1
|
Pernecker M, Ciarimboli G. Regulation of renal organic cation transporters. FEBS Lett 2024; 598:2328-2347. [PMID: 38831380 DOI: 10.1002/1873-3468.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Transporters for organic cations (OCs) facilitate exchange of positively charged molecules through the plasma membrane. Substrates for these transporters encompass neurotransmitters, metabolic byproducts, drugs, and xenobiotics. Consequently, these transporters actively contribute to the regulation of neurotransmission, cellular penetration and elimination process for metabolic products, drugs, and xenobiotics. Therefore, these transporters have significant physiological, pharmacological, and toxicological implications. In cells of renal proximal tubules, the vectorial secretion pathways for OCs involve expression of organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) on basolateral and apical membrane domains, respectively. This review provides an overview of documented regulatory mechanisms governing OCTs and MATEs. Additionally, regulation of these transporters under various pathological conditions is summarized. The expression and functionality of OCTs and MATEs are subject to diverse pre- and post-translational modifications, providing insights into their regulation in various pathological conditions. Typically, in diseases, downregulation of transporter expression is observed, probably as a protective mechanism to prevent additional damage to kidney tissue. This regulation may be attributed to the intricate network of modifications these transporters undergo, shedding light on their dynamic responses in pathological contexts.
Collapse
Affiliation(s)
- Moritz Pernecker
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| |
Collapse
|
2
|
Tsang YP, Hao T, Mao Q, Kelly EJ, Unadkat JD. Dysregulation of the mRNA Expression of Human Renal Drug Transporters by Proinflammatory Cytokines in Primary Human Proximal Tubular Epithelial Cells. Pharmaceutics 2024; 16:285. [PMID: 38399338 PMCID: PMC10893102 DOI: 10.3390/pharmaceutics16020285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Proinflammatory cytokines, which are elevated during inflammation or infections, can affect drug pharmacokinetics (PK) due to the altered expression or activity of drug transporters and/or metabolizing enzymes. To date, such studies have focused on the effect of cytokines on the activity and/or mRNA expression of hepatic transporters and drug-metabolizing enzymes. However, many antibiotics and antivirals used to treat infections are cleared by renal transporters, including the basal organic cation transporter 2 (OCT2), organic anion transporters 1 and 3 (OAT1 and 3), the apical multidrug and toxin extrusion proteins 1 and 2-K (MATE1/2-K), and multidrug resistance-associated protein 2 and 4 (MRP2/4). Here, we determined the concentration-dependent effect of interleukin-6 (IL-6), IL-1β, tumor necrosis factor (TNF)-α, and interferon-γ (IFN-γ) on the mRNA expression of human renal transporters in freshly isolated primary human renal proximal tubular epithelial cells (PTECs, n = 3-5). PTECs were exposed to either a cocktail of cytokines, each at 0.01, 0.1, 1, or 10 ng/mL or individually at the same concentrations. Exposure to the cytokine cocktail for 48 h was found to significantly downregulate the mRNA expression, in a concentration-dependent manner, of OCT2, the organic anion transporting polypeptides 4C1 (OATP4C1), OAT4, MATE2-K, P-glycoprotein (P-gp), and MRP2 and upregulate the mRNA expression of the organic cation/carnitine transporter 1 (OCTN1) and MRP3. OAT1 and OAT3 also appeared to be significantly downregulated but only at 0.1 and 10 ng/mL, respectively, without a clear concentration-dependent trend. Among the cytokines, IL-1β appeared to be the most potent at down- and upregulating the mRNA expression of the transporters. Taken together, our results demonstrate for the first time that proinflammatory cytokines transcriptionally dysregulate renal drug transporters in PTECs. Such dysregulation could potentially translate into changes in transporter protein abundance or activity and alter renal transporter-mediated drug PK during inflammation or infections.
Collapse
Affiliation(s)
| | | | | | | | - Jashvant D. Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA; (Y.P.T.); (T.H.); (E.J.K.)
| |
Collapse
|
3
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
4
|
Inhibiting uptake activity of organic anion transporter 2 by bile acids. Drug Metab Pharmacokinet 2022; 43:100448. [DOI: 10.1016/j.dmpk.2022.100448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
|
5
|
Chiba S, Ro A, Ikawa T, Oide Y, Mukai T. Interactions of human organic anion transporters 1-4 and human organic cation transporters 1-3 with the stimulant drug methamphetamine and amphetamine. Leg Med (Tokyo) 2020; 44:101689. [PMID: 32109742 DOI: 10.1016/j.legalmed.2020.101689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 01/11/2023]
Abstract
Drug membrane transport system proteins, namely, drug transporters, are expressed in the kidney and liver and play a crucial role in the excretion process. This study aimed to elucidate the interactions of the drug transporters human organic anion transporters 1, 2, 3, 4 (hOAT1, 2, 3, 4) and human organic cation transporters 1, 2, 3 (hOCT1, 2, 3), which are expressed primarily in human kidney, liver, and brain, with the stimulants methamphetamine (METH) and amphetamine (AMP). The results of an inhibition study using representative substrates of hOATs and hOCTs showed that METH and AMP significantly inhibited (by >50%) uptake of the hOCT1 and hOCT3 representative substrate 1-methy1-4-phenylpyridinium ion (MPP+) and hOCT2 representative substrate tetraethyl ammonium (TEA). However, METH and AMP did not inhibit uptake of the representative substrates of hOAT1, hOAT2, hOAT3, and hOAT4, (i.e., p-aminohippuric (PAH) acid, prostaglandin F2α (PGF2α), estron sulfate (ES), and ES respectively). Kinetic analyses revealed that METH competitively inhibited hOCT1-mediated MPP+ and hOCT2-mediated TEA uptake (Ki, 16.9 and 78.6 µM, respectively). Similarly, AMP exhibited competitive inhibition, with Ki values of 78.6 and 42.8 µM, respectively. In contrast, hOCT3 exhibited mixed inhibition of representative substrate uptake; hence, calculating Ki values was not possible. Herein, we reveal that hOCTs mediate the inhibition of METH and AMP. The results of this uptake study suggest that METH and AMP bind specifically to hOCT1 and hOCT2 without passing through the cell membrane, with subsequent passage of METH and AMP via hOCT3.
