1
|
Li Z, Wei Z, Su W, Cheng L, Zhang L. The Impact of Mechanical Circulatory Support Devices on White Blood Cell Phenotype and Function. Cardiovasc Eng Technol 2025:10.1007/s13239-025-00784-z. [PMID: 40251454 DOI: 10.1007/s13239-025-00784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Mechanical circulatory support devices (MCSDs) have gradually become an effective treatment of end-stage heart failure (HF). However, the introduction of foreign surfaces and non-physiological shear stress (NPSS) can cause severe damage to various blood cells, leading to impaired function of immune system and increased risk of complications such as inflammation and thrombosis. The effect of mechanical injury on white blood cell (WBC) has been largely neglected compared to that on red blood cell (RBC) and platelet (PLT). METHOD To better understand the impact of MCSDs on WBCs and emphasize the importance of investigating WBC damage to avoid adverse events during mechanical circulatory support, this review elaborated the induction of WBC phenotypic and functional injury by MCSD-related factors, and the relationship between injury and clinical complications. Furthermore, this article provided a detailed review and comparative analysis of in vitro blood-shearing devices (BSDs) and detection methods used in WBC damage investigation. RESULTS NPSS, biomaterials and other related factors can activate WBC, decrease WBC function, and promote the release of pro-inflammatory and pro-thrombotic microparticles, increasing the risk of inflammation and thrombotic complications. The evaluation of WBC damage typically involves measuring cell viability and dysfunction using in vitro BSDs (e.g. concentric cylinder devices) and injury detection methods (e.g. flow cytometry). CONCLUSIONS WBCs with normal morphology may also experience functional failure due to NPSS from MCSDs, leading to sublethal mechanical cell injury. Therefore, the effect of MCSDs on WBCs can be more comprehensively evaluated by a combination of measuring cell functional capacity and cell counting.
Collapse
Affiliation(s)
- Zhuo Li
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Zhenling Wei
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Wangwang Su
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Longhui Cheng
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Liudi Zhang
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
2
|
Gural A, Pajić-Lijaković I, Barshtein G. Mechanical Stimulation of Red Blood Cells Aging: Focusing on the Microfluidics Application. MICROMACHINES 2025; 16:259. [PMID: 40141870 PMCID: PMC11945212 DOI: 10.3390/mi16030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
Human red blood cells (RBCs) are highly differentiated cells, essential in almost all physiological processes. During their circulation in the bloodstream, RBCs are exposed to varying levels of shear stress ranging from 0.1-10 Pa under physiological conditions to 50 Pa in arterial stenotic lesions. Moreover, the flow of blood through splenic red pulp and through artificial organs is associated with brief exposure to even higher levels of shear stress, reaching up to hundreds of Pa. As a result of this exposure, some properties of the cytosol, the cytoskeleton, and the cell membrane may be significantly affected. In this review, we aim to systematize the available information on RBC response to shear stress by focusing on reported changes in various red cell properties. We pay special attention to the results obtained using microfluidics, since these devices allow the researcher to accurately simulate blood flow conditions in the capillaries and spleen.
Collapse
Affiliation(s)
- Alexander Gural
- Blood Bank, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Ivana Pajić-Lijaković
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
3
|
Ma SR, Xia HF, Gong P, Yu ZL. Red Blood Cell-Derived Extracellular Vesicles: An Overview of Current Research Progress, Challenges, and Opportunities. Biomedicines 2023; 11:2798. [PMID: 37893171 PMCID: PMC10604118 DOI: 10.3390/biomedicines11102798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Red blood cell-derived extracellular vesicles (RBC EVs) are small, spherical fragments released from red blood cells. These vesicles, similar to EVs derived from other cell types, are crucial for intercellular communication processes and have been implicated in various physiological and pathological processes. The diagnostic and therapeutic potential of RBC EVs has garnered increasing attention in recent years, revealing their valuable role in the field of medicine. In this review, we aim to provide a comprehensive analysis of the current research status of RBC EVs. We summarize existing studies and highlight the progress made in understanding the characteristics and functions of RBC EVs, with a particular focus on their biological roles in different diseases. We also discuss their potential utility as diagnostic and prognostic biomarkers in diseases and as vectors for drug delivery. Furthermore, we emphasize the need for further research to achieve selective purification of RBC EVs and unravel their heterogeneity, which will allow for a deeper understanding of their diverse functions and exploration of their potential applications in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
