1
|
Piñar-Morales R, Barrero-Hernández F, Aliaga-Martínez L. Human prion diseases: An overview. Med Clin (Barc) 2023:S0025-7753(23)00092-1. [PMID: 37088611 DOI: 10.1016/j.medcli.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/25/2023]
Abstract
Prion diseases are a group of neurodegenerative diseases. The disease-causing agent is a protein (PrP), that is normally produced in the nervous system, aggregated in an abnormal form. The abnormal protein, known as prion (PrPSc), is capable of self-propagation promoting the misfolding of the normal protein (PrP). These conditions can be acquired sporadically, genetically, or infectiously either by eating meat contaminated with prions or from iatrogenic exposure. The diagnosis of these diseases is often challenging. The use of highly sensitive and specific diagnostic tools, such as MRI and RT-QuIC, may aid in the diagnosis. Neuropathological examination of brain tissue ensures a definite diagnosis. At present, no treatment significantly improves the course of prion diseases; however, an early diagnosis is of paramount importance for patient care decision planning, infection control purposes, and genetic counseling.
Collapse
Affiliation(s)
- Raquel Piñar-Morales
- Departamento de Medicina, Facultad de Medicina, Universidad de Granada, Granada, España; Servicio de Neurología, Hospital Clínico San Cecilio, Granada, España
| | - Francisco Barrero-Hernández
- Departamento de Medicina, Facultad de Medicina, Universidad de Granada, Granada, España; Servicio de Neurología, Hospital Clínico San Cecilio, Granada, España
| | - Luis Aliaga-Martínez
- Departamento de Medicina, Facultad de Medicina, Universidad de Granada, Granada, España.
| |
Collapse
|
2
|
Tarozzi M, Baiardi S, Sala C, Bartoletti-Stella A, Parchi P, Capellari S, Castellani G. Genomic, transcriptomic and RNA editing analysis of human MM1 and VV2 sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun 2022; 10:181. [PMID: 36517866 PMCID: PMC9749175 DOI: 10.1186/s40478-022-01483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is characterized by a broad phenotypic spectrum regarding symptoms, progression, and molecular features. Current sporadic CJD (sCJD) classification recognizes six main clinical-pathological phenotypes. This work investigates the molecular basis of the phenotypic heterogeneity of prion diseases through a multi-omics analysis of the two most common sCJD subtypes: MM1 and VV2. We performed DNA target sequencing on 118 genes on a cohort of 48 CJD patients and full exome RNA sequencing on post-mortem frontal cortex tissue on a subset of this cohort. DNA target sequencing identified multiple potential genetic contributors to the disease onset and phenotype, both in terms of coding, damaging-predicted variants, and enriched groups of SNPs in the whole cohort and the two subtypes. The results highlight a different functional impairment, with VV2 associated with higher impairment of the pathways related to dopamine secretion, regulation of calcium release and GABA signaling, showing some similarities with Parkinson's disease both on a genomic and a transcriptomic level. MM1 showed a gene expression profile with several traits shared with different neurodegenerative, without an apparent distinctive characteristic or similarities with a specific disease. In addition, integrating genomic and transcriptomic data led to the discovery of several sites of ADAR-mediated RNA editing events, confirming and expanding previous findings in animal models. On the transcriptomic level, this work represents the first application of RNA sequencing on CJD human brain samples. Here, a good clusterization of the transcriptomic profiles of the two subtypes was achieved, together with the finding of several differently impaired pathways between the two subtypes. The results add to the understanding of the molecular features associated with sporadic CJD and its most common subtypes, revealing strain-specific genetic signatures and functional similarities between VV2 and Parkinson's disease and providing preliminary evidence of RNA editing modifications in human sCJD.