Collapse
Affiliation(s)
- Shoetsu Chiba
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan.
| | - Ayako Ro
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Toru Ikawa
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Yukino Oide
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Toshiji Mukai
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
6
|
Bokelmann K, Brockmöller J, Tzvetkov MV. Impact of Promoter Polymorphisms on the Transcriptional Regulation of the Organic Cation Transporter OCT1 (SLC22A1). J Pers Med 2018; 8:jpm8040042. [PMID: 30544975 PMCID: PMC6313513 DOI: 10.3390/jpm8040042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 01/12/2023] Open
Abstract
The organic cation transporter 1 (OCT1, SLC22A1) is strongly expressed in the human liver and facilitates the hepatic uptake of drugs such as morphine, metformin, tropisetron, sumatriptan and fenoterol and of endogenous substances such as thiamine. OCT1 expression is inter-individually highly variable. Here, we analyzed SNPs in the OCT1 promoter concerning their potential contribution to the variability in OCT1 expression. Using electrophoretic mobility shift and luciferase reporter gene assays in HepG2, Hep3B, and Huh7 cell lines, we identified the SNPs −1795G>A (rs6935207) and −201C>G (rs58812592) as having effects on transcription factor binding and/or promoter activity. The A-allele of the −1795G>A SNP showed allele-specific binding of the transcription factor NF-Y leading to 2.5-fold increased enhancer activity of the artificial SV40 promoter. However, the −1795G>A SNP showed no significant effects on the native OCT1 promoter activity. Furthermore, the −1795G>A SNP was not associated with the pharmacokinetics of metformin, fenoterol, sumatriptan and proguanil in healthy individuals or tropisetron efficacy in patients undergoing chemotherapy. Allele-dependent differences in USF1/2 binding and nearly total loss in OCT1 promoter activity were detected for the G-allele of −201C>G, but the SNP is apparently very rare. In conclusion, common OCT1 promoter SNPs have only minor effects on OCT1 expression.
Collapse
Affiliation(s)
- Kristin Bokelmann
- Institute of Clinical Pharmacology, University Medical Center, Georg-August-University, 37075 Göttingen, Germany.
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center, Georg-August-University, 37075 Göttingen, Germany.
| | - Mladen V Tzvetkov
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
7
|
Luo B, Li J, Yang T, Li W, Zhang J, Wang C, Zhao A, Wang R. Evaluation of renal excretion and pharmacokinetics of furosemide in rats after acute exposure to high altitude at 4300 m. Biopharm Drug Dispos 2018; 39:378-387. [PMID: 30120768 DOI: 10.1002/bdd.2154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/09/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
Abstract
With studies indicative of altered renal excretion under high altitude-induced hypobaric hypoxia, the consideration of better therapeutic approaches has long been the aim of research on the management of high altitude related illness. The pharmacokinetics of drugs such as furosemide might be altered under hypoxic conditions, making it essential to establish different dose-regimens to maintain therapeutic efficacy or to avoid toxic side effects at high altitude. Simultaneously, drug-drug interactions (DDIs) mediated by OAT1 occur at high altitude, severely affecting furosemide pharmacokinetics. This study investigated the influence of acute exposure to high altitude at 4300 m on the renal excretion of furosemide in rats. Significant changes in physiological parameters and kidney histopathology were found after acute high altitude exposure. Compared with low altitude, the pharmacokinetics of furosemide and the expression level of OAT1 in kidney were significantly changed after rapid ascent to high altitude. Additionally, the down-regulated OAT1 expression further sustained the potential mechanism for the decreased renal excretion of furosemide, resulting in extended residence of the drug in the human body. The elevation of AUC, Cmax , MRT, t1/2 of furosemide, and decreased CL at high altitude further reinforced the current findings. Moreover, the absorption of furosemide was markedly increased and renal excretion significantly declined after co-administration of captopril, resulting in local drug interaction at high altitude. In conclusion, acute exposure to high altitude may significantly affect the renal excretion of furosemide and the pharmacokinetic parameters of furosemide were altered after co-administration of captopril, which may then impact the conventional therapeutic dosage.
Collapse
Affiliation(s)
- Bingfeng Luo
- Key Laboratory of the Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, PLA, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jing Li
- Key Laboratory of the Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, PLA, Lanzhou, China
| | - Tao Yang
- Department of Pharmacy, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Wenbin Li
- Key Laboratory of the Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, PLA, Lanzhou, China
| | - Juanhong Zhang
- Key Laboratory of the Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, PLA, Lanzhou, China
| | - Chang Wang
- Key Laboratory of the Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, PLA, Lanzhou, China
| | - Anpeng Zhao
- Key Laboratory of the Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, PLA, Lanzhou, China
| | - Rong Wang
- Key Laboratory of the Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, PLA, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Pearce B, Abrahams-October Z, Xhakaza L, Jacobs C, Benjeddou M. Effect of the African-specific promoter polymorphisms on the SLC22A2 gene expression levels. Drug Metab Pers Ther 2018; 33:85-89. [PMID: 29624501 DOI: 10.1515/dmpt-2017-0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms in promoter regions have been shown to alter the transcription of genes. Thus, SNPs in SLC22A2 can result in inter-individual variable response to medication. METHODS The objective of the study was to investigate the effect of the African-specific promoter polymorphisms on the SLC22A2 gene expression levels in vitro. These included rs572296424 and rs150063153, which have been previously identified in the Xhosa population of South Africa. The promoter region (300 bp) for the two haplotypes was cloned into the pGLOW promoterless GFP reporter vector. The GFP expression levels of each haplotype was determined in the HEK293 cells using a GlowMax Multi-Detection E7031 luminometer in the form of light emission. RESULTS The relative promoter activity suggests that no significant variation exists between the expression levels of the WT and -95 haplotypes and the -95 and -156 haplotypes (p=0.498). However, the relative promoter activity of the WT haplotype in comparison to the -156 haplotype displayed a significant difference in expression level (p=0.016). CONCLUSIONS The data presented here show that the African-specific promoter polymorphisms can cause a decrease in the SLC22A2 gene expression levels in vitro, which in turn, may influence the pharmacokinetic profiles of cationic drugs.
Collapse
Affiliation(s)
- Brendon Pearce
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | | | - Lettilia Xhakaza
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Clifford Jacobs
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Mongi Benjeddou
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa
| |
Collapse
|
9
|
Genetic Heterogeneity of SLC22 Family of Transporters in Drug Disposition. J Pers Med 2018; 8:jpm8020014. [PMID: 29659532 PMCID: PMC6023491 DOI: 10.3390/jpm8020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
An important aspect of modern medicine is its orientation to achieve more personalized pharmacological treatments. In this context, transporters involved in drug disposition have gained well-justified attention. Owing to its broad spectrum of substrate specificity, including endogenous compounds and xenobiotics, and its strategical expression in organs accounting for drug disposition, such as intestine, liver and kidney, the SLC22 family of transporters plays an important role in physiology, pharmacology and toxicology. Among these carriers are plasma membrane transporters for organic cations (OCTs) and anions (OATs) with a marked overlap in substrate specificity. These two major clades of SLC22 proteins share a similar membrane topology but differ in their degree of genetic variability. Members of the OCT subfamily are highly polymorphic, whereas OATs have a lower number of genetic variants. Regarding drug disposition, changes in the activity of these variants affect intestinal absorption and target tissue uptake, but more frequently they modify plasma levels due to enhanced or reduced clearance by the liver and secretion by the kidney. The consequences of these changes in transport-associated function markedly affect the effectiveness and toxicity of the treatment in patients carrying the mutation. In solid tumors, changes in the expression of these transporters and the existence of genetic variants substantially determine the response to anticancer drugs. Moreover, chemoresistance usually evolves in response to pharmacological and radiological treatment. Future personalized medicine will require monitoring these changes in a dynamic way to adapt the treatment to the weaknesses shown by each tumor at each stage in each patient.