4
|
Van Edom CJ, Gramegna M, Baldetti L, Beneduce A, Castelein T, Dauwe D, Frederiks P, Giustino G, Jacquemin M, Janssens SP, Panoulas VF, Pöss J, Rosenberg A, Schaubroeck HAI, Schrage B, Tavazzi G, Vanassche T, Vercaemst L, Vlasselaers D, Vranckx P, Belohlavek J, Gorog DA, Huber K, Mebazaa A, Meyns B, Pappalardo F, Scandroglio AM, Stone GW, Westermann D, Chieffo A, Price S, Vandenbriele C. Management of Bleeding and Hemolysis During Percutaneous Microaxial Flow Pump Support: A Practical Approach. JACC Cardiovasc Interv 2023; 16:1707-1720. [PMID: 37495347 DOI: 10.1016/j.jcin.2023.05.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 07/28/2023]
Abstract
Percutaneous ventricular assist devices (pVADs) are increasingly being used because of improved experience and availability. The Impella (Abiomed), a percutaneous microaxial, continuous-flow, short-term ventricular assist device, requires meticulous postimplantation management to avoid the 2 most frequent complications, namely, bleeding and hemolysis. A standardized approach to the prevention, detection, and treatment of these complications is mandatory to improve outcomes. The risk for hemolysis is mostly influenced by pump instability, resulting from patient- or device-related factors. Upfront echocardiographic assessment, frequent monitoring, and prompt intervention are essential. The precarious hemostatic balance during pVAD support results from the combination of a procoagulant state, due to critical illness and contact pathway activation, together with a variety of factors aggravating bleeding risk. Preventive strategies and appropriate management, adapted to the impact of the bleeding, are crucial. This review offers a guide to physicians to tackle these device-related complications in this critically ill pVAD-supported patient population.
Collapse
Affiliation(s)
- Charlotte J Van Edom
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Mario Gramegna
- Cardiac and Cardiac Surgery Intensive Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Baldetti
- Cardiac and Cardiac Surgery Intensive Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Beneduce
- Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Thomas Castelein
- Cardiovascular Center, Onze-Lieve-Vrouwziekenhuis, Aalst, Belgium
| | - Dieter Dauwe
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Pascal Frederiks
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Gennaro Giustino
- Department of Cardiology, The Zena & Michael A. Wiener Cardiovascular Institute, Mount Sinai, New York, New York
| | - Marc Jacquemin
- Department of Laboratory Medicine, University Hospitals of Leuven, Leuven, Belgium
| | - Stefan P Janssens
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Vasileios F Panoulas
- Departments of Cardiology and Critical Care, Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Janine Pöss
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Alexander Rosenberg
- Departments of Cardiology and Critical Care, Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Benedikt Schrage
- Department of Cardiology, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Guido Tavazzi
- Anaesthesia and Intensive Care, Fondazione Policlinico San Matteo IRCCS, Pavia, Italy
| | - Thomas Vanassche
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Leen Vercaemst
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Vlasselaers
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Pascal Vranckx
- Department of Cardiology and Intensive Care Medicine, Jessa Ziekenhuis, Hasselt, Belgium
| | - Jan Belohlavek
- Second Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Diana A Gorog
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Postgraduate Medical School, University of Hertfordshire, Hertfordshire, United Kingdom
| | - Kurt Huber
- Departments of Cardiology and Intensive Care Medicine, Clinic Ottakring and Sigmund Freud University, Medical School, Vienna, Austria
| | - Alexandre Mebazaa
- Department of Anesthesiology and Critical Care and Burn Unit, Saint-Louis and Lariboisière Hospitals, Paris, France
| | - Bart Meyns
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Federico Pappalardo
- Cardiothoracic and Vascular Anesthesia and Intensive Care, Azienda Ospedaliera Nazionale Santi Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Anna M Scandroglio
- Cardiac and Cardiac Surgery Intensive Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gregg W Stone
- Department of Cardiology, The Zena & Michael A. Wiener Cardiovascular Institute, Mount Sinai, New York, New York