Collapse
Affiliation(s)
- Martina Tarozzi
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Simone Baiardi
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy ,grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Claudia Sala
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Anna Bartoletti-Stella
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Piero Parchi
- grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Sabina Capellari
- grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Gastone Castellani
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
3
|
Melis M, Molari A, Floris G, Vascellari S, Balestrino L, Ladogana A, Poleggi A, Parchi P, Cossu G, Melis M, Orrù S, Defazio G. Genetic Creutzfeldt-Jakob disease in Sardinia: a case series linked to the PRNP R208H mutation due to a single founder effect. Neurogenetics 2020; 21:251-257. [PMID: 32458274 DOI: 10.1007/s10048-020-00618-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
In genetic prion diseases (gPrD), five genetic variants (E200K, V210I, V180I, P102L, and D178N) are responsible for about 85% of cases. The R208H is one of the several additional rare mutations and to date, only 16 cases carrying this mutation have been reported worldwide. To describe the phenotypic features of 5 affected patients belonging to apparently unrelated Sardinian (Italian) families with R208H gPrD, and provide evidence for a possible founder effect are the aims of this study. The R208H PRNP mutation has a much higher relative frequency in Sardinia than elsewhere in Italy (72% vs. 4.4% of gCJD cases). Our cohort shared similar phenotypic features to the previously described patients with R208H-129M haplotype with most patients showing the classical Creutzfeldt-Jakob disease (CJD) phenotype. The analysis of 10 controls and 5 patients by NGS sequencing identified 4 haplotypes, 3 associated with the wild type variant, and one (H1) shared by all patients carrying the 208His variant. This is the first report of a regional cluster for R208H mutation in gPrD and the first report of the presence of a common ancestor for this Sardinian R208H cluster, confirming the probable consequences of genetic isolation process even for rare diseases.
Collapse
Affiliation(s)
- Marta Melis
- SC Neurologia AOU Policlinico di Monserrato, Cagliari, Sardinia, Italy.
| | | | - Gianluca Floris
- SC Neurologia AOU Policlinico di Monserrato, Cagliari, Sardinia, Italy
| | - Sarah Vascellari
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università degli Studi di Cagliari, Cagliari, Italy
| | - Luisa Balestrino
- Genetica Medica, Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, Caligria, Italy
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139, Bologna, Italy.,Department of Experimental Diagnostic and Specialty Medicine (DIMES), Università di Bologna, 40138, Bologna, Italy
| | | | | | - Sandro Orrù
- Genetica Medica, Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, Caligria, Italy
| | - Giovanni Defazio
- SC Neurologia AOU Policlinico di Monserrato, Cagliari, Sardinia, Italy
| |
Collapse
|
4
|
Abstract
Fatal familial insomnia (FFI) and sporadic fatal insomnia (sFI), or thalamic form of sporadic Creutzfeldt-Jakob disease MM2 (sCJDMM2T), are prion diseases originally named and characterized in 1992 and 1999, respectively. FFI is genetically determined and linked to a D178N mutation coupled with the M129 genotype in the prion protein gene (PRNP) at chromosome 20. sFI is a phenocopy of FFI and likely its sporadic form. Both diseases are primarily characterized by progressive sleep impairment, disturbances of autonomic nervous system, and motor signs associated with severe loss of nerve cells in medial thalamic nuclei. Both diseases harbor an abnormal disease-associated prion protein isoform, resistant to proteases with relative mass of 19 kDa identified as resPrPTSE type 2. To date at least 70 kindreds affected by FFI with 198 members and 18 unrelated carriers along with 25 typical cases of sFI have been published. The D178N-129M mutation is thought to cause FFI by destabilizing the mutated prion protein and facilitating its conversion to PrPTSE. The thalamus is the brain region first affected. A similar mechanism triggered spontaneously may underlie sFI.
Collapse
|
5
|
Frau‐Méndez MA, Fernández‐Vega I, Ansoleaga B, Blanco Tech R, Carmona Tech M, Antonio del Rio J, Zerr I, Llorens F, José Zarranz J, Ferrer I. Fatal familial insomnia: mitochondrial and protein synthesis machinery decline in the mediodorsal thalamus. Brain Pathol 2017; 27:95-106. [PMID: 27338255 PMCID: PMC8029211 DOI: 10.1111/bpa.12408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/16/2016] [Indexed: 11/29/2022] Open
Abstract
The expression of subunits of mitochondrial respiratory complexes and components of the protein synthesis machinery from the nucleolus to the ribosome was analyzed in the mediodorsal thalamus in seven cases of fatal familial insomnia (FFI) compared with age-matched controls. NDUFB8 (complex I subunit), SDHB (complex II subunit), UQCRC2 (complex III subunit), COX2 (complex IV subunit), and ATP50 (complex V subunit) expression levels, as revealed by western blotting, were reduced in FFI. Voltage-dependent anion channel (VDAC) and ATP5H were also reduced due to the marked depopulation of neurons. In contrast, a marked increase in superoxide dismutase 2 (SOD2) was found in reactive astrocytes thus suggesting that astrocytes are key factors in oxidative stress responses. The histone-binding chaperones nucleolin and nucleoplasmin 3, and histone H3 di-methylated K9 were markedly reduced together with a decrease in the expression of protein transcription elongation factor eEF1A. These findings show severe impairment in the expression of crucial components of mitochondrial function and protein synthesis in parallel with neuron loss in mediodorsal thalamus at terminal stages of FFI. Therapeutic measures must be taken long before the appearance of clinical symptoms to prevent the devastating effects of FFI.