Collapse
|
10
|
Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 2017; 116:21-36. [PMID: 27320645 DOI: 10.1016/j.addr.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Drug pharmacokinetics is influenced by the function of metabolising enzymes and influx/efflux transporters. Genetic variability of these genes is known to impact on clinical therapies. Solute Carrier Transporters (SLCs) are the primary influx transporters responsible for the cellular uptake of drug molecules, which consequently, impact on drug efficacy and toxicity. The Organic Anion Transporting Polypeptides (OATPs), Organic Anion Transporters (OATs) and Organic Cation Transporters (OCTs/OCTNs) are the most important SLCs involved in drug disposition. The information regarding the influence of SLC polymorphisms on drug pharmacokinetics is limited and remains a hot topic of pharmaceutical research. This review summarises the recent advance in the pharmacogenomics of SLCs with an emphasis on human OATPs, OATs and OCTs/OCTNs. Our current appreciation of the degree of variability in these transporters may contribute to better understanding the inter-patient variation of therapies and thus, guide the optimisation of clinical treatments.
Collapse
|
11
|
Wilson NC, Choudhury A, Carstens N, Mavri-Damelin D. Organic Cation Transporter 2 (OCT2/SLC22A2) Gene Variation in the South African Bantu-Speaking Population and Functional Promoter Variants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:169-176. [PMID: 28253084 DOI: 10.1089/omi.2016.0165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SLC22A2 facilitates the transport of endogenous and exogenous cationic compounds. Many pharmacologically significant compounds are transported by SLC22A2, including the antidiabetic drug metformin, anticancer agent cisplatin, and antiretroviral lamivudine. Genetic polymorphisms in SLC22A2 can modify the pharmacokinetic profiles of such important medicines and could therefore prove useful as precision medicine biomarkers. Since the frequency of SLC22A2 polymorphisms varies among different ethnic populations, we evaluated these in South African Bantu speakers, a majority group in the South African population, who exhibit unique genetic diversity, and we subsequently functionally characterized promoter polymorphisms. We identified 11 polymorphisms within the promoter and 9 single-nucleotide polymorphisms (SNPs) within the coding region of SLC22A2. While some polymorphisms appeared with minor allele frequencies similar to other African and non-African populations, some differed considerably; this was especially notable for three missense polymorphisms. In addition, we functionally characterized two promoter polymorphisms; rs138765638, a three base-pair deletion that bioinformatics analysis suggested could alter c-Ets-1/2, Elk1, and/or STAT4 binding, and rs59695691, an SNP that could abolish TFII-I binding. Significantly higher luciferase reporter gene expression was found for rs138765638 (increase of 37%; p = 0.001) and significantly lower expression for rs59695691 (decrease of 25%; p = 0.038), in comparison to the wild-type control. These observations highlight the importance of identifying and functionally characterizing genetic variation in genes of pharmacological significance. Finally, our data for SLC22A2 attest to the importance of considering genetic variation in different populations for drug safety, response, and global pharmacogenomics, through, for example, projects such as the Human Heredity and Health in Africa initiative.
Collapse
Affiliation(s)
- Nina C Wilson
- 1 The School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| | - Ananyo Choudhury
- 2 Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand , Johannesburg, South Africa
| | - Nadia Carstens
- 3 Division of Human Genetics, National Health Laboratory Service , Johannesburg, South Africa
| | - Demetra Mavri-Damelin
- 1 The School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| |
Collapse
|
12
|
Singh S, Usman K, Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes 2016; 7:302-315. [PMID: 27555891 PMCID: PMC4980637 DOI: 10.4239/wjd.v7.i15.302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a silent progressive polygenic metabolic disorder resulting from ineffective insulin cascading in the body. World-wide, about 415 million people are suffering from T2DM with a projected rise to 642 million in 2040. T2DM is treated with several classes of oral antidiabetic drugs (OADs) viz. biguanides, sulfonylureas, thiazolidinediones, meglitinides, etc. Treatment strategies for T2DM are to minimize long-term micro and macro vascular complications by achieving an optimized glycemic control. Genetic variations in the human genome not only disclose the risk of T2DM development but also predict the personalized response to drug therapy. Inter-individual variability in response to OADs is due to polymorphisms in genes encoding drug receptors, transporters, and metabolizing enzymes for example, genetic variants in solute carrier transporters (SLC22A1, SLC22A2, SLC22A3, SLC47A1 and SLC47A2) are actively involved in glycemic/HbA1c management of metformin. In addition, CYP gene encoding Cytochrome P450 enzymes also play a crucial role with respect to metabolism of drugs. Pharmacogenetic studies provide insights on the relationship between individual genetic variants and variable therapeutic outcomes of various OADs. Clinical utility of pharmacogenetic study is to predict the therapeutic dose of various OADs on individual basis. Pharmacogenetics therefore, is a step towards personalized medicine which will greatly improve the efficacy of diabetes treatment.
Collapse
|
13
|
Polymorphism of organic cation transporter 2 improves glucose-lowering effect of metformin via influencing its pharmacokinetics in Chinese type 2 diabetic patients. Mol Diagn Ther 2015; 19:25-33. [PMID: 25573751 DOI: 10.1007/s40291-014-0126-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES This study aimed to investigate how the organic cation transporter 2 nucleotide polymorphism at site 808 (G → T) affects metformin pharmacokinetics and its long-term anti-diabetic effect. METHODS A total of 220 newly diagnosed type 2 diabetes patients taking oral metformin were recruited, genotyped and then divided into three groups by SLC22A2 genotypes (G/G, G/T, T/T). Nine patients in the GG genotype group, five patients in the GT genotype group and four patients in the TT genotype group were randomly selected for the metformin pharmacokinetic study. A randomized cohort study with 1-year follow-up was performed to clarify the metformin pharmacodynamics. RESULTS After 1 year, the decrease in glycosylated hemoglobin (HbA1c) levels in subjects with the heterozygous variant genotype (GT) was significantly greater than in those with the wild-type homozygote (-2.2 % in GT vs. -1.1 % in GG, P < 0.05) after adjustment for baseline HbA1c levels, exercise and diet in each group. There were also differences in the pharmacokinetic parameters (95 % confidence interval) of metformin between these two groups [area under the concentration-time curve (AUC)0-∞ 19.7 (15.7-23.8) vs. 14.3 (11.7-16.9) μg h/L; renal clearance (CLr) 16.8 (8.5-25.0) vs. 34.1 (24.9-43.2) L/h; tubular secretion clearance (CLt) 8.1 (2.2-18.1) vs. 22.7 (15.5-29.8) L/h; all P < 0.05]. Multivariate analysis further revealed that the presence of T alleles and gender were independent influencing factors of urine excretion of metformin (P < 0.05). CONCLUSION As well as gender, the glucose-lowering efficiency of metformin can be enhanced by SLC22A2 808G > T variants through the delay of its transportation and CLr in Chinese type 2 diabetes populations.
