Centro de Genética Médica Dr. Jacinto de Magalhães/Centro Hospitalar do Porto, Porto, Portugal
| | - Sara Pacheco
- Unit of Biochemical Genetics, Centro de Genética Médica Dr. Jacinto de Magalhães/Centro Hospitalar do Porto, Porto, Portugal
| | - Francisco Laranjeira
- Unit of Biochemical Genetics, Centro de Genética Médica Dr. Jacinto de Magalhães/Centro Hospitalar do Porto, Porto, Portugal
| | - Isaura Ribeiro
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, Porto, Portugal
- Unit of Biochemical Genetics, Centro de Genética Médica Dr. Jacinto de Magalhães/Centro Hospitalar do Porto, Porto, Portugal
| | - Ana Maria Fortuna
- Department of Medical Genetics, Centro de Genética Médica Dr. Jacinto de Magalhães/Centro Hospitalar do Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, Porto, Portugal
| | - Lúcia Lacerda
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, Porto, Portugal
- Unit of Biochemical Genetics, Centro de Genética Médica Dr. Jacinto de Magalhães/Centro Hospitalar do Porto, Porto, Portugal
| |
Collapse
|
24
|
Braverman NE, D'Agostino MD, MacLean GE. Peroxisome biogenesis disorders: Biological, clinical and pathophysiological perspectives. ACTA ACUST UNITED AC 2013; 17:187-96. [DOI: 10.1002/ddrr.1113] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/17/2012] [Indexed: 01/08/2023]
|
25
|
Sun Y, Wang L, Wei X, Zhu Q, Yang Y, Lan Z, Qu N, Chu Y, Wang Y, Yang S, Liang Y, Wang W, Yi X. Analysis of a Chinese pedigree with Zellweger syndrome reveals a novel PEX1 mutation by next-generation sequencing. Clin Chim Acta 2013; 417:57-61. [DOI: 10.1016/j.cca.2012.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022]
|
26
|
Mignarri A, Vinciguerra C, Giorgio A, Ferdinandusse S, Waterham H, Wanders R, Bertini E, Dotti MT, Federico A. Zellweger Spectrum Disorder with Mild Phenotype Caused by PEX2 Gene Mutations. JIMD Rep 2012; 6:43-6. [PMID: 23430938 DOI: 10.1007/8904_2011_102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 12/12/2022] Open
Abstract
The Zellweger spectrum disorders (ZSDs) are known to be severe disorders with onset in the newborn period or later in childhood, frequently resulting in death during childhood or adolescence. Here, we report a case of ZSD due to mutations in the PEX2 gene, with very mild phenotype. A 51-year-old Italian man was referred to us because of a clinical picture characterized by ataxia, areflexia, nystagmus, and strabismus, with childhood onset and slowly progressive course. The patient showed no cognitive impairment. Neurological examination revealed gait ataxia, dysarthria, dysmetria, areflexia, and bilateral pes cavus. Nerve conduction studies indicated a severe axonal sensorimotor polyneuropathy. Brain MRI showed marked cerebellar atrophy and absence of white matter involvement. MR spectroscopy uncovered a decreased N-acetyl aspartate peak. Biochemical analyses suggested a mild peroxisomal defect. Sequence analysis of the PEX2 gene identified two heterozygous mutations. The clinical phenotype of our patient differs from previously reported ZSD patients with PEX2 gene mutations and suggests that genetic screening of PEX2 is warranted in children and adults with otherwise unexplained autosomal recessive ataxia. MRI findings diverged from the "classic" spectrum observed in ZSDs. The moderate impairment in peroxisome biogenesis seems to affect predominantly neuronal cells in cerebellum, leading to cerebellar atrophy.
Collapse
Affiliation(s)
- Andrea Mignarri
- Department of Neurological, Neurosurgical and Behavioural Sciences, Medical School, University of Siena, Viale Bracci 2, Siena, 53100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ebberink MS, Mooijer PAW, Gootjes J, Koster J, Wanders RJA, Waterham HR. Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder. Hum Mutat 2011; 32:59-69. [PMID: 21031596 DOI: 10.1002/humu.21388] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The autosomal recessive Zellweger syndrome spectrum (ZSS) disorders comprise a main subgroup of the peroxisome biogenesis disorders and can be caused by mutations in any of 12 different currently identified PEX genes resulting in severe multisystemic disorders. To get insight into the spectrum of PEX gene defects among ZSS disorders and to investigate if additional human PEX genes are required for functional peroxisome biogenesis, we assigned over 600 ZSS fibroblast cell lines to different genetic complementation groups. These fibroblast cell lines were subjected to a complementation assay involving fusion by means of polyethylene glycol or a PEX cDNA transfection assay specifically developed for this purpose. In a majority of the cell lines we subsequently determined the underlying mutations by sequence analysis of the implicated PEX genes. The PEX cDNA transfection assay allows for the rapid identification of PEX genes defective in ZSS patients. The assignment of over 600 fibroblast cell lines to different genetic complementation groups provides the most comprehensive and representative overview of the frequency distribution of the different PEX gene defects. We did not identify any novel genetic complementation group, suggesting that all PEX gene defects resulting in peroxisome deficiency are currently known.