Collapse
Affiliation(s)
- Margalida A. Frau‐Méndez
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatSpain
| | - Iván Fernández‐Vega
- Department of Neuropathology, Pathology DepartmentUniversity Hospital Araba, Álava, Brain Bank Araba University Hospital, Basque Biobank for Research (O+eHun)Spain
| | - Belén Ansoleaga
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatSpain
| | - Rosa Blanco Tech
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatSpain
- Department of NeuropathologyBiomedical Research Center of Neurodegenerative Diseases (CIBERNED)Spain
| | - Margarita Carmona Tech
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatSpain
- Department of NeuropathologyBiomedical Research Center of Neurodegenerative Diseases (CIBERNED)Spain
| | - Jose Antonio del Rio
- Department of NeuropathologyBiomedical Research Center of Neurodegenerative Diseases (CIBERNED)Spain
- Department of Cell BiologyMolecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, University of BarcelonaBarcelonaSpain
| | - Inga Zerr
- Department of NeurologyClinical Dementia Center, University Medical School, Georg‐August University and German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Franc Llorens
- Department of NeurologyClinical Dementia Center, University Medical School, Georg‐August University and German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Juan José Zarranz
- Neurology DepartmentUniversity Hospital Cruces, University of the Basque CountryBizkaiaSpain
| | - Isidro Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatSpain
- Department of NeuropathologyBiomedical Research Center of Neurodegenerative Diseases (CIBERNED)Spain
| |
Collapse
|
6
|
Llorens F, Thüne K, Schmitz M, Ansoleaga B, Frau-Méndez MA, Cramm M, Tahir W, Gotzmann N, Berjaoui S, Carmona M, Silva CJ, Fernandez-Vega I, José Zarranz J, Zerr I, Ferrer I. Identification of new molecular alterations in fatal familial insomnia. Hum Mol Genet 2016; 25:2417-2436. [PMID: 27056979 DOI: 10.1093/hmg/ddw108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Abstract
Fatal familial insomnia is a rare disease caused by a D178N mutation in combination with methionine (Met) at codon 129 in the mutated allele of PRNP (D178N-129M haplotype). FFI is manifested by sleep disturbances with insomnia, autonomic disorders and spontaneous and evoked myoclonus, among other symptoms. This study describes new neuropathological and biochemical observations in a series of eight patients with FFI. The mediodorsal and anterior nuclei of the thalamus have severe neuronal loss and marked astrocytic gliosis in every case, whereas the entorhinal cortex is variably affected. Spongiform degeneration only occurs in the entorhinal cortex. Synaptic and fine granular proteinase K digestion (PrPres) immunoreactivity is found in the entorhinal cortex but not in the thalamus. Interleukin 6, interleukin 10 receptor alpha subunit, colony stimulating factor 3 receptor and toll-like receptor 7 mRNA expression increases in the thalamus in FFI. PrPc levels are significantly decreased in the thalamus, entorhinal cortex and cerebellum in FFI. This is accompanied by a particular PrPc and PrPres band profile. Altered PrP solubility consistent with significantly reduced PrP levels in the cytoplasmic fraction and increased PrP levels in the insoluble fraction are identified in FFI cases. Amyloid-like deposits are only seen in the entorhinal cortex. The RT-QuIC assay reveals that all the FFI samples of the entorhinal cortex are positive, whereas the thalamus is positive only in three cases and the cerebellum in two cases. The present findings unveil particular neuropathological and neuroinflammatory profiles in FFI and novel characteristics of natural prion protein in FFI, altered PrPres and Scrapie PrP (abnormal and pathogenic PrP) patterns and region-dependent putative capacity of PrP seeding.