Collapse
|
14
|
Ahn SK, Suh CK, Cha SH. Polymorphisms of SLC22A9 (hOAT7) in Korean Females with Osteoporosis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:319-25. [PMID: 26170735 PMCID: PMC4499643 DOI: 10.4196/kjpp.2015.19.4.319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/15/2022]
Abstract
Among solute carrier proteins, the organic anion transporters (OATs) play an important role for the elimination or reabsorption of endogenous and exogenous negatively charged anionic compounds. Among OATs, SLC22A9 (hOAT7) transports estrone sulfate with high affinity. The net decrease of estrogen, especially in post-menopausal women induces rapid bone loss. The present study was performed to search the SNP within exon regions of SLC22A9 in Korean females with osteoporosis. Fifty healthy controls and 50 osteoporosis patients were screened for the genetic polymorphism in the coding region of SLC22A9 using GC-clamped PCR and denaturing gradient gel electrophoresis (DGGE). Six SNPs were found on the SLC22A9 gene from Korean women with/without osteoporosis. The SNPs were located as follows: two SNPs in the osteoporosis group (A645G and T1277C), three SNPs in the control group (G1449T, C1467T and C1487T) and one SNP in both the osteoporosis and control groups (G767A). The G767A, T1277C and C1487T SNPs result in an amino acid substitution, from synonymous vs nonsynonymous substitution arginine to glutamine (R256Q), phenylalanine to serine (F426S) and proline to leucine (P496L), respectively. The Km values and Vmax of the wild type, R256Q, P496L and F426S were 8.84, 8.87, 9.83 and 12.74 µM, and 1.97, 1.96, 2.06 and 1.55 pmol/oocyte/h, respectively. The present study demonstrates that the SLC22A9 variant F426S is causing inter-individual variation that is leading to the differences in transport of the steroid sulfate conjugate (estrone sulfate) and, therefore this could be used as a marker for certain disease including osteoporosis.
Collapse
Affiliation(s)
- Seong Kyu Ahn
- Department of Tropical Medicine and Parasitology, College of Medicine, Inha University, Incheon 400-712, Korea
| | - Chang Kook Suh
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 400-712, Korea
| | - Seok Ho Cha
- Department of Tropical Medicine and Parasitology, College of Medicine, Inha University, Incheon 400-712, Korea
| |
Collapse
|
15
|
Inoue K, Yuasa H. Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metab Pharmacokinet 2013; 29:12-9. [PMID: 24284432 DOI: 10.2133/dmpk.dmpk-13-rv-119] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methotrexate (MTX) is a derivative of folic acid (folate) and commonly used as an anchor drug for the treatment of rheumatoid arthritis (RA). The pharmacokinetics (PK) and pharmacodynamics (PD) of MTX entirely depends on the function of specific transporters that belong to the two major superfamilies, solute carrier transporters and ATP-binding cassette transporters. Several transporters have been identified as being able to mediate the transport of MTX, and suggested to be involved in the disposition in the body and in the regulation of intracellular metabolism in target cells, together with several enzymes involved in folate metabolism. Thus, drug-drug interactions through the transporters and their genetic polymorphisms may alter the PK and PD of MTX, resulting in an interpatient variability of efficacy. This review summarizes the PK and PD of MTX, particularly in relation to RA therapy and focuses on the roles of transporters involved in PK and PD with the aim of facilitating an understanding of the molecular basis of the mechanism of MTX action to achieve its effective use in RA therapy.
Collapse
Affiliation(s)
- Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | |
Collapse
|
16
|
Yee SW, Nguyen AN, Brown C, Savic RM, Zhang Y, Castro RA, Cropp CD, Choi JH, Singh D, Tahara H, Stocker SL, Huang Y, Brett CM, Giacomini KM. Reduced renal clearance of cefotaxime in asians with a low-frequency polymorphism of OAT3 (SLC22A8). J Pharm Sci 2013; 102:3451-7. [PMID: 23649425 DOI: 10.1002/jps.23581] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/29/2013] [Accepted: 04/12/2013] [Indexed: 12/31/2022]
Abstract
Organic anion transporter 3 (OAT3, SLC22A8), a transporter expressed on the basolateral membrane of the proximal tubule, plays a critical role in the renal excretion of organic anions including many therapeutic drugs. The goal of this study was to evaluate the in vivo effects of the OAT3-Ile305Phe variant (rs11568482), present at 3.5% allele frequency in Asians, on drug disposition with a focus on cefotaxime, a cephalosporin antibiotic. In HEK293-Flp-In cells, the OAT3-Ile305Phe variant had a lower maximum cefotaxime transport activity, Vmax , [159 ± 3 nmol*(mg protein)(-1) /min (mean ± SD)] compared with the reference OAT3 [305 ± 28 nmol*(mg protein)(-1) /min, (mean ± SD), p < 0.01], whereas the Michaelis-Menten constant values (Km ) did not differ. In healthy volunteers, we found volunteers that were heterozygous for the Ile305Phe variant and had a significantly lower cefotaxime renal clearance (CLR ; mean ± SD: 84.8 ± 32.1 mL/min, n = 5) compared with volunteers that were homozygous for the reference allele (158 ± 44.1 mL/min, n = 10; p = 0.006). Furthermore, the net secretory component of cefotaxime renal clearance (CLsec ) was reduced in volunteers heterozygous for the variant allele [33.3 ± 31.8 mL/min (mean ± SD)] compared with volunteers homozygous for the OAT3 reference allele [97.0 ± 42.2 mL/min (mean ± SD), p = 0.01]. In summary, our study suggests that a low-frequency reduced-function polymorphism of OAT3 associates with reduced cefotaxime CLR and CL(sec) .