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alaide Chieffo
- Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Susanna Price
- Departments of Cardiology and Critical Care, Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Christophe Vandenbriele
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Departments of Cardiology and Critical Care, Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
5
|
McNamee AP, Simmonds MJ. Red blood cell sublethal damage: haemocompatibility is not the absence of haemolysis. Transfus Med Rev 2023:S0887-7963(23)00013-5. [PMID: 37031086 DOI: 10.1016/j.tmrv.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Blood is a complex fluid owing to its two-phase suspension of formed cellular elements within a protein-rich plasma. Vital to its role in distributing nutrients throughout the circulatory system, the mechanical properties of blood - and particularly red blood cells (RBC)-primarily determine bulk flow characteristics and microcirculatory flux. Various factors impair the physical properties of RBC, including cellular senescence, many diseases, and exposure to mechanical forces. Indeed, the latter is increasingly relevant following the advent of modern life support, such as mechanical circulatory support (MCS), which induce unique interactions between blood and artificial environments that leave blood cells with the signature of aging, albeit accelerated, and crucially underlie various serious complications, including death. Accumulating evidence indicates that these complications appear to be associated with mechanical shear forces present within MCS that are not extreme enough to overtly rupture cells, yet may still induce "sublethal" injury and "fatigue" to vital blood constituents. Impaired RBC physical properties following elevated shear exposure-a hallmark of sublethal injury to blood-are notable and may explain, at least in part, systemic complications and premature mortality associated with MCS. Design of optimal next-generation MCS devices thus requires consideration of biocompatibility and blood-device interactions to minimize potential blood complications and promote clinical success. Presented herein is a contemporary understanding of "blood damage," with emphasis on shear exposures that alter microrheological function but do not overtly destroy cells (ie, sublethal damage). Identification of key cellular factors perturbed by supraphysiological shear exposure are examined, offering potential pathways to enhance design of MCS and blood-contacting medical devices.
Collapse
Affiliation(s)
- Antony P McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
6
|
Antioxidant and Antithrombotic Activities of Kenaf Seed (Hibiscus cannabinus) Coat Ethanol Extract in Sprague Dawley Rats. Appl Biochem Biotechnol 2023; 195:772-800. [PMID: 36173546 DOI: 10.1007/s12010-022-04144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Oxidative stress has been implicated in deadly lifestyle diseases, and antioxidants from plant sources are the primary option in the treatment regime. Kenaf seeds are the storehouse of potential natural antioxidant phytoconstituents. Perhaps, none of the studies documented the phytoconstituents and their antioxidant potential from Kenaf seed coat so far. Thus, the current study focuses on exploring the protective effect of Kenaf Seed Coat Ethanol Extract (KSCEE) against sodium nitrite and diclofenac-induced oxidative stress in vitro (red blood cell and platelets model) and in vivo (female Sprague Dawely rat's model) along with the antithrombotic activity. The infrared spectrophotometry data showed the heterogeneous functional groups (CH, OH, C = C, C = C-C) and aromatic rings. Reverse phase high-performance liquid chromatography and gas chromatography-mass spectrometry chromatogram of KSCEE also evidenced the presence of several phytochemicals. KSCEE displayed about 76% of DPPH scavenging activity with an IC50 value of 34.94 µg/ml. KSCEE significantly (***p < 0.001) normalized the stress markers such as lipid peroxidation, protein carbonyl content, superoxide dismutase, and catalase in sodium nitrite and diclofenac-induced oxidative stress in RBC, platelets, liver, kidney, and small intestine, respectively. Furthermore, KSCEE was found to protect the diclofenac-induced tissue destruction of the liver, kidney, and small intestine obtained from seven groups of female Sprague Dawely rats. KSCEE delayed the clotting time of platelet-rich plasma and platelet-poor plasma and activated partial thromboplastin time, suggesting its anticoagulant property. In addition, KSCEE also exhibited antiplatelet activity by inhibiting both adenosine diphosphate and epinephrine-induced platelet aggregation. In conclusion, KSCEE ameliorates the sodium nitrite and diclofenac-induced oxidative stress in red blood cells, platelets, and experimental animals along with antithrombotic properties.