Collapse
Affiliation(s)
- Franc Llorens
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Katrin Thüne
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Belén Ansoleaga
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Margalida A Frau-Méndez
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Maria Cramm
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Waqas Tahir
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Nadine Gotzmann
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Sara Berjaoui
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Christopher J Silva
- USDA, Produce Safety & Microbiology Research Unit, Western Regional Research Center, Albany, CA 94710, USA
| | - Ivan Fernandez-Vega
- Pathology Department University Hospital Araba, and Brain Bank Araba University Hospital, Basque Biobank for Research (O+eHun), Alava 01009, Spain
| | - Juan José Zarranz
- Neurology Department, University Hospital Cruces, University of the Basque Country, Bizkaia 48903, Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Isidro Ferrer
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| |
Collapse
|
7
|
Calmels N, Greff G, Obringer C, Kempf N, Gasnier C, Tarabeux J, Miguet M, Baujat G, Bessis D, Bretones P, Cavau A, Digeon B, Doco-Fenzy M, Doray B, Feillet F, Gardeazabal J, Gener B, Julia S, Llano-Rivas I, Mazur A, Michot C, Renaldo-Robin F, Rossi M, Sabouraud P, Keren B, Depienne C, Muller J, Mandel JL, Laugel V. Uncommon nucleotide excision repair phenotypes revealed by targeted high-throughput sequencing. Orphanet J Rare Dis 2016; 11:26. [PMID: 27004399 PMCID: PMC4804614 DOI: 10.1186/s13023-016-0408-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deficient nucleotide excision repair (NER) activity causes a variety of autosomal recessive diseases including xeroderma pigmentosum (XP) a disorder which pre-disposes to skin cancer, and the severe multisystem condition known as Cockayne syndrome (CS). In view of the clinical overlap between NER-related disorders, as well as the existence of multiple phenotypes and the numerous genes involved, we developed a new diagnostic approach based on the enrichment of 16 NER-related genes by multiplex amplification coupled with next-generation sequencing (NGS). METHODS Our test cohort consisted of 11 DNA samples, all with known mutations and/or non pathogenic SNPs in two of the tested genes. We then used the same technique to analyse samples from a prospective cohort of 40 patients. Multiplex amplification and sequencing were performed using AmpliSeq protocol on the Ion Torrent PGM (Life Technologies). RESULTS We identified causative mutations in 17 out of the 40 patients (43%). Four patients showed biallelic mutations in the ERCC6(CSB) gene, five in the ERCC8(CSA) gene: most of them had classical CS features but some had very mild and incomplete phenotypes. A small cohort of 4 unrelated classic XP patients from the Basque country (Northern Spain) revealed a common splicing mutation in POLH (XP-variant), demonstrating a new founder effect in this population. Interestingly, our results also found ERCC2(XPD), ERCC3(XPB) or ERCC5(XPG) mutations in two cases of UV-sensitive syndrome and in two cases with mixed XP/CS phenotypes. CONCLUSIONS Our study confirms that NGS is an efficient technique for the analysis of NER-related disorders on a molecular level. It is particularly useful for phenotypes with combined features or unusually mild symptoms. Targeted NGS used in conjunction with DNA repair functional tests and precise clinical evaluation permits rapid and cost-effective diagnosis in patients with NER-defects.
Collapse
Affiliation(s)
- Nadège Calmels
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France.