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Neuhoff S, Gaohua L, Burt H, Jamei M, Li L, Tucker GT, Rostami-Hodjegan A. Accounting for Transporters in Renal Clearance: Towards a Mechanistic Kidney Model (Mech KiM). TRANSPORTERS IN DRUG DEVELOPMENT 2013. [DOI: 10.1007/978-1-4614-8229-1_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Choi CI, Bae JW, Keum SK, Lee YJ, Lee HI, Jang CG, Lee SY. Effects of OCT2 c.602C > T genetic variant on the pharmacokinetics of lamivudine. Xenobiotica 2012; 43:636-40. [PMID: 23252721 DOI: 10.3109/00498254.2012.747710] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. The renal excretion of organic cation drugs, including lamivudine, is mostly mediated by OCT2 in vitro. To date, three putatively relevant single nucleotide polymorphisms (SNPs), including c.596C > T (p.Thr199Ile), c.602C > T (p.Thr201Met), and c.808G > T (p.Ala270Ser) have been observed in Asians. The effects of the SLC22A2 c.602C > T genetic variant on the pharmacokinetics of lamivudine were studied with healthy Korean subjects. 2. Nineteen healthy subjects carrying either the SLC22A2 c.602CC (n = 12) or c.602CT (n = 7) genotype volunteered for this study. A single 100 mg dose of lamivudine was orally administered to each subject. Blood samples were collected for up to 24 h and the plasma concentrations of lamivudine were measured using liquid chromatography-tandem mass spectrometry. 3. The mean plasma concentration-time profiles of lamivudine in the c.602CC and c.602CT genotype groups were similar. There was no significant difference in the overall pharmacokinetic parameters of lamivudine between the c.602CC and c.602CT genotype groups. Differences in renal clearance and tubular secretion clearance were also not statistically significant between the two genotype groups. 4. The SLC22A2 c.602C > T genotype did not affect the pharmacokinetics of lamivudine in humans in vivo. Dose adjustment of lamivudine is not required between individuals with c.602CC and c.602CT genotypes.
Collapse
Affiliation(s)
- Chang-Ik Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Burckhardt G. Drug transport by Organic Anion Transporters (OATs). Pharmacol Ther 2012; 136:106-30. [PMID: 22841915 DOI: 10.1016/j.pharmthera.2012.07.010] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 02/08/2023]
Abstract
Common to all so far functionally characterized Organic Anion Transporters (OATs) is their broad substrate specificity and their ability to exchange extracellular against intracellular organic anions. Many OATs occur in renal proximal tubules, the site of active drug secretion. Exceptions are murine Oat6 (nasal epithelium), human OAT7 (liver), and rat Oat8 (renal collecting ducts). In human kidneys, OAT1, OAT2, and OAT3 are localized in the basolateral membrane, and OAT4, OAT10, and URAT1 in the apical cell membrane of proximal tubule cells, respectively. In rats and mice, Oat1 and Oat3 are located basolaterally, and Oat2, Oat5, Oat9, Oat10, and Urat1 apically. Several classes of drugs interact with human OAT1-3, including ACE inhibitors, angiotensin II receptor antagonists, diuretics, HMG CoA reductase inhibitors, β-lactam antibiotics, antineoplastic and antiviral drugs, and uricosuric drugs. For most drugs, interaction was demonstrated in vitro by inhibition of OAT-mediated transport of model substrates; for some drugs, transport by OATs was directly proven. Based on IC₅₀ values reported in the literature, OAT1 and OAT3 show comparable affinities for diuretics, cephalosporins, and nonsteroidal anti-inflammatory drugs whereas OAT2 has a lower affinity to most of these compounds. Drug-drug interactions at OAT1 and OAT3 may retard renal drug secretion and cause untoward effects. OAT4, OAT10, and URAT1 in the apical membrane contribute to proximal tubular urate absorption, and OAT10 to nicotinate absorption. OAT4 is in addition able to release drugs, e.g. diuretics, into the tubule lumen.
Collapse
Affiliation(s)
- Gerhard Burckhardt
- Abteilung Vegetative Physiologie und Pathophysiologie, Zentrum Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
20
|
Ulu R, Dogukan A, Tuzcu M, Gencoglu H, Ulas M, İlhan N, Muqbil I, Mohammad RM, Kucuk O, Sahin K. Regulation of renal organic anion and cation transporters by thymoquinone in cisplatin induced kidney injury. Food Chem Toxicol 2012; 50:1675-9. [DOI: 10.1016/j.fct.2012.02.082] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/22/2012] [Accepted: 02/26/2012] [Indexed: 12/24/2022]
|
21
|
Abstract
Drug transporters are now widely acknowledged as important determinants governing drug absorption, excretion, and, in many cases, extent of drug entry into target organs. There is also a greater appreciation that altered drug transporter function, whether due to genetic polymorphisms, drug-drug interactions, or environmental factors such as dietary constituents, can result in unexpected toxicity. Such effects are in part due to the interplay between various uptake and efflux transporters with overlapping functional capabilities that can manifest as marked interindividual variability in drug disposition in vivo. Here we review transporters of the solute carrier (SLC) and ATP-binding cassette (ABC) superfamilies considered to be of major importance in drug therapy and outline how understanding the expression, function, and genetic variation in such drug transporters will result in better strategies for optimal drug design and tissue targeting as well as reduce the risk for drug-drug interactions and adverse drug responses.
Collapse
Affiliation(s)
- M K DeGorter
- Division of Clinical Pharmacology, University of Western Ontario, London, Canada N6A 5A5
| | | | | | | |
Collapse
|
22
|
Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011; 50:81-98. [PMID: 21241070 DOI: 10.2165/11534750-000000000-00000] [Citation(s) in RCA: 836] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metformin is widely used for the treatment of type 2 diabetes mellitus. It is a biguanide developed from galegine, a guanidine derivative found in Galega officinalis (French lilac). Chemically, it is a hydrophilic base which exists at physiological pH as the cationic species (>99.9%). Consequently, its passive diffusion through cell membranes should be very limited. The mean ± SD fractional oral bioavailability (F) of metformin is 55 ± 16%. It is absorbed predominately from the small intestine. Metformin is excreted unchanged in urine. The elimination half-life (t(½)) of metformin during multiple dosages in patients with good renal function is approximately 5 hours. From published data on the pharmacokinetics of metformin, the population mean of its clearances were calculated. The population mean renal clearance (CL(R)) and apparent total clearance after oral administration (CL/F) of metformin were estimated to be 510 ± 130 mL/min and 1140 ± 330 mL/min, respectively, in healthy subjects and diabetic patients with good renal function. Over a range of renal function, the population mean values of CL(R) and CL/F of metformin are 4.3 ± 1.5 and 10.7 ± 3.5 times as great, respectively, as the clearance of creatinine (CL(CR)). As the CL(R) and CL/F decrease approximately in proportion to CL(CR), the dosage of metformin should be reduced in patients with renal impairment in proportion to the reduced CL(CR). The oral absorption, hepatic uptake and renal excretion of metformin are mediated very largely by organic cation transporters (OCTs). An intron variant of OCT1 (single nucleotide polymorphism [SNP] rs622342) has been associated with a decreased effect on blood glucose in heterozygotes and a lack of effect of metformin on plasma glucose in homozygotes. An intron variant of multidrug and toxin extrusion transporter [MATE1] (G>A, SNP rs2289669) has also been associated with a small increase in antihyperglycaemic effect of metformin. Overall, the effect of structural variants of OCTs and other cation transporters on the pharmacokinetics of metformin appears small and the subsequent effects on clinical response are also limited. However, intersubject differences in the levels of expression of OCT1 and OCT3 in the liver are very large and may contribute more to the variations in the hepatic uptake and clinical effect of metformin. Lactic acidosis is the feared adverse effect of the biguanide drugs but its incidence is very low in patients treated with metformin. We suggest that the mean plasma concentrations of metformin over a dosage interval be maintained below 2.5 mg/L in order to minimize the development of this adverse effect.