Collapse
Affiliation(s)
- Merel S Ebberink
- Academic Medical Centre at the University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Grønborg S, Krätzner R, Spiegler J, Ferdinandusse S, Wanders RJA, Waterham HR, Gärtner J. Typical cMRI pattern as diagnostic clue for D-bifunctional protein deficiency without apparent biochemical abnormalities in plasma. Am J Med Genet A 2011; 152A:2845-9. [PMID: 20949532 DOI: 10.1002/ajmg.a.33677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
D-bifunctional protein deficiency (DBPD) is an autosomal recessive disease caused by a defect in peroxisomal β-oxidation. The majority of patients suffer from a severe neurological disease with neonatal hypotonia and seizures and die within the first 2 years of life. Few patients show milder clinical phenotypes with prolonged survival. The diagnosis relies on the clinical presentation, measurement of peroxisomal markers, including very long chain fatty acids (VLCFA) in plasma, followed by enzymatic studies in fibroblasts and genetic testing. Diagnosis can be difficult to establish in milder cases, especially if VLCFA concentration in plasma is not or only mildly elevated. We report on siblings in which initial measurement of plasma VLCFA did not indicate a peroxisomal disease. Nevertheless, cMRI showed a pattern typical for an inborn peroxisomal disease with cerebral and cerebellar leukencephalopathy, perisylvic polymicrogyria, and frontoparietal pachygyria. Repeated measurements of peroxisomal metabolites in plasma prompted by the cMRI findings showed values in the upper normal or mildly elevated range and led to further diagnostic steps. The diagnosis of a type III DBPD with a missense mutation (T15A) in the HSD17B4 gene, coding for D-bifunctional protein (DBP), could be established. We conclude that a typical "peroxisomal pattern" in cMRI including cerebral and cerebellar leukencephalopathy, perisylvic polymicrogyria and pachygyria is a valuable clue to the diagnosis of DBPD, especially in cases with no or only very mild abnormalities in plasma.
Collapse
Affiliation(s)
- Sabine Grønborg
- Department of Pediatrics and Pediatric Neurology, Georg August University, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lymphoblastoid cell lines for diagnosis of peroxisome biogenesis disorders. JIMD Rep 2011. [PMID: 23430824 DOI: 10.1007/8904_2011_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] Open
Abstract
Peroxisome biogenesis disorders (PBDs) are a group of autosomal-recessive developmental and progressive metabolic diseases leading to the Zellweger spectrum (ZS) phenotype in most instances. Diagnosis of clinically suspected cases can be difficult because of extensive genetic heterogeneity and large spectrum of disease severity. Furthermore, a second group of peroxisomal diseases caused by deficiencies of single peroxisomal enzymes can show an indistinguishable clinical phenotype. The diagnosis of these peroxisomal disorders relies on the clinical presentation, the biochemical parameters in plasma and erythrocyte membranes, and genetic testing as the final step. Analysis of patients' cells is frequently required during the diagnostic process, e.g., for complementation analysis to identify the affected gene before sequencing. In the cases with unclear clinical or biochemical presentation, patients' cells are analyzed to prove PBD or to demonstrate biochemical abnormalities that might be elusive in plasma. Cell lines from skin fibroblast that are usually generated for diagnostic workup are not available in all instances, mainly because the required skin biopsy is invasive and sometimes denied by parents. An alternative cellular system has not been analyzed sufficiently. In this study, we evaluated the alternative use of lymphoblastoid cell lines (LCLs), derived from a peripheral blood sample, in the diagnostic process for PBD. LCLs were suitable for immunofluorescence visualization of peroxisomal enzymes, complementation analysis, and the biochemical analysis to differentiate between control and PBD LCL. LCLs are therefore an easily obtainable alternative cellular system for a detailed PBD diagnostic workup with a reliability of diagnostic results equal to those of skin fibroblasts.