| | - Géraldine Greff
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Cathy Obringer
- Laboratoire de Génétique Médicale - INSERM U1112, Institut de Génétique Médicale d'Alsace (IGMA), Faculté de médecine de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Nadine Kempf
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Claire Gasnier
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Julien Tarabeux
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Marguerite Miguet
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Geneviève Baujat
- Centre de Référence Maladies Osseuses Constitutionnelles, Département de Génétique, Hôpital Necker-Enfants malades, Paris, France
| | - Didier Bessis
- Département de Dermatologie, Hôpital Saint-Éloi, 80 avenue Augustin-Fliche, 34295, Montpellier, France
| | - Patricia Bretones
- Service d'Endocrinologie Pédiatrique, diabète et maladies héréditaires du métabolisme, Hôpital Femme Mère enfant, GH Est, 59 boulevard Pinel, Bron, France
| | - Anne Cavau
- Service de Pédiatrie Générale, Hôpital Necker-Enfants malades, Paris, France
| | - Béatrice Digeon
- Service de Pédiatrie, CHU de Reims, Hôpital Maison Blanche, 45 rue Cognacq-Jay, Reims, France
| | - Martine Doco-Fenzy
- Service de Génétique et Biologie de la Reproduction CHU de Reims, Hôpital Maison Blanche, 45 rue Cognacq-Jay, Reims, France
| | - Bérénice Doray
- Service de Génétique, CHU La Réunion, Hôpital Félix Guyon, Allée des Topazes, Saint-Denis, France
| | - François Feillet
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Médecine Infantile, INSERM NGERE 954, CHU Brabois Enfants, Allée du Morvan, Vandœuvre les Nancy, France
| | - Jesus Gardeazabal
- Servicio de Dermatología, Cruces University Hospital, BioCruces Health Research Institute, Baracaldo Vizcaya, Spain
| | - Blanca Gener
- Servicio de Genética, Cruces University Hospital, BioCruces Health Research Institute, Baracaldo Vizcaya, Spain
| | - Sophie Julia
- Service de Génétique Médicale, CHU de Toulouse - Hôpital Purpan, Place du Docteur Baylac, Toulouse, France
| | - Isabel Llano-Rivas
- Servicio de Genética, Cruces University Hospital, BioCruces Health Research Institute, Baracaldo Vizcaya, Spain
| | - Artur Mazur
- Department of Pediatrics, Pediatric Endocrinology and Diabetes, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Caroline Michot
- Service de Génétique Médicale, Hôpital Necker Enfants-Malades, 24 Bd du Montparnasse, Paris, France
| | | | - Massimiliano Rossi
- Centre de Référence des Anomalies du Développement, Service de Génétique, Hospices Civils de Lyon, Lyon, France.,INSERM U1028; CNRS UMR5292; CNRL TIGER Team, Lyon, France
| | - Pascal Sabouraud
- Service de Pédiatrie A - Neurologie pédiatrique, CHU de Reims - American Memorial Hospital, 47 rue Cognacq Jay, Reims, France
| | - Boris Keren
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, F-75013, Paris, France
| | - Christel Depienne
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, F-75013, Paris, France
| | - Jean Muller
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France.,Laboratoire de Génétique Médicale - INSERM U1112, Institut de Génétique Médicale d'Alsace (IGMA), Faculté de médecine de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Jean-Louis Mandel
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Vincent Laugel
- Laboratoire de Génétique Médicale - INSERM U1112, Institut de Génétique Médicale d'Alsace (IGMA), Faculté de médecine de Strasbourg, 11 rue Humann, Strasbourg, France.,Service de Pédiatrie, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, Strasbourg, France
| |
Collapse
|
8
|
Massó JFM, Zarranz JJ, Otaegui D, López de Munain A. Neurogenetic Disorders in the Basque Population. Ann Hum Genet 2014; 79:57-75. [DOI: 10.1111/ahg.12088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022]
Affiliation(s)
- José Félix Martí Massó
- Department of Neurology at Hospital Universitario Donostia (San Sebastián, Guipúzcoa); Basque Health Service (Osakidetza); Basque Country Spain
- Department of Neurosciences; University of Basque Country (UPV-EHU)
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED); Carlos III Health Institute, Ministry of Economy and Competitiveness; Spain
- BioDonostia Institute, San Sebastián, Guipúzcoa
- JAKIUNDE, Academia de las Ciencias, de las Artes y de las Letras
| | - Juan José Zarranz
- Department of Neurology at Hospital Universitario Cruces (Baracaldo, Vizcaya); Basque Health Service (Osakidetza); Basque Country Spain
- Department of Neurosciences; University of Basque Country (UPV-EHU)
- BioCruces Institute, Baracaldo; Vizcaya
- JAKIUNDE, Academia de las Ciencias, de las Artes y de las Letras
| | | | - Adolfo López de Munain
- Department of Neurology at Hospital Universitario Donostia (San Sebastián, Guipúzcoa); Basque Health Service (Osakidetza); Basque Country Spain
- Department of Neurosciences; University of Basque Country (UPV-EHU)
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED); Carlos III Health Institute, Ministry of Economy and Competitiveness; Spain