Collapse
Affiliation(s)
- Garry G Graham
- Department of Pharmacology & Toxicology, St Vincents Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Han YF, Fan XH, Wang XJ, Sun K, Xue H, Li WJ, Wang YB, Chen JZ, Zhen YS, Zhang WL, Zhou X, Hui R. Association of intergenic polymorphism of organic anion transporter 1 and 3 genes with hypertension and blood pressure response to hydrochlorothiazide. Am J Hypertens 2011; 24:340-6. [PMID: 21164499 DOI: 10.1038/ajh.2010.191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Organic anion transporter (OAT) 1 and OAT3, encoded by a tightly linked gene pair, play a key role in renal secretion of diuretics. However, no study has yet examined the influence of OAT1 and OAT3 polymorphisms on high blood pressure (BP) and the response to thiazide diuretics. We hypothesized that intergenic polymorphisms between OAT1 and OAT3 might be associated with adult hypertension and the antihypertensive effects of hydrochlorothiazide (HCTZ). METHODS The association of an intergenic polymorphism (rs10792367) with hypertension risk was investigated in two independent case-control studies (n = 1,592 and 602), and then a combined analysis was performed for improving power (1,106 cases and 1,088 controls) with adjustment for geographic location. Two clinical trials (n = 542 and 274) were conducted in untreated hypertensive patients for the association of rs10792367 with antihypertensive responses to 4 and 8 weeks of HCTZ treatment. RESULTS No significant association was found between rs10792367 and hypertension after adjustment for conventional risk factors in either the two populations, respectively, or the combined two population. After adjustment for pretreatment BP and other confounders, HCTZ-induced reduction in systolic BP was 4.8 mm Hg (P = 0.006, first trial) and 6.1 mm Hg (P = 0.003, in second trial) lower, respectively, in C allele carriers than in GG carriers in the two clinical trials. CONCLUSIONS Intergenic polymorphism rs10792367 between OAT1 and OAT3 is not associated with hypertension, but appears to be involved in between-individual variations in antihypertensive responses to HCTZ.
Collapse
|
24
|
Nies AT, Koepsell H, Damme K, Schwab M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol 2011:105-67. [PMID: 21103969 DOI: 10.1007/978-3-642-14541-4_3] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Organic cation transporters (OCTs) of the solute carrier family (SLC) 22 and multidrug and toxin extrusion (MATE) transporters of the SLC47 family have been identified as uptake and efflux transporters, respectively, for xenobiotics including several clinically used drugs such as the antidiabetic agent metformin, the antiviral agent lamivudine, and the anticancer drug oxaliplatin. Expression of human OCT1 (SLC22A1) and OCT2 (SLC22A2) is highly restricted to the liver and kidney, respectively. By contrast, OCT3 (SLC22A3) is more widely distributed. MATEs (SLC47A1, SLC47A2) are predominantly expressed in human kidney. Data on in vitro studies reporting a large number of substrates and inhibitors of OCTs and MATEs are systematically summarized. Several genetic variants of human OCTs and in part of MATE1 have been reported, and some of them result in reduced in vitro transport activity corroborating data from studies with knockout mice. A comprehensive overview is given on currently known genotype-phenotype correlations for variants in OCTs and MATE1 related to protein expression, pharmacokinetics/-dynamics of transporter substrates, treatment outcome, and disease susceptibility.
Collapse
Affiliation(s)
- Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| | | | | | | |
Collapse
|
25
|
Burckhardt G, Burckhardt BC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 2011:29-104. [PMID: 21103968 DOI: 10.1007/978-3-642-14541-4_2] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organic anion transporters 1-10 (OAT1-10) and the urate transporter 1 (URAT1) belong to the SLC22A gene family and accept a huge variety of chemically unrelated endogenous and exogenous organic anions including many frequently described drugs. OAT1 and OAT3 are located in the basolateral membrane of renal proximal tubule cells and are responsible for drug uptake from the blood into the cells. OAT4 in the apical membrane of human proximal tubule cells is related to drug exit into the lumen and to uptake of estrone sulfate and urate from the lumen into the cell. URAT1 is the major urate-absorbing transporter in the apical membrane and is a target for uricosuric drugs. OAT10, also located in the luminal membrane, transports nicotinate with high affinity and interacts with drugs. Major extrarenal locations of OATs include the blood-brain barrier for OAT3, the placenta for OAT4, the nasal epithelium for OAT6, and the liver for OAT2 and OAT7. For all transporters we provide information on cloning, tissue distribution, factors influencing OAT abundance, interaction with endogenous compounds and different drug classes, drug/drug interactions and, if known, single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Gerhard Burckhardt
- Abteilung Vegetative Physiologie und Pathophysiologie, Zentrum Physiologie und Pathophysiologie, Göttingen, Germany.
| | | |
Collapse
|
26
|
Abdel-Rahman SM, Newland JG, Kearns GL. Pharmacologic considerations for oseltamivir disposition: focus on the neonate and young infant. Paediatr Drugs 2011; 13:19-31. [PMID: 21162598 DOI: 10.2165/11536950-000000000-00000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Across much of the world, pandemic H1N1 infection has produced a significant healthcare crisis, reflected in significant morbidity and mortality. Statistics reveal that infection-associated deaths among individuals without pre-existing conditions (e.g. immunosuppression) are clustered in pregnant women and young infants. In developing countries where the availability of influenzae vaccine is limited, the only currently available pharmacologic counter-measure for H1N1 disease is oseltamivir, a neuraminidase inhibitor with excellent in vitro activity against the virus. This drug is available in oral solid and liquid formulations, has excellent peroral bioavailability in adults, and generally has a very favorable safety profile. Many observational studies indicate that oseltamivir treatment is associated with symptomatic improvement in pediatric patients with H1N1 infection and, therefore, is considered to represent a viable therapeutic option for use in children. However, the disposition of the ethyl ester prodrug and its active metabolite has not been well characterized in infants and children. Presently, data are available from only two published investigations and preliminary summary information from a recent presentation of an ongoing study. Given that recent in vitro data support the importance of a target exposure-response profile for the active metabolite of oseltamivir and that many processes known to modulate drug disposition have a developmental basis, understanding the potential impact of age on oseltamivir disposition becomes crucial in the development of age-appropriate dosing regimens for the drug. In this review, the impact of ontogeny on processes that are important in regulating the absorption, distribution, metabolism, and excretion of oseltamivir and its active metabolite are considered. Data from both animal and human investigations are presented in the context of defining how development might influence the dose-exposure relationship and, most importantly, the significant variability associated with it. In addition, the available pediatric pharmacokinetic data for oseltamivir and its active metabolite are summarized and current 'information gaps' deserving of future study are presented.