Collapse
|
30
|
Yik WY, Steinberg SJ, Moser AB, Moser HW, Hacia JG. Identification of novel mutations and sequence variation in the Zellweger syndrome spectrum of peroxisome biogenesis disorders. Hum Mutat 2009; 30:E467-80. [PMID: 19105186 DOI: 10.1002/humu.20932] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive neurodegenerative disorders that affect multiple organ systems. Approximately 80% of PBD patients are classified in the Zellweger syndrome spectrum (PBD-ZSS). Mutations in the PEX1, PEX6, PEX10, PEX12, or PEX26 genes are found in approximately 90% of PBD-ZSS patients. Here, we sequenced the coding regions and splice junctions of these five genes in 58 PBD-ZSS cases previously subjected to targeted sequencing of a limited number of PEX gene exons. In our cohort, 71 unique sequence variants were identified, including 18 novel mutations predicted to disrupt protein function and 2 novel silent variants. We identified 4 patients who had two deleterious mutations in one PEX gene and a third deleterious mutation in a second PEX gene. For two such patients, we conducted cell fusion complementation analyses to identify the defective gene responsible for aberrant peroxisome assembly. Overall, we provide empirical data to estimate the relative fraction of disease-causing alleles that occur in the coding and splice junction sequences of these five PEX genes and the frequency of cases where mutations occur in multiple PEX genes. This information is beneficial for efforts aimed at establishing rapid and sensitive clinical diagnostics for PBD-ZSS patients and interpreting the results from these genetic tests.
Collapse
Affiliation(s)
- Wing Yan Yik
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
31
|
Ebberink MS, Mooyer PAW, Koster J, Dekker CJM, Eyskens FJM, Dionisi-Vici C, Clayton PT, Barth PG, Wanders RJA, Waterham HR. Genotype-phenotype correlation in PEX5-deficient peroxisome biogenesis defective cell lines. Hum Mutat 2009; 30:93-8. [PMID: 18712838 DOI: 10.1002/humu.20833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteins destined for the peroxisomal matrix are targeted by virtue of a peroxisomal targeting sequence type 1 (PTS1) or type 2 (PTS2). In humans, targeting of either class of proteins relies on a cytosolic receptor protein encoded by the PEX5 gene. Alternative splicing of PEX5 results in two protein variants, PEX5S and PEX5L. PEX5S is exclusively involved in PTS1 protein import, whereas PEX5L mediates the import of both PTS1 and PTS2 proteins. Genetic complementation testing with over 500 different fibroblast cell lines from patients diagnosed with a peroxisome biogenesis disorder (PBD) identified 11 cell lines with a defect in PEX5. The aim of this study was to characterize these cell lines at a biochemical and genetic level. To this end, the cultured fibroblasts were analyzed for very long chain fatty acid (VLCFA) concentrations, peroxisomal beta-and alpha-oxidation, dihydroxyacetone-phosphate acyltransferase (DHAPAT) activity, peroxisomal thiolase, and catalase immunofluorescence. Mutation analysis of the PEX5 gene revealed 11 different mutations, eight of which are novel. PTS1- and PTS2-protein import capacity was assessed by transfection of the cells with green fluorescent protein (GFP) tagged with either PTS1 or PTS2. Six cell lines showed a defect in both PTS1 and PTS2 protein import, whereas four cell lines only showed a defect in PTS1 protein import. The location of the different mutations within the PEX5 amino acid sequence correlates rather well with the peroxisomal protein import defect observed in the cell lines.
Collapse
Affiliation(s)
- Merel S Ebberink
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Krause C, Rosewich H, Gärtner J. Rational diagnostic strategy for Zellweger syndrome spectrum patients. Eur J Hum Genet 2009; 17:741-8. [PMID: 19142205 DOI: 10.1038/ejhg.2008.252] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Zellweger syndrome spectrum (ZSS) comprises a clinically and genetically heterogeneous disease entity, which is caused by mutations in any of the 12 different human PEX genes leading to impaired biogenesis of the peroxisome. Patients potentially suffering from ZSS are diagnosed biochemically by measuring elevated levels of very long chain fatty acids, pristanic acid and phytanic acid in plasma and serum and reduced levels of ether phospholipids in erythrocytes. Published reports on diagnostic procedures for ZSS patients are restricted either to biochemical markers or to defined mutations in a subset of PEX genes. Clarification of the primary genetic defect in an affected patient is crucial for genetic counselling, carrier testing or prenatal diagnosis. In this study, we present a rational diagnostic strategy for patients suspected of ZSS. By combining cell biology and molecular genetic methods in an appropriate sequence, we were able to detect the underlying mutation in various PEX genes within adequate time and cost. We applied this method on 90 patients who presented at our institute, Department of Pediatrics and Pediatric Neurology at Georg August University, and detected 174 mutant alleles within six different PEX genes, including two novel deletions and three new missense mutations in PEX6. Furthermore, this strategy will extend our knowledge on genotype-phenotype correlation in various PEX genes. It will contribute to a better understanding of ZSS pathogenesis, allowing the investigation of the effects of diverse mutations on the interaction between PEX proteins and peroxisomal function in vivo.
Collapse
Affiliation(s)
- Cindy Krause
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Georg August University, Göttingen, Germany
| | | | | |
Collapse
|