- BioDonostia Institute, San Sebastián, Guipúzcoa
| |
Collapse
|
9
|
Moe Lee S, Ran Ju Y, Choi BY, Wook Hyeon J, Sun Park J, Kyeong Kim C, Yeon Kim S. Genotype patterns and characteristics of PRNP in the Korean population. Prion 2012; 6:375-82. [PMID: 22561193 DOI: 10.4161/pri.20195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Creutzfeldt-Jakob disease (CJD), included in the human transmissible spongiform encephalopathies (TSE), is widely known to be caused by an abnormal accumulation of misfolding prion protein in the brain. Human prion protein gene (PRNP) is mapped in chromosome 20p13 and many single nucleotide polymorphisms (SNPs) in PRNP have been discovered. However, the functionality of SNPs in PRNP is yet unclear, though several SNPs have been known as important mutation related with susceptibility human prion diseases. Our aim is to identify specific genotype patterns and characteristics in the PRNP genomic region and to understand susceptibility among Korean discriminated prion disease patients, suspected CJD patients and the KARE data group. Here, we have researched genotypes and SNPs allele frequencies in PRNP in discriminated prion disease patients group (n = 22), suspected prion diseases patients group (n = 163) and the Korea Association REsource (KARE) data group (n = 296) in Korea. The sequencing regions were promoter region, exon1 and exon2 with their junction parts among 481 samples. A total of 25 SNPs were shown in this study. Nucleotide frequencies of all SNPs are exceedingly tended to bias toward dominant homozygote types except in rs2756271. Genotype frequencies at codon 129 and 219 coding region were similar with previous studies in Korea and Japan. Pathogenic mutations such as 102P/L, 200E/K and 203V/I were observed in discriminated CJD patients group, and 180V/I and 232M/R were shown in suspected prion disease patients group and the KARE data group. A total of 10 SNPs were newly identified, six in the promoter region, one in exon 2 and three in the 3' UTR. The strong and unique linkage disequilibrium (D' = 0.94, r (2) = 0.89) was observed between rs57633656 and rs1800014 which is located in codon 219 coding region. We expect that these data can be provided to determine specific susceptibility and a protective factor of prion diseases not only in Koreans but also in East Asians.
Collapse
Affiliation(s)
- Sol Moe Lee
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health (KCDC), Cheongwon-gun, South Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Jansen C, Parchi P, Jelles B, Gouw AA, Beunders G, van Spaendonk RML, van de Kamp JM, Lemstra AW, Capellari S, Rozemuller AJM. The first case of fatal familial insomnia (FFI) in the Netherlands: a patient from Egyptian descent with concurrent four repeat tau deposits. Neuropathol Appl Neurobiol 2011; 37:549-53. [PMID: 20874730 DOI: 10.1111/j.1365-2990.2010.01126.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Alzualde A, Moreno F, Martínez-Lage P, Ferrer I, Gorostidi A, Otaegui D, Blázquez L, Atares B, Cardoso S, Martínez de Pancorbo M, Juste R, Rodríguez-Martínez AB, Indakoetxea B, López de Munain A. Somatic mosaicism in a case of apparently sporadic Creutzfeldt-Jakob disease carrying a de novo D178N mutation in the PRNP gene. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1283-91. [PMID: 20872767 DOI: 10.1002/ajmg.b.31099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of rare fatal neurodegenerative disorders. Creutzfeldt-Jakob disease (CJD) represents the most common form of TSE and can be classified into sporadic, genetic, iatrogenic and variant forms. Genetic cases are related to prion protein gene mutations but they only account for 10-20% of cases. Here we report an apparently sporadic CJD case with negative family history carrying a mutation at codon 178 of prion protein gene. This mutation is a de novo mutation as the parents of the case do not show it. Furthermore the presence of three different alleles (wild type 129M-178D and 129V-178D and mutated 129V-178N), confirmed by different methods, indicates that this de novo mutation is a post-zygotic mutation that produces somatic mosaicism. The proportion of mutated cells in peripheral blood cells and in brain tissue was similar and was estimated at approximately 97%, suggesting that the mutation occurred at an early stage of embryogenesis. Neuropathological examination disclosed spongiform change mainly involving the caudate and putamen, and the cerebral cortex, together with proteinase K-resistant PrP globular deposits in the cerebrum and cerebellum. PrP typing was characterized by a lower band of 21 kDa. This is the first case of mosaicism described in prion diseases and illustrates a potential etiology for apparently sporadic neurodegenerative diseases. In light of this case, genetic counseling for inherited and sporadic forms of transmissible encephalopathies should take into account this possibility for genetic screening procedures.