Collapse
Affiliation(s)
- Susan M Abdel-Rahman
- Division of Clinical Pharmacology and Medical Toxicology, The Childrens Mercy Hospitals and Clinics, Kansas City, Missouri 64108, USA.
| | | | | |
Collapse
|
27
|
Errasti-Murugarren E, Pastor-Anglada M. Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics 2010; 11:809-41. [PMID: 20504255 DOI: 10.2217/pgs.10.70] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article focuses on the different types of transporter proteins that have been implicated in the influx and efflux of nucleoside-derived drugs currently used in the treatment of cancer, viral infections (i.e., AIDS) and other conditions, including autoimmune and inflammatory diseases. Genetic variations in nucleoside-derived drug transporter proteins encoded by the gene families SLC15, SLC22, SLC28, SLC29, ABCB, ABCC and ABCG will be specifically considered. Variants known to affect biological function are summarized, with a particular emphasis on those for which clinical correlations have already been established. Given that relatively little is known regarding the genetic variability of the players involved in determining nucleoside-derived drug bioavailability, it is anticipated that major challenges will be faced in this area of research.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- The Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Center for Biomedical Research Network in the Subject Area of Liver and Digestive Diseases (CIBERehd), Barcelona 08071, Spain
| | | |
Collapse
|
28
|
Zhou F, Zhu L, Cui PH, Church WB, Murray M. Functional characterization of nonsynonymous single nucleotide polymorphisms in the human organic anion transporter 4 (hOAT4). Br J Pharmacol 2009; 159:419-27. [PMID: 20015291 DOI: 10.1111/j.1476-5381.2009.00545.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The human organic anion transporter (hOAT) family of transmembrane carrier proteins mediate the cellular flux of anionic substances, including certain hormones and anti-cancer drugs. hOAT4 is highly expressed at the apical membrane of the renal tubular cell and facilitates drug re-absorption in the kidney. In the present study, the impact of 10 nonsynonymous single nucleotide polymorphisms (SNPs) of hOAT4 on transport function in COS-7 cells was characterized. EXPERIMENTAL APPROACH Transport uptake assay was used to assess the function of the variant transporters. Cell surface biotinylation and western blot analysis were used to investigate the expression characteristics of the transporter proteins. Comparative modelling was used to interpret the influence of nonsynonymous changes in terms of hOAT4 structure. KEY RESULTS Four naturally occurring hOAT4 variants (L29P, R48Y, V155G and T392I) exhibited a significant loss of function. Substitution of leucine-29, which is a conserved residue in OATs, with a proline residue, impaired the synthesis or the apparent stability of the transporter and membrane insertion was disrupted in the R48Y variant. In the case of the V155G and T392I variants, impaired function was due to decreased affinity of the transporter for oestrone sulphate and impaired transporter-substrate turnover respectively. The T392I variant was inhibited more extensively than the wild-type transporter by the cationic substrate tetraethyl ammonium. CONCLUSIONS AND IMPLICATIONS Several naturally occurring SNPs encode variant hOAT4s that may impair the renal tubular re-absorption of important drug substrates.
Collapse
Affiliation(s)
- Fanfan Zhou
- Pharmacogenomics and Drug Development Laboratory, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
29
|
Zhou F, Zhu L, Cui PH, Church WB, Murray M. Functional characterization of nonsynonymous single nucleotide polymorphisms in the human organic anion transporter 4 (hOAT4). Br J Pharmacol 2009. [PMID: 20015291 DOI: 10.1111/j.1476-5381.2009.00545.xbph545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE The human organic anion transporter (hOAT) family of transmembrane carrier proteins mediate the cellular flux of anionic substances, including certain hormones and anti-cancer drugs. hOAT4 is highly expressed at the apical membrane of the renal tubular cell and facilitates drug re-absorption in the kidney. In the present study, the impact of 10 nonsynonymous single nucleotide polymorphisms (SNPs) of hOAT4 on transport function in COS-7 cells was characterized. EXPERIMENTAL APPROACH Transport uptake assay was used to assess the function of the variant transporters. Cell surface biotinylation and western blot analysis were used to investigate the expression characteristics of the transporter proteins. Comparative modelling was used to interpret the influence of nonsynonymous changes in terms of hOAT4 structure. KEY RESULTS Four naturally occurring hOAT4 variants (L29P, R48Y, V155G and T392I) exhibited a significant loss of function. Substitution of leucine-29, which is a conserved residue in OATs, with a proline residue, impaired the synthesis or the apparent stability of the transporter and membrane insertion was disrupted in the R48Y variant. In the case of the V155G and T392I variants, impaired function was due to decreased affinity of the transporter for oestrone sulphate and impaired transporter-substrate turnover respectively. The T392I variant was inhibited more extensively than the wild-type transporter by the cationic substrate tetraethyl ammonium. CONCLUSIONS AND IMPLICATIONS Several naturally occurring SNPs encode variant hOAT4s that may impair the renal tubular re-absorption of important drug substrates.