Collapse
|
7
|
Buerck JP, Foster KM, Larson PR, O'Rear EA. Shear stimulated red blood cell microparticles: Effect on clot structure, flow and fibrinolysis. Biorheology 2023; 59:43-59. [PMID: 36970891 DOI: 10.3233/bir-220012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microparticles (MPs) have activity in thrombus promotion and generation. Erythrocyte microparticles (ErMPs) have been reported to accelerate fibrinolysis in the absence of permeation. We hypothesized that shear induced ErMPs would affect fibrin structure of clots and change flow with implications for fibrinolysis. OBJECTIVE To determine the effect of ErMPs on clot structure and fibrinolysis. METHODS Plasma with elevated ErMPs was isolated from whole blood or from washed red blood cells (RBCs) resuspended in platelet free plasma (PFP) after high shear. Dynamic light scattering (DLS) provided size distribution of ErMPs from sheared samples and unsheared PFP controls. Clots were formed by recalcification for flow/lysis experiments and examined by confocal microscopy and SEM. Flow rates through clots and time-to-lysis were recorded. A cellular automata model showed the effect of ErMPs on fibrin polymerization and clot structure. RESULTS Coverage of fibrin increased by 41% in clots formed from plasma of sheared RBCs in PFP over controls. Flow rate decreased by 46.7% under a pressure gradient of 10 mmHg/cm with reduction in time to lysis from 5.7 ± 0.7 min to 12.2 ± 1.1 min (p < 0.01). Particle size of ErMPs from sheared samples (200 nm) was comparable to endogenous microparticles. CONCLUSIONS ErMPs alter the fibrin network in a thrombus and affect hydraulic permeability resulting in decelerated delivery of fibrinolytic drugs.
Collapse
Affiliation(s)
- James P Buerck
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
| | - Kylie M Foster
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
| | - Preston R Larson
- Samuel Roberts Noble Electron Microscopy Laboratory, University of Oklahoma, Norman, OK, USA
| | - Edgar A O'Rear
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
- Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
8
|
Proteomic Analysis of the Role of the Adenylyl Cyclase-cAMP Pathway in Red Blood Cell Mechanical Responses. Cells 2022; 11:cells11071250. [PMID: 35406814 PMCID: PMC8997765 DOI: 10.3390/cells11071250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Red blood cell (RBC) deformability is modulated by the phosphorylation status of the cytoskeletal proteins that regulate the interactions of integral transmembrane complexes. Proteomic studies have revealed that receptor-related signaling molecules and regulatory proteins involved in signaling cascades are present in RBCs. In this study, we investigated the roles of the cAMP signaling mechanism in modulating shear-induced RBC deformability and examined changes in the phosphorylation of the RBC proteome. We implemented the inhibitors of adenylyl cyclase (SQ22536), protein kinase A (H89), and phosphodiesterase (PDE) (pentoxifylline) to whole blood samples, applied 5 Pa shear stress (SS) for 300 s with a capillary tubing system, and evaluated RBC deformability using a LORRCA MaxSis. The inhibition of signaling molecules significantly deteriorated shear-induced RBC deformability (p < 0.05). Capillary SS slightly increased the phosphorylation of RBC cytoskeletal proteins. Tyrosine phosphorylation was significantly elevated by the modulation of the cAMP/PKA pathway (p < 0.05), while serine phosphorylation significantly decreased as a result of the inhibition of PDE (p < 0.05). AC is the core element of this signaling pathway, and PDE works as a negative feedback mechanism that could have potential roles in SS-induced RBC deformability. The cAMP/PKA pathway could regulate RBC deformability during capillary transit by triggering significant alterations in the phosphorylation state of RBCs.
Collapse
|
9
|
Erythrocyte morphological symmetry analysis to detect sublethal trauma in shear flow. Sci Rep 2021; 11:23566. [PMID: 34876652 PMCID: PMC8651737 DOI: 10.1038/s41598-021-02936-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
The viscoelastic properties of red blood cells (RBC) facilitate flexible shape change in response to extrinsic forces. Their viscoelasticity is intrinsically linked to physical properties of the cytosol, cytoskeleton, and membrane-all of which are highly sensitive to supraphysiological shear exposure. Given the need to minimise blood trauma within artificial organs, we observed RBC in supraphysiological shear through direct visualisation to gain understanding of processes leading to blood damage. Using a custom-built counter-rotating shear generator fit to a microscope, healthy red blood cells (RBC) were directly visualised during exposure to different levels of shear (10-60 Pa). To investigate RBC morphology in shear flow, we developed an image analysis method to quantify (a)symmetry of deforming ellipsoidal cells-following RBC identification and centroid detection, cell radius was determined for each angle around the circumference of the cell, and the resultant bimodal distribution (and thus RBC) was symmetrically compared. While traditional indices of RBC deformability (elongation index) remained unaltered in all shear conditions, following ~100 s of exposure to 60 Pa, the frequency of asymmetrical ellipses and RBC fragments/extracellular vesicles significantly increased. These findings indicate RBC structure is sensitive to shear history, where asymmetrical morphology may indicate sublethal blood damage in real-time shear flow.
Collapse
|