Collapse
Affiliation(s)
- A Alzualde
- Unidad Neurociencias, Instituto de Investigación Biodonostia, San Sebastián, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mata IF, Hutter CM, González-Fernández MC, de Pancorbo MM, Lezcano E, Huerta C, Blazquez M, Ribacoba R, Guisasola LM, Salvador C, Gómez-Esteban JC, Zarranz JJ, Infante J, Jankovic J, Deng H, Edwards KL, Alvarez V, Zabetian CP. Lrrk2 R1441G-related Parkinson's disease: evidence of a common founding event in the seventh century in Northern Spain. Neurogenetics 2009; 10:347-53. [PMID: 19308469 PMCID: PMC2821036 DOI: 10.1007/s10048-009-0187-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene together represent the most common genetic determinant of Parkinson's disease (PD) identified to date. The vast majority of patients with LRRK2-related PD reported in the literature carry one of three pathogenic substitutions: G2019S, R1441C, or R1441G. While G2019S and R1441C are geographically widespread, R1441G is most prevalent in the Basque Country and is rare outside of Northern Spain. We sought to better understand the processes that have shaped the current distribution of R1441G. We performed a haplotype analysis of 29 unrelated PD patients heterozygous for R1441G and 85 wild-type controls using 20 markers that spanned 15.1 Mb across the LRRK2 region. Nine of the patients were of Basque origin and 20 were non-Basques. We inferred haplotypes using a Bayesian approach and utilized a maximum-likelihood method to estimate the age of the most recent common ancestor. Significant but incomplete allele sharing was observed over a distance of 6.0 Mb and a single, rare ten-marker haplotype 5.8 Mb in length was seen in all mutation carriers. We estimate that the most recent common ancestor lived 1,350 (95% CI, 1,020-1,740) years ago in approximately the seventh century. We hypothesize that R1441G originated in the Basque population and that dispersion of the mutation then occurred through short-range gene flow that was largely limited to nearby regions in Spain.
Collapse
Affiliation(s)
- Ignacio F. Mata
- Geriatric Research Education and Clinical Center S-182, Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA 98108, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Carolyn M. Hutter
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - María C. González-Fernández
- Servicio General de Investigación Genómica: Banco de ADN, Universidad del País Vasco, Vitoria-Gasteiz, Spain
| | - Marian M. de Pancorbo
- Servicio General de Investigación Genómica: Banco de ADN, Universidad del País Vasco, Vitoria-Gasteiz, Spain
| | - Elena Lezcano
- Unidad de trastornos del movimiento, Hospital de Cruces, Baracaldo, Spain
| | - Cecilia Huerta
- Genética Molecular-Instituto de Investigacion Nefrológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marta Blazquez
- Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Renee Ribacoba
- Servicio de Neurología, Hospital Alvarez-Buylla, Mieres, Spain
| | - Luis M. Guisasola
- Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Salvador
- Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Juan J. Zarranz
- Unidad de trastornos del movimiento, Hospital de Cruces, Baracaldo, Spain
| | - Jon Infante
- Servicio de Neurología, Hospital Universitario “Marqués de Valdecilla”, Universidad de Cantabria, Santander, Spain
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Deng
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Karen L. Edwards
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victoria Alvarez
- Genética Molecular-Instituto de Investigacion Nefrológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Cyrus P. Zabetian
- Geriatric Research Education and Clinical Center S-182, Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA 98108, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Lee HS, Goldfarb LG. Global distribution of fatal familial insomnia: founder or recurrent mutations. Neurogenetics 2008; 9:301-2; author reply 303-4. [PMID: 18568368 PMCID: PMC2583437 DOI: 10.1007/s10048-008-0135-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 05/26/2008] [Indexed: 11/28/2022]
Affiliation(s)
- H.-S. Lee
- National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-9404, USA, e-mail:
| | - L. G. Goldfarb
- National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-9404, USA, e-mail:
| |
Collapse
|
14
|
Peña JA, Alfonso-Sánchez MA, Rodríguez-Martínez AB, de Pancorbo MM. Founder effect and recurrent mutational events in fatal familial insomnia. Neurogenetics 2008. [DOI: 10.1007/s10048-008-0134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|