Collapse
Affiliation(s)
- Fanfan Zhou
- Pharmacogenomics and Drug Development Laboratory, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
30
|
Impact of regulatory polymorphisms in organic anion transporter genes in the human liver. Pharmacogenet Genomics 2009; 19:647-56. [DOI: 10.1097/fpc.0b013e32832fabd3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Chen Y, Li S, Brown C, Cheatham S, Castro RA, Leabman MK, Urban TJ, Chen L, Yee SW, Choi JH, Huang Y, Brett CM, Burchard EG, Giacomini KM. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet Genomics 2009; 19:497-504. [PMID: 19483665 PMCID: PMC3104496 DOI: 10.1097/fpc.0b013e32832cc7e9] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The goal of this study was to determine the effect of a genetic variant in the organic cation transporter 2 (OCT2), OCT2-808G/T, which results in an amino acid change, A270S, on the pharmacokinetics of the antidiabetic drug, metformin. METHODS The uptake of metformin was performed in stably transfected HEK-293 cells expressing the empty vector (MOCK), the reference OCT2-808G, and the variant OCT2-808T. Healthy individuals with known OCT2 genotypes [14 homozygous for the OCT2 reference allele (808G/G) and nine heterozygous for the variant allele (808G/T, *3D)] were recruited to this study. Metformin concentrations in plasma and urine were measured by liquid chromatography-tandem mass spectrometry method. Creatinine levels were also measured in plasma and urine. Pharmacokinetic parameters were evaluated for both the groups. RESULTS We observed that in HEK-293 stably transfected cells, OCT2-808T had a greater capacity to transport metformin than did the reference OCT2. Metformin pharmacokinetics was characterized in 23 healthy volunteers of Caucasian and African-American ancestries. We observed that the renal clearance (CL(R)) and the net secretion (SrCL(R)) of metformin were significantly different between the volunteers heterozygous for the variant allele (808G/T), and the volunteers homozygous for the reference allele (808G/G) (P<0.005). Multivariate analysis revealed that OCT2 genotype was a significant predictor of CL(R) and SrCL(R) of metformin (P<0.01). CONCLUSION We conclude that genetic variation in OCT2 plays an important role in the CL(R) and SrCL(R) of metformin in healthy volunteers.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Shuanglian Li
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Chaline Brown
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Stephen Cheatham
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Richard A. Castro
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Maya K. Leabman
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Thomas J. Urban
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Ligong Chen
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Sook Wah Yee
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Ji Ha Choi
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Yong Huang
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Claire M. Brett
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - Esteban G. Burchard
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| | - Kathleen M. Giacomini
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94143
| |
Collapse
|
32
|
Zolk O, Solbach TF, König J, Fromm MF. Functional characterization of the human organic cation transporter 2 variant p.270Ala>Ser. Drug Metab Dispos 2009; 37:1312-8. [PMID: 19251820 DOI: 10.1124/dmd.108.023762] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The organic cation transporter 2 (OCT2, SLC22A2) plays an important role for renal drug elimination. Recent clinical studies indicate an impact of the frequent nonsynonymous c.808G>T (p.270Ala>Ser) polymorphism on renal clearance of metformin and the extent of the metformin-cimetidine interaction. The role of this polymorphism for renal disposition of endogenous compounds and drugs other than metformin has not been investigated. In addition, it is unclear whether the observed genotype dependence of an OCT2-mediated drug-drug interaction might occur also with other OCT inhibitors. To address these issues, we generated human embryonic kidney cells stably expressing wild-type OCT2 or the p.270Ala>Ser variant. No differences in protein expression levels and membrane incorporation pattern were observed between the two cell lines. The p.270Ala>Ser variant significantly impaired uptake kinetics of 1-methyl-4-phenylpyridinium, dopamine, norepinephrine, and propranolol. V(max) values were significantly reduced for uptake of all four compounds mediated by the p.270Ala>Ser variant compared with wild-type OCT2. In addition, a significant difference in the affinity to wild-type and mutant OCT2 was observed for dopamine (K(m) dopamine: 932 +/- 77 versus 1285 +/- 132 microM). Moreover, out of a set of 27 compounds p.270Ala>Ser OCT2 was significantly less sensitive to inhibition by cimetidine, flurazepam, metformin, mexiletine, propranolol, and verapamil than wild-type OCT2 (e.g., for propranolol: IC(50) wild type versus p.270Ala>Ser 189 versus 895 microM, P < 0.001). Our results indicate that the common OCT2 c.808G>T single nucleotide polymorphism significantly alters uptake of endogenous compounds and drugs. Moreover, for selected compounds the extent of OCT2-mediated drug interactions could depend on OCT2 c.808G>T genotype.
Collapse
Affiliation(s)
- Oliver Zolk
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | |
Collapse
|
33
|
Analytical methods for inferring functional effects of single base pair substitutions in human cancers. Hum Genet 2009; 126:481-98. [PMID: 19434427 PMCID: PMC2762536 DOI: 10.1007/s00439-009-0677-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/29/2009] [Indexed: 02/08/2023]
Abstract
Cancer is a genetic disease that results from a variety of genomic alterations. Identification of some of these causal genetic events has enabled the development of targeted therapeutics and spurred efforts to discover the key genes that drive cancer formation. Rapidly improving sequencing and genotyping technology continues to generate increasingly large datasets that require analytical methods to identify functional alterations that deserve additional investigation. This review examines statistical and computational approaches for the identification of functional changes among sets of single-nucleotide substitutions. Frequency-based methods identify the most highly mutated genes in large-scale cancer sequencing efforts while bioinformatics approaches are effective for independent evaluation of both non-synonymous mutations and polymorphisms. We also review current knowledge and tools that can be utilized for analysis of alterations in non-protein-coding genomic sequence.
Collapse
|
34
|
Tahara H, Yee SW, Urban TJ, Hesselson S, Castro RA, Kawamoto M, Stryke D, Johns SJ, Ferrin TE, Kwok PY, Giacomini KM. Functional genetic variation in the basal promoter of the organic cation/carnitine transporters OCTN1 (SLC22A4) and OCTN2 (SLC22A5). J Pharmacol Exp Ther 2009; 329:262-71. [PMID: 19141711 PMCID: PMC2670604 DOI: 10.1124/jpet.108.146449] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 01/12/2009] [Indexed: 01/18/2023] Open
Abstract
The organic cation/ergothioneine transporter OCTN1 (SLC22A4) and the high-affinity carnitine transporter OCTN2 (SLC22A5), play an important role in the disposition of xenobiotics and endogenous compounds. Here, we analyzed the sequence of the proximal promoter regions of OCTN1 and OCTN2 in four ethnic groups and determined the effects of the identified genetic variants on transcriptional activities and mRNA expression. Six variants were found in the proximal promoter of OCTN1, one of which showed high allele frequency ranging from 13 to 34% in samples from individuals with ancestries in Africa, Europe, China, and Mexico. OCTN1 haplotypes had similar activities as the reference in luciferase reporter assays. For OCTN2, three of the seven variants identified in the proximal promoter showed allele frequencies greater than 29.5% in all populations, with the exception of -207C>G (rs2631367) that was monomorphic in Asian Americans. OCTN2 haplotypes containing -207G, present in all populations, were associated with a gain of function in luciferase reporter assays. Consistent with reporter assays, OCTN2 mRNA expression levels in lymphoblastoid cell lines (LCLs) from gene expression analysis were greater in samples carrying a marker for -207G. This SNP seems to contribute to racial differences in OCTN2 mRNA expression levels in LCLs. Our study with healthy subjects (n = 16) homozygous for either -207C or -207G, showed no appreciable effect of this SNP on carnitine disposition. However, there were significant effects of gender on carnitine plasma levels (p < 0.01). Further in vivo studies of OCTN2 promoter variants on carnitine disposition and variation in drug response are warranted.
Collapse
Affiliation(s)
- Harunobu Tahara
- Department of Biopharmaceutical Sciences, University of California, San Francisco, San Francisco, CA 94158-2911